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Abstract: Background: Fibonacci patterns and tubular forms both arose early in the phylogeny
of multicellular organisms. Tubular forms offer the advantage of a regulated internal milieu, and
Fibonacci forms may offer packing efficiencies. The underlying mechanisms behind the cellular
genesis of Fibonacci and tubular forms remain unknown. Methods: In a multicellular organism, cells
adhere to form a macrostructure and to coordinate further replication. We propose and prove simple
theorems connecting cell replication and adhesion to Fibonacci forms and simplicial topology. Results:
We identify some cellular and molecular properties whereby the contact inhibition of replication by
adhered cells may approximate Fibonacci growth patterns. We further identify how a component
2 → 3 cellular multiplication step may generate a multicellular structure with some properties of a
two-simplex. Tracking the homotopy of a two-simplex to a circle and to a tube, we identify some
molecular and cellular growth properties consistent with the morphogenesis of tubes. We further
find that circular and tubular cellular aggregates may be combinatorially favored in multicellular
adhesion over flat shapes. Conclusions: We propose a correspondence between the cellular and
molecular mechanisms that generate Fibonacci cell counts and those that enable tubular forms. This
implies molecular and cellular arrangements that are candidates for experimental testing and may
provide guidance for the synthetic biology of hollow morphologies.

Keywords: mitosis; Fibonacci; golden ratio; epigenomics; simplex topology; cell adhesion;
organogenesis; morphogenesis

1. Introduction

The Golden Ratio (1 +
√

5)/2 ≈ 1.618 was recognized at least as early as 500 BCE by
Phidias, after whom the symbol Φ remains named [1]. Naturalists over the centuries have
commented on its presence in plants, mollusks, and vertebrates, it has been depicted in the
arts, and it has been the subject of teleological conjecture [2–4]. Multicellular organisms
evolved from unicellular organisms in the Precambrian period 580 million years ago, and
appear to have evolved on more than one occasion [5]. Fibonacci forms are found among
these organisms [6], and are found among primitive plants such as algae [7]. Nevertheless,
the molecular or cellular mechanisms for its presence in multicellular organisms remain
unknown. It plays a role in plant phyllotaxis and perhaps in cellular packing, but a broader
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adaptive value, if any, remains unknown [8–11]. We investigate Golden Ratio mathematics
and its implications regarding the ontogeny of multicellular organisms.

The Golden Ratio is real-valued, while cell population counts are whole-numbered.
The Fibonacci numbers are the particular whole numbers that obey the recurrence relation
Fn+1 = Fn + Fn−1, with F0 = 1 and F1 = 1, giving the sequence 1, 1, 2, 3, . . .. Binet’s
formula offers a way to connect the Golden Ratio to the Fibonacci numbers,

Fn =
1√
5
(Φn − (−1/Φ)n) (1)

=
1√
5

((
(1 +

√
5)

2

)n

−
(
(1 −

√
5)

2

)n)
.

Like the Golden Ratio, forms of the Fibonacci numbers appear in ancient culture [12,13].
In this paper, we shift the Fibonacci index by one, with fn = Fn+1. With f1 = 1

and f2 = 2, this gives the sequence (1, 2, 3, 5, 8, . . .). Under this convention, if we start
with one cell and assume the cell population grows with the Fibonacci numbers, then fn
gives the population cell count at the nth generation. Furthermore, this convention offers a
combinatorial interpretation of fn, giving the number of ways that the number n can be
composed as sums of 1 and 2 [14]. This is seen in Section 7.

Single-celled and multicellular organisms both perform replication. Some single-celled
organisms exhibit adhesion. For example, the bacterium Streptococcus pneumonia may
adhere into pairs and chains, and Staphylococcus aureus may adhere into clusters. We
hypothesize that multicellular organisms differ from single-celled organisms by having
replication and adhesion be mutually regulated phenomena. An example in multicellular
organisms is contact inhibition, where the adhesion between two cells yields the coordi-
nated replication of only one of them [15]. The inter-regulation of adhesion and replication
enables more extensive structures with cellular specialization amidst topological variations.

1.1. Replication

A cell in a multicellular organism has a cell cycle divided broadly into two intervals,
interphase and mitosis, as shown in Figure 1. Interphase includes the time interval where a
cell makes its specialized contribution to an organism and is where it makes preparatory
changes so that it may divide. The proportions of time spent in interphase and mitosis vary
greatly, but generally, a cell spends much more time in interphase.

The first phase in interphase is G1 (G as in gap). In G1, a cell increases its supply of
proteins and organelles (such as mitochondria, which catalyze the conversion of oxygen
into energy), and it grows in size. It may transition to and from the non-growing phase G0.

Chromosomal DNA is replicated in the S interval of interphase. After DNA replication,
each chromosome has a pair with an identical DNA sequence. G2 is a growth phase after
DNA replication.

Mitosis (M) is a brief interval in the cell cycle where the cell divides into two. It consists
of a prophase, where the chromosomes become dense; a metaphase, where the chromosome
pairs line up on the equatorial plane; an anaphase, where the chromosome pairs detach into
sister chromatids; a telophase, where the sister chromatids move apart and form separate
nuclei; and abscission, where the membranes cleave to form two progeny cells.

Cytokinesis is the interval of mitosis between anaphase and telophase when the sister
chromatids segregate. They are pulled apart by mitotic spindles composed of tubulin.
Cytokinesis provides the proper distribution of genetic material and cytoplasm between
the two progeny cells. It involves the formation of a contractile ring, composed of actin
and myosin filaments, at the equatorial plane of the dividing cell. The contractile ring
is oriented perpendicular to the spindles. The contractile ring contracts, leading to the
formation of a cleavage furrow and eventually to abscission, the detachment of the two
progeny cells. The relationships between the contractile ring and the spindle at abscission
can encode polarities in the mitotic progeny [16–20].
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Figure 1. Cell cycle. Mitosis (M) occurs in a small fraction of the interval. The stages of mitosis are
expanded. Some examples of potential differential epigenomics are shown. A methyl group (M)
can be attached to a cytosine of a DNA strand prior to DNA replication. After replication, only one
chromosome copy retains the methyl group. When spindles are helical, they can form enantiomeric
relationships with chromosomal kinetochores upon chromosomal separation. A midbody positions
itself along the contractile ring, which then may be inherited asymmetrically by one progeny cell
upon abscission.

1.2. Adhesion

Adhesion is a persistent cell-to-cell connection with binding molecules that maintain
the physical proximity between the adhered cells. It may occur by direct cell–cell contacts or
be mediated by an intervening extracellular matrix. It may offer modes of communication
or coordination between the cells.

There are broadly five types of molecular cell–cell adhesion types by direct contact,
illustrated in Figure 2. A cell’s intracellular content is separated from the extracellular
content by a bilipid membrane. In two of the adhesion types, gap junctions and tight
junctions, lipid cell membranes between adjacent cells are intermingled. These adhesion
types allow for the exchange of molecules between intracellular spaces. For the other three
adhesion types, adherens junctions, desmosomes, and focal adhesions (with tunneling
nanotubes), the adhesion is mediated by a multi-subunit protein structure that spans
the extra- to the intracellular space [21]. The binding to the outer surface cell junctions
generally induces metabolic changes within the cell. There is evidence that adhered cells
can coordinate their cell cycles [22–24]. Furthermore, the tunneling nanotubes of focal
adhesions enable intercellular exchange of DNA and RNA [21].

On the internal cell surface, the adhesion protein complex commonly binds to elements
of the cytoskeleton. There are broadly three types of cytoskeleton protein. These are actin
filaments, microtubules, and intermediate filaments such as vimentin [25]. Of these, actin
filaments and microtubules are capable of active contraction. They play roles in modifying
cell shapes and in cell migration. The cytoskeleton binds the inner surface of cell adhesion
sites to intracellular organelles, including the cell nucleus. In mitosis, microtubules bind
to chromosome pairs and pull them apart as a cell replicates. The cytoskeleton offers
intracellular binding between the inner surface of cell adhesion sites [26].

The five types of cell–cell adhesions have differences in their properties, but the proper-
ties they have in common are that they physically bind adjacent cells together and may offer
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signaling channels. This is the property of cell adhesion that we focus on, and we use adhe-
sion as an umbrella term, but we do not treat the five cell–cell adhesion types separately.
The extracellular matrix may offer indirect forms of cell-to-cell communication between
cells not sharing a membrane for membrane adhesion. For example, molecules of the
extracellular matrix may be anisotropic, and this anisotropy may be reflected intracellularly
in the cellular cytoskeleton [27–29].

Adherens junction

Desmosome

Hemi-desmosome Focal adhesion

Tight junction

Actin

Microtubules

Intermediate
filaments

Gap junction

Basement membrane

Figure 2. Adhesion types. The basement membrane is a form of extracellular matrix binding.

2. Cellular Adhesion and Replication Patterns That May Produce Fibonacci
Population Counts

We identify patterns of cellular replication and adhesion that may produce Fibonacci
population cell counts. For each of these, we ask what are the candidates for the underlying
molecular apparatus. Then, we examine the properties of these cellular and molecular
options for an adaptive advantage.

When we consider candidate molecular mechanisms behind Fibonacci cell kinetics, as
per the central dogma of molecular biology [30], we assume that mitotic progeny share iden-
tical DNA sequences. Meiosis, not under consideration here, is a different type of cellular
replication where, by design, the ultimate meiotic progeny have different chromosomes.

2.1. Differential Mitosis Timings between Progeny

Fibonacci (Leonardo Pisano) described a rabbit reproduction model based on two
rabbit progeny with a different interval between birth and reproduction (Figure 3) [13]. The
rabbit population grows with the Fibonacci numbers. We adapt this model to cell kinetics,
substituting the replication unit of a rabbit pair with a cell in a multicellular organism. In
this pattern, cells are assigned at birth to one of two cell cycle timing classes: r (replicate)
and p (pause). Aside from cell cycle timing, the cells are of the same phenotype.

Analogous to Fibonacci’s rabbit reproduction model, at each generation, we model an
r cell to replicate to another r cell plus a p cell. An r cell proceeds to mitosis while the p cell
pauses for one generation then matures into an r cell that divides,

r 7→ r + p (2)

p 7→ r

We use subscripts to indicate the number of r and p cells in generation n,

rn+1 = rn + pn

pn+1 = rn.
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We express this in matrix notation as(
rn+1
pn+1

)
=

(
1 1
1 0

)(
rn
pn

)
where we recognize the Fibonacci Q matrix [31]

Q =

(
1 1
1 0

)
.

The Q matrix can be used to generate the nth Fibonacci number(
fn fn−1

fn−1 fn−2

)
= Qn. (3)

Furthermore, Golden Ratios appear in Q’s eigenvalues (Φ and −1/Φ) [32]. Having Golden
Ratio eigenvalues signifies that this model of divergent cell cycle timings can produce Φ
generational sizes based on cells of two types of replication timings [33,34].

…

pp

p

rrr

rr

r
p

r

p

Figure 3. Fibonacci population growth in rabbits and cells with progeny with different lags after each
reproduction. The thin horizontal lines represent adhesions.

This has similarities to the mathematics of L-systems as pioneered by Lindenmayer [35–37],
and works on cellular automata [36,38–40].
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Epigenomic Divergence

Epigenomics is the study of heritable changes in gene expression that do not rely on
the primary DNA sequence [41]. Epigenomic phenomena participate in the regulation of
cell metabolism, growth, and mitosis [42]. A differential mitosis timing between progeny
could be accounted for if progeny were to diverge in their molecular epigenomics [43]. For
example, there is an enzymatic apparatus that attaches methyl groups to the cytosine of
DNA prior to replication in the S interval of interphase (Figure 1) [44]. This apparatus ap-
pears to have arisen early among eukaryotic cells, which are the foundation of multicellular
organisms [45]. The methylated cytosine is not copied when a double strand of DNA is
copied into two double strands in preparation for mitosis. Just one of the two progeny
carries a particular cytosine methylation [46]. Insofar as this influencing mitosis timing, it
might account for differential mitosis timings between progeny.

Histone methylation is another candidate mechanism for differential epigenomics [47,48].
The histone proteins help organize DNA strands into compact structures that can be
contained in a cell nucleus. Histone methylation can influence the expression of genes in
the associated DNA. Copies of histones are passed to mitotic progeny. This poses another
opportunity for differential mitosis behavior between mitotic progeny.

There can be polarities in the mitotic progeny that derive from the relationship between
the involuting spindle and the plane of the contractile ring at abscission [16–20].

2.2. Contact Inhibition

In the model above, Fibonacci cell counts are generated by differential mitosis timings
between progeny based on properties that are inhibited at cell birth. There is evidence
though that cell cycles and mitosis timing can be coordinated by cell contacts [15]. We ask
if there is a formalism to generate Fibonacci cell counts where cells that adhere coordinate
to restrain mitosis in one of the two cells, whereas cells without contact (adhesion) mitose.

In one such pattern, adhered cell pairs coordinate their cell cycles so that only one
undergoes mitosis. A single cell replicates to yield two cells

whereas with an adhered cell pair, one undergoes mitosis, producing three cells

.

This is contact inhibition [15].

Proposition 1. There is an additive and recursive Fibonacci growth pattern based on contact
inhibition. For illustration, we employ the language of biological cells.

Proof. We demonstrate the existence of such an algorithm whereupon replication single
cells go from count 1 to count 2 and cells pairs go from count 2 to count 3. The double
arrow ⇒ denotes a replication step. We start with count 1.

f1 ⇒ f2

The two cells of f2 coordinate to replicate into three cells. One cell comprising f2 takes
no replicative action. The other produces a copy of itself to give net

f2 ⇒ f3.
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We proceed by induction for any n ≥ 3. We start by rearranging

fn = fn−1 + fn−2

= ( fn−2 + fn−3) + fn−2

to give fn−2 pairs as
fn = ( fn−2 + fn−2) + fn−3 (4)

In the replication step, each pair coordinates to produce one more cell, ( fn−2 + fn−2) →
3 fn−2 and each unpaired cell produces two, fn−3 → 2 fn−3. This gives, upon replication,

fn ⇒ 3 fn−2 + 2 fn−3 (replication step)

= fn−2 + 2( fn−2 + fn−3)

= fn−2 + 2 fn−1

= ( fn−2 + fn−1) + fn−1

= fn + fn−1

= fn+1.

A given cell population may deviate from precise Fibonacci cell counts if, for example,
in Equation (4), some of the cells enumerated by the fn−3 term form coordinated pairs, in
which case they might form the epicenter of a new Fibonacci pattern, or if some cells in the
fn−2 terms do not. A biological interpretation may be of variations in the local availability
of cells to induce contact inhibition.

We introduce some terminology. In an adhered cell pair that undergoes replication,
we term one cell the partner cell and the other the mitosis cell. There are two polarities that
can be named. The orientation of the two cells relative to each other may be termed the
pair polarity. With a mitosis cell, there is a mitosis polarity. This is given by the axis of sister
chromatid separation. This corresponds to the axis from the centrosome at one pole of the
cell to the centrosome at the other pole. The mitosis polarity is perpendicular to the plane
defined by the contractile ring.

When two cells adhere, there may be a preference as to which is the partner cell
and which is the mitosis cell. Furthermore, these preferences may have a relation to
some directionality in the pair and mitosis polarities. Such a preference may be encoded
intracellularly or in a difference in the relationship between the cell cytoskeleton and the
extracellular matrix.

2.3. Cooperative Mitosis and Adhesion

In the above model of contact inhibition, when a pair of cells adhere, there is no pref-
erence as to which undergoes mitosis. However, recognizing the presence of epigenomic
and polarity differences between mitotic progeny, there may be a biological circumstance
where when two cells adhere; there is a molecular distinction between them that makes one
in particular more apt to undergo mitosis. The biomolecular mechanisms behind such a
distinction may transpire intracellularly or extracellularly, perhaps depending on polarities
between a cell cytoskeleton and the extracellular matrix [49]. Let us assume that there
are two cell types, a and b, that are similar in every way other than having a different
preference to undergoing mitosis when they adhere.

Proposition 2. There is an additive and recursive Fibonacci growth pattern based on contact
inhibition between cell types a and b. We denote this cell type by a left superscript. Replication from
two cells to three is based on a pairing of an a cell with a b cell, (a + b) ⇒ 2a + b. An unpaired a
cell replicates into an a cell and a b cell, a ⇒ a + b.
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Proof. Proceeding as above, and starting with n,

fn = a f n−1 +
b f n−2

= (a f n−2 +
b f n−2) +

a f n−3

fn ⇒ (2 a f n−2 +
b f n−2) + (a f n−3 +

b f n−3) (replication step)

= (2 a f n−2 +
a f n−3) +

b f n−2 +
b f n−3)

= a f n−2 +
a f n−1 +

b f n−1

= a f n +
b f n−1

= fn+1.

A replication behavior that depends on and produces oriented adhesion between two
cell types generates opportunities for emergent tissue patterns [49]. For example, using a
half arrow head ⇀ to denote an oriented adhesion between cells, we find that a number of
tissue patterns may arise over three generations,

a

a

aa
b

b

a

a

ab
b

a

a

b

aa
a

b

a

b

ba
a

a , (5)

as indicated by the local orientations of cell types a and b.
A replication pattern based on cooperation between adhered cell pairs may approxi-

mate local Fibonacci growth for small n but it may not necessarily generate global Fibonacci
patterns for large n.

3. Candidate Molecular Mechanisms

An assignment at adhesion to mitose or not is consistent with laboratory evidence
that the five categories of cell adhesion (Figure 2) participate in gene and cell cycle regula-
tion [50–55]. If these adhesion categories are able, in particular, to establish semaphore cell
cycle coordination so that one of a pair undergoes mitosis, then Fibonacci population counts
might be observed. If the paired cells are identical and the adhesion communication is
symmetric, then it may be equal odds as to which cell of the adhered pair undergoes mitosis.

The molecular data are consistent with mutually reinforcing roles for mitosis and ad-
hesion [15]. This might be the case if there is polarity among mitotic progeny that influences
the mitosis semaphore at adhesion. The polarity-dependent mitotic behavior could span
generations. A candidate molecular mechanism might be a cytoskeletal polarity that is
linked across the cell membrane to polarities of extracellular adhesion and the extracellu-
lar matrix [27–29,56,57]. For example, the midbody, which forms along the cleavage line
at telophase and can be asymmetrically inherited by a progeny [58], is involved in cell
proliferation [59], and attaches to cell surface adhesion structures [54].

There are other opportunities for stereochemical variations between mitotic progeny
with extracellular linkages. When chromosomes condense in the cell nucleus in the
prophase, mitotic spindles form between centrosomes at opposite poles of the cell and
attach to the kinetochores of the chromosomes (Figure 1). The spindles consist of micro-
tubules which are motoric protein structures. They have a left chiral orientation as they
link centrosome to centrosome at opposite cell poles. They attach to the kinetochores of
chromosomes. Their chirality causes them to apply torque to chromosomes when they
contract [60]. The helical spindle attachment to chromosomal kinetochores opens oppor-
tunities for stereoisomeric distinction upon chromosomal separation [61] (Figure 1). This
opens an opportunity for enantiomeric chromosomal differences after the metaphase that
remain coordinated with extracellular adhesion patterns.
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4. Simplicial Steps by Replication and Adhesion

The sheer accumulation of mass by replication and adhesion may not be the most
efficient way for a multicellular organism to gain an adaptive edge. There may be instead
advantages from qualitative changes in shape. We ask how replication and adhesion,
founded in molecular and cell biology, can enable the topological transformation of organ-
ism shape.

A topological transformation of bioontologic interest is the adoption of a tubular
form. It enables a primitive organism to maintain a regulated internal environment with
openings for exchanging nutrients and waste products with the external environment [49].
A hollow morphology that hosts a separated internal environment arose in some of the
earliest multicellular organisms in the Precambrian period 580 million years ago, such as
those from the phylum Cnidaria [62,63]. Fibonacci forms are found among these tubular
plants and animals [6,7].

Another topological form of biological interest is the torus. It is a surface of revolution
of a circle about a coplanar axis, reminiscent of a “donut” [64]. An internal torus form
may offer a circulatory system. It may require a mechanical pump to impel cyclical fluid
motion corresponding to a heart. There exist algorithms to construct three-dimensional
objects such as a torus from two-simplex meshes [65]. A biological topic for investigation is
whether there exist cellular and molecular mechanisms that might act like such algorithms
to produce a torus. A torus provides greater control of the internal environment than a
tube since the torus shape does not include a mouth-like opening. Instead, it relies on
diffusion for chemical exchange with the environment. Among vertebrates, the circulatory
system exchanges oxygen and carbon dioxide with the external environment by diffusion
in the lungs.

We focus on the adoption by organisms of simple topological forms: the simplices.
A topological k-simplex is a generalization of a directed multigraph with k vertices and
a directed edge connecting every vertex pair, a face connecting every vertex triplet, and
so on. A simplex reflects the most complex topological form representable by the fewest
points. For a biological interpretation, we view cells as vertices and adhesions as edges,
and we ask whether these roles might enable simplicial topological transformations. The
study of simplices might offer insight into the genesis of complex biological forms from
simpler ones by cellular replication and adhesion programs. A zero-simplex is a point, a
one-simplex is two points with an edge between them, a two-simplex is a triangle with an
outer boundary and a flat inner region, and so on.

In topology, there is an equivalence termed a homotopy between shapes that can
be transformed into each other. If they can be continuously and invertibly transformed
into each other, they are termed a homeomorphism. For example, the boundary of a
two-simplex is the maximally continuously contracted form of a circle, and a circle is a
continuously contracted form of a tube. Transitively, the boundary of a two-simplex is
the maximally contracted form of a tube. We ask if there is an algebraic way to replicate
the vertices of an n-simplex to produce an n + 1-simplex. If so, we ask if there exists
a cellular and molecular apparatus for executing this algebraic procedure to produce a
biological two-simplex. If so, we further ask if there is a cellular and molecular apparatus
for extending a biological two-simplex toward a circle of enlarging cellular diameter. A
desired property of the cellular and molecular apparatus is that it enables a self-similar
automaton program where individual cells act similarly in response to similar stimuli.

We define a simplex in terms of the barycentric coordinate system.

Definition 1 (n-Simplex). Given n + 1 points v0, v1, . . . , vn in Rn that are affinely independent,
the n-simplex is the set of all points Cn

Cn = {λ0v0 + λ1v1 + . . . + λnvn |
n

∑
i=0

λi = 1 and all λi ≥ 0}.
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The affine dependence criterion assures that the simplex properties are preserved by
an affine transform, which can include a linear scaling, a rotation, or a translation.

Definition 2 (Vertex Replication). In an n-simplex with points Cn, the replication of the kth point
is given by a process:

• Increase the space dimensions from Rn to Rn+1.
• This increases the vector length of every point. Let w0, w1, . . . , wn be the first n + 1 points.

Let each wi be a copy of vi with a zero placed in the last position.
• Let wn+1 be a copy of the point to be replicated, vk, with a one placed in the last position.

Here is an example progression from a zero-simplex to a one-simplex to a two-simplex
by two vertex replications.

R R

We find that a vertex replication in an n-simplex yields an n + 1-simplex.

Theorem 1 (Simplex Growth by Vertex Replication). A vertex replication in an n-simplex
produces an n + 1-simplex. The new simplex is given by the set of points

Cn+1 = {λ0v0 + λ1v1 + . . . + λn+1vn+1 |
n+1

∑
i=0

λi = 1 and all λi ≥ 0}.

Proof. By assumption, prior to replication, the points v0, v1, . . . , vn in Rn are affinely inde-
pendent. It suffices to show that the produced points w0, w1, . . . , wn+1 in Rn+1 are affinely
independent. This holds because the point produced by replication, wn+1, differs from all
other points by having a one in its last vector position, whereas the n + 1 other points have
a zero in that position. Therefore, wn+1 is affinely independent of all other points, which by
assumption are affinely independent.

In the contact inhibition model of Fibonacci cell count growth, an adhered cell pair
assigns one as a partner cell and the other as a mitosis cell. Upon telophase, the mitosis
cell forms a contractile ring. At cytokinesis, the contractile ring becomes the plane of
abscission (Figure 1). We hypothesize that if the pair polarity is perpendicular to the mitosis
polarity, then upon abscission, the polarity of the progeny cells will be perpendicular to the
preceding pair polarity. This perpendicularity is equivalent to the affine independence of
the progeny adhesion direction to the preceding pair polarity. In addition, if the mitosis
polarity of the mitosing cell relative to the partner cell is such that their adhesion spans the
contractile ring, then both progeny cells will inherit adhesion to the partner cell, in addition
to retaining adhesion to each other, as shown in the first three steps here.

1-simplex
2-simplex

mitosis

contractile ring (6)

According to the simplex growth by vertex replication theorem, if the mitosis polarity is
perpendicular to the pair polarity and if parental adhesions are inherited, then the original
single cell produces a two-simplex at the third generation.

The capacity for a mitosing cell to split and share adhesions among progeny cells
to a partner cell as in Equation (6) implies particular properties of cell membranes and
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their embedded adhesion molecules. Rather than be an infinitesimally thin vertex between
nodes as in graph theory, this implies an adhesion to be a bundle with a certain thickness
that can be split. This appears to be consistent with the fluid mosaic biochemical theory,
where “cell membranes are viewed as two-dimensional solutions of oriented globular
proteins and lipids” [66]. Under this interpretation, the adhesion on the left-hand side of
Equation (6) is formed by an arrangement of oriented proteins shared by segments of the
liquid membranes of the two partner cells on the left. If the liquid zone of the dividing cell
spans the plane of abscission, then both progeny cells inherit an adhered liquid zone on
their cell membrane. If the two progeny cells retain adhesion by oriented proteins between
them as their liquid membrane zones split across the plan of abscission, the resulting three
cells will have the triangular shape of a two-simplex. These phenomena are consistent with
the view of a cell membrane as a dynamic structure [67].

For mitoses starting with the fourth generation, the partner cell’s adhesion does not
span the contractile ring or the plane of abscission. The restriction of the adhesion to one
side of the plane of abscission allows the two-simplex to grow as a circle shape with every
cell having a similar automaton program. The ensuing steps are not simplex progression
because the orientations of the replication progeny are no longer affinely independent.
After the two-simplex, the structure takes the form of a graph. An automaton program of
self-similar replication and adhesion may be postulated for growth from a circle to a tube.

2-simplex mitosis

...

(7)

If the polarity of mitosis in the one-simplex relative to the partner cell is such that
adhesion does not span the contractile ring, then a two-simplex will not form, as illus-
trated here.

1-simplex

contractile ring

mitosis (8)

A tubular morphology opens an opportunity for cellular specialization [49]. A two-
layered cellular boundary that segregates an internal environment appears in some of the
earliest multicellular organisms, such as those from the phylum Cnidaria [49,62,63,68]. The
outer layer is termed the epidermis, and the inner layer the gastrodermis [63].

There is symmetry of the hole in the triangular form relative to the plane of the page
on the right-hand side of Equation (6). This does not promote the morphogenesis of a
directional body axis of a tubular organism. A directionality of the body axis is needed at
morphogenesis to enable segmentation along the body axis and distinguish say, a mouth
from an anus. Following the emergence of Cnidaria in the Precambrian era, a directional
body axis facilitating segmentation arose with Ctenophora in the Cambrian era [69]. We
identify a contact inhibition strategy between two cell types as capable of generating
Fibonacci patterns. A directionality of a body axis could arise in turn from directionality in
the adhesions of the cells that form the triangle of Equation (6) if the adhesion directions
promote a right-hand chirality rule, but this is a topic for further research.

In vertebrates, tubular structures appear as the aero-digestive tract, the urinary tract,
or endocrine/glandular secretion tracts—the hole in the two-simplex functions as a mouth
for nutrient entry into a regulated internal environment. There are internal structures that
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do not have a “mouth”, such as the circulatory system, the lymphatic system, and the
cerebrospinal fluid system. These do not contract to a two-simplex.

With the classical power of two replication, two cells mitose simultaneously in the
transition from the second to the third generation. The topological shape of the four-
cell adhered product depends on each cell’s relation to the other’s contractile ring and
abscission plane. If the mitotic polarity of each dividing cell is perpendicular to that of
the other cell, and if each progeny retains adhesion to its sibling and inherits the adhesion
of its parent, then the four-cell unit should take the shape of a tetrahedron. This shape is
akin to a three-simplex, which is the simplest contraction of a sphere. It has an internal
environment without an opening to exchange nutrients and waste products with the
external environment. If neither cell’s adhesions span the other’s contractile ring, then the
four-cell result should take the shape of a row, as in Equation (8).

5. A Visual Representation of Algebraic Topology of Replication and Adhesion

While Fibonacci replication with adhesion across three generations to produce a two-
simplex offers the most direct path for an organism to form an internal environment, we
wish to identify other paths toward hollow organs. For example, we may explore the more
general ontogenic circumstance where asynchronously stem cells migrate into a vicinity,
individually replicate, and then aggregate into cellular assemblies possibly containing
topological holes.

We offer a visual representation for algebraically symbolizing the replication and
adhesion status of cellular aggregations, while visually depicting the opportunities for
topological transformations. Plural adhesion slots per cell may be depicted. An arrow
symbol gives the adhesion direction. The arrowhead is the = symbol, and adhesions on
the left-hand side match the right-hand side. Branches on either side of the arrowhead are
interpreted as addition, +.

We select the arrowhead as the = symbol because the molecular apparatus of cellular
adhesion and the extracellular matrix both appear to be anisotropic [27,70,71]. While this
implies that cell adhesion slots are anisotropic, this assumption is unnecessary. The visual
representation could be adjusted accordingly, such as by using double-headed arrows.

In the following examples, we treat cells as replicating in Fibonacci patterns, but this re-
striction is unnecessary with this visual representation. Let us assume that a progenitor cell
replicates in generations with cell counts given by the Fibonacci numbers (1, 2, 3, 5, 8, . . .).
We assume that the two progeny cells of a replication adhere to each other. We refer to these
as the horizontal cell adhesion slot for the convenience of representation on the printed
page. We further assume that the individual cells in an aggregation may adhere to cells in
another aggregation. We refer to these as the vertical cell adhesion slots for presentation
on the printed page. We provide an over and under arrow notation to track adhesions
between cells of different aggregations.

An epithelium is a common tissue pattern where there are adhesions between cell
aggregations of different morphogenic lineages. An epithelium has one or more layers
of cells, but generically, an epithelium has two adhered layers, each facing a distinct
environment. In primitive organisms such as coral and other coelenterate members of
Cnidaria, the outer layer termed the epidermis faces the external environment, and the
inner layer, the gastrodermis, faces the environment within the tube [63]. In animals with a
heart and a circulatory system, commonly, one layer faces blood in the circulatory system.
This is the endothelium. The other layer contacts the environment that it bounds. With skin,
this is the epidermis. In the lungs, two layers separate air in the alveolar sacs from blood in
capillaries across a narrow gas diffusion barrier. In the intestine, two layers separate blood
from alimentation in its stages of digestion, along with the microbiome. In the kidney, two
layers separate blood from urine. In glandular structures, two layers separate blood from a
secretory product. In portions of the liver, for example, this might be blood from bile. In
the passages that follow, an epithelial layer is an exemplary aggregation of adhered cells.
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A slice through an idealized two-layered epithelium is illustrated in Figure 4, where a
layered aggregation of sizes f2 and f3 are adhered to one of size f4. In Figure 4, the cells
have only one vertical receptor. Therefore, the assembly in Figure 4 cannot anneal with
other Fibonacci-sized cell aggregations into larger structures.

Version April 16, 2024 submitted to Symmetry 13 of 22

of cells, but generically an epithelium has two adhered layers, each facing a distinct 410

environment. In primitive organisms such as coral and other coelenterate members of 411

Cnidaria, the outer layer termed the epidermis faces the external environment and the 412

inner layer, the gastrodermis, faces the environment within the tube[63]. In animals with a 413

heart and a circulatory system, commonly one layer faces blood in the circulatory system. 414

This is the endothelium. The other layer contacts the environment that it bounds. With 415

skin, it is the epidermis. In the lung, the two layers separate air in the alveolar sacs from 416

blood in capillaries across a narrow gas diffusion barrier. In the intestine, the two layers 417

separate blood from alimentation in its stages of digestion, along with the microbiome. 418

In the kidney, the two layers separate blood from urine. In glandular structures, the two 419

layers separate blood from a secretory product. In portions of the liver, for example, this 420

might be blood from bile. In the passages that follow, an eithelial layer is an exemplary 421

aggregation of adhered cells. 422

A slice through an idealized two-layered epithelium is illustrated in Figure 4 where a 423

layered aggregation of sizes f2 and f3 are adhere to one of size f4. In Figure Figure 4, the 424

cells have only one vertical receptor. Therefore the assembly of Figure 4 cannot anneal with 425

other Fibonacci-sized cell aggregations into larger structures. 426

A
f4

f4

f3

f3

f2

f2

B

Figure 4. Single Combinatorial Engagement Between Three Fibonacci-Sized Cell Aggregations. A
two-layered epithelium (A) has concatenated cell aggregations of sizes f2 + f3 assembled onto a layer
(B) of size f4 by vertical one-to-one cell adhesion slots. Without dual adhesion by each cell there is no
chaining.
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Figure 4. Single combinatorial engagement between three Fibonacci-sized cell aggregations. A
two-layered epithelium (A) has concatenated cell aggregations of sizes f2 + f3 assembled onto a layer
(B) of size f4 by vertical one-to-one cell adhesion slots. Without dual adhesion by each cell, there is
no chaining.

The function of the horizontal and vertical cell adhesion slots may be served by the
same molecular pattern, but we segregate their visual representation above and below
the cell count symbol because they serve different roles. The precise positions on a cell
surface are not the focus of analysis. Instead, we are interested in the qualitative topological
properties and are less interested in this analysis of morphological forms that can be
deformed continuously into each other as topological homotopies.

In this notation, for example, we might represent f1 + f2 = f3. These three assemblies
may adhere across the = sign. We introduce an over/under arrow notation to indicate
the top or bottom inter-aggregation adhesion sites. The arrowhead may be read as the
equal = sign. For the top vertical slots, we may have, for example,

f1 f2 f3 . (9)

This may represent the biological process whereby the top inter-aggregation cell adhesion
slots of cell aggregations of sizes f1 and f2 adhere to and occupy the top adhesion slots of
a cell aggregation of size f3. The vertical slots have sizes given by the Fibonacci number.
This notation is specific to this application and is unrelated to the Fibonacci number of a
graph [72]. This triplet is the simplest Fibonacci adhesion event involving cell aggregations
of different sizes.

We exclude from consideration reflexive arrangements such as

f5 f5

and

f3 f4 f5

that interrupt the chaining.
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With this restriction, the presence of two vertical slots implies the potential for infinite
chaining. For example, a set of Fibonacci-sized cell aggregations f1, f2, f3, f4, f5, f6, . . .
produced by kinetically tuned mitosis might assemble by overlapping triplet adhesion into
a scaffold as

f1 f2 f3 f4 f5 f6 . . . . (10)

Such a structure may display a self-similar scaffold across the scales of size. Such a
bio-fractal form may offer the biological efficiency of reuse of the same cell-to-cell adhe-
sion molecules to maintain structural integrity across spatial scales. The same molecular
apparatus that adheres one cell to another may adhere a lobule to a lobule, up to a limb to
a trunk.

The Fibonacci numbers bring a rich set of combinatorial identities [73]. These combi-
natorial identities may be visually encoded to depict adhesion patterns between cells and
cellular aggregations. For example, some Fibonacci identities produce a larger Fibonacci
number from a collection of smaller ones. An example is

3 f1 + f2 + f3 + . . . + fn = fn+2.

If this represents a collection of Fibonacci-sized aggregations that adhere as

f1 f1 f1 f2 f3 f4 f5 f6

then as per the identity, the assembly would have f8 cells. Accordingly, it may be contracted
to the equivalent of a zero-simplex

f8.

When Fibonacci-sized cellular aggregations combine, the resulting cell count is given
by the theory of Fibonacci compositions [74].

6. Non-Simplicial Topological Transformation

Topological transformations may occur by the closure of discontinuities. Cellular
aggregates that do not undergo topological transformations, such as into a two-simplex per
Equation (6), may nonetheless combine and and close discontinuities by adhesion. Two
cellular aggregates may meet and adhere at two separate locations to jointly achieve a
topological transformation. Alternately, a single cellular aggregate may fold so that formerly
remote parts close by adhesion. The visual notation for representing adhesion among
cellular aggregations allows us to explore circumstances where there may be topological
transformations from adhesive closure of discontinuities.

When a collection of cellular aggregations finds an adhesion arrangement where all
adhesion slots are occupied, we term this state full adhesion engagement. We assume
that cells tend toward a fully engaged adhesion arrangement. We observe that an open
scaffold such as in Equation (10) based on concatenated triplets cannot have full adhesion
engagement because each terminus has one or more unoccupied adhesion slot.

However, if the two ends have unengaged vertical slots of equal size, then the structure
can fold and bind into full engagement. An example is the palindrome

f4 f3 f2 f1 f1 f2 f3 f4 . (11)
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A palindrome is not the only closed form with full engagement. In Appendix A, we
prove a set of conditions where a fully engaged ring can be made from random triplets
of Fibonacci aggregations. With that proof in hand, we generate random numbers that
conform to the terms of the proof to guarantee that the result will be a fully engaged
scaffold ring (for example, see Figure 5).
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Figure 6. A Scaffold Ring. All inter and intra-aggregation adhesion slots are occupied. The arrows
depict the inter-aggregation adhesion slot bindings.
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Figure 5. A scaffold ring. All inter and intra-aggregation adhesion slots are occupied. The arrows
depict the inter-aggregation adhesion slot bindings.

7. Combinatorial Properties of Circular Forms

If several ring shapes of the same diameter were to stack up above and below the
plane of the page and each cell were to have a further pair of unoccupied inter-aggregation
adhesion slots oriented in the third dimension perpendicular to the plane of the page, then
the rings could anneal into a tubular structure. We use the Fibonacci numbers to count
the number of cells in a cellular aggregation, but the Fibonacci numbers offer a different
combinatorial interpretation. For an open form of length n cell diameters, the Fibonacci
number fn carries the combinatorial interpretation of counting the number of ways to fill
those n cell diameters with single cells and cell pairs. For a ring with a circumference of
n cell diameters, that count is given by the Lucas number Ln [73] (p. 17 [75]). For a given
number of cell diameters, the Lucas numbers are larger than the Fibonacci numbers, as per
the identity

Ln = fn + fn−2

recalling that in our convention Fn+1 = fn. This combinatorial relation is illustrated for a
cellular two-simplex in Figure 6. As with the Fibonacci numbers, the ratio between adjacent
Lucas numbers tends toward the Golden Ratio. Since the Lucas number is larger than the
Fibonacci number for the same number of cells, a ring shape as a template offers a larger
number of ways for single cells and pairs of cells to anneal to it than an open shape.

A circular assembly of cells appears to have greater entropy under a combinatorial
Lucas tiling argument than an open assembly. This is further illustrated in Appendix A. If
the same combinatorial forces act perpendicularly on the same cells, then a torus might
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have greater entropy than a tube. Indeed, the topological square of a circle S1 is a torus
S1 ⊗ S1. The shape resembles a circulatory system where pumped blood flows in circles.
An idealized circulatory system with a two-chambered heart such as in gnathostome fish
(Infraphylum Gnathostomata [76]) is illustrated in Figure 7.
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Figure 5. Cellular adhesion interpretation of the tilings heuristic for Fibonacci and Lucas numbers.
There is a tiling of 1 cell (gray) and one of two cells (yellow). The number of tilings for a linear cell
arrangement of length n is given by the nth Fibonacci number fn = Fn−1. The number of tilings for a
closed arrangement is given by the nth Lucas number Ln where Ln = fn + fn−2.
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Figure 7. The topological square of a circular cellular aggregation (1) is a torus (2). This shares topo-
logical features with a primitive circulatory system shown here having an idealized two-chambered
heart (H), an arterial component (red), a venous component (blue), and a capillary bed (C).
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Figure 7. The topological square of a circular cellular aggregation (1) is a torus (2). This shares
topological features with a primitive circulatory system shown here with an idealized two-chambered
heart (H), an arterial component (red), a venous component (blue), and a capillary bed (C).

8. Conclusions

A multicellular organism is apt to gain adaptive advantages, not so much from sheer
adhered mass, but by assuming topological forms not available to a unicellular organism.
These topological forms can open survival strategies, such as a tubular form for hosting a
regulated internal environment and providing a scaffold for cellular specialization. Under
the terms of simplex topology, there is no simpler path by replication and adhesion for
a multicellular organism to adopt a shape that is homotopic to a circle and a tube. An
underlying molecular mechanism might be contact inhibition by adhered cells with partic-
ular polarities. Upon mitosis by one cell pair member, there is action across a fluid mosaic
membrane to yield a cellular triplet in a two-simplex form. The identification of a laboratory
model of tube formation might offer an experimental testbed for these predictions. An
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alternate to such an analytic experimental strategy might be a synthetic strategy where
notions such as these aid in a laboratory assembly of de novo tubular cellular forms [77].

This pathway depends on a contact inhibition model of replication. A pair of cells
adhere to one another. By agreement, one undergoes mitosis, and the other does not.
Under selected circumstances, this approximates Fibonacci growth patterns (Proposition 1).
The progression to three adhered cells comprising a two-simplex depends on the adhered
cells having a pair polarity perpendicular to a mitosis polarity and on the progeny cells
inheriting the adhesions of the parent cell (Equation (6)). The “transition from individual
replicators”, taken to be a common element among several major evolutionary steps [78–80],
is favored in this analysis insofar as contact inhibition may favor replication and adhesion
molecular patterns that can enable simplicial topological steps. A potentially advantageous
example in multicellular organisms may be the adoption of tubular forms that can enable
the maintenance of a comparatively stable internal milieu.
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Appendix A. Random Ring Patterns

To nourish our intuition, we wish to generate a family of random scaffold rings with
full adhesion engagement. To start, we offer some definitions and provide a theorem
showing that a scaffold ring as defined here has full adhesion engagement.

Definition A1. A Fibonacci triplet is a set of three aggregations of sequential Fibonacci size that
have inter-aggregation receptor bindings to each other. A relative up triplet has increasing Fibonacci
numbers such that a relative up triplet to fk−1 is

fk fk+1 fk+2 .

blank
and a relative down triplet is blank

fk fk−1 fk−2 .

It does not matter in this definition whether the inter-aggregation bindings are top
or bottom.

Definition A2. A triplet scaffold is a structure that is composed of concatenated Fibonacci triplets
where all slots are engaged and the sumands and sums are contiguous.

We observe that in such a structure, a given triplet has six vertical adhesion slots. Two
serve as sumands to bind the concatenated triplet to the right. One serves as a sum to bind
to two sumands from the triple to the left. These overlapping Fibonacci relations bind the
triplets one to the next in the scaffold. Three slots are internal to the triplet. Two of these
are summands for a sum in a third slot.
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Definition A3. A scaffold ring is a triplet scaffold where the ends have folded to meet and adhere.
An example is

f3 f2 f1 f2 f3 f4 .

blank

Start with an arbitrary Fibonacci number, fk, append to it an equal number of relative
up and down triplets in arbitrary order, and adhere the slots.

Theorem A1. Such a ring has full adhesion engagement.

Proof. Start with an arbitrary initial Fibonacci number fk. Append a relative up triplet.
The rightmost aggregation is of size fk+3 because appending a triplet adds three to the
rightmost Fibonacci index.

fk fk+1 fk+2 fk+3 .

Append a relative down triplet. This subtracts three from the rightmost index.

fk fk+1 fk+2 fk+3 fk+2 fk+1 fk . (A1)

blank
There are five internal Fibonacci-sized aggregations. These have 10 adhesion slots available.
There are six sumand and four sum slots occupied, so the internal aggregations have full
engagement. The aggregations on the left and right ends each have fk occupied and fk
unoccupied slots. If the structure folds, the fk-sized slots on each end will adhere because
they are of the same size. Between the two triplets, we can insert an equal number of
relative up and down triplets in random order and there will still be adhesion closure
because each end will have fk unoccupied vertical adhesion slots.

In the paragraph above, we start with a relative up triplet and end with a relative
down triplet. We find, however, that the same argument holds whether we start or end
with an up or down triplet so long as the number of them is equal. We also find that the
order of the relative up and down triplets does not matter.

Lemma A1. In a fully engaged ring, duplicating a Fibonacci-sized aggregation number or replacing
a duplicate with a single produces a longer or shorter ring that still has full engagement.

This is because inserting a duplicate number only flips the vertical polarity of the
ensuing receptor orientation. This lemma is nonsensical in the case of a palindromic ring
where its successive application would cause the removal of all aggregations. Hybrid forms
with an inner loop and open ends are algebraically possible but not treated here.

Removing the duplicate fk from Equation (A1) produces

fk+1 fk+2 fk+3 fk+2 fk+1 fk .

This is a triplet scaffold where the adhesions are fully engaged.
With this proof and lemma, we program a computer to generate some random scaffold

rings with full engagement. We randomly generate a set of relative up and down triplets,
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randomly insert and remove duplicates, and graph some results in Figure A1 to portray a
range of allowed woven rings.
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This is because inserting a duplicate number only flips the vertical polarity of the 602

ensuing receptor orientation. This lemma is nonsensical in the case of a palindromic ring 603

where its successive application would cause the removal of all aggregations. Hybrid forms 604

with an inner loop and open ends are algebraically possible but not treated here. 605

Removing the duplicate fk from Equation A1 produces 606

607

fk+1 fk+2 fk+3 fk+2 fk+1 fk .

608

This is a triplet scaffold where the adhesions are fully engaged. 609

With this proof and lemma we program a computer to generate some random scaffold 610

rings with full engagement. We randomly generate a set up relative up and down triplets, 611

randomly insert and remove duplicates, and graph some results in Fig A1 to portray a 612

range of allowed woven rings. 613

f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12

Figure A1. Some Random Woven Rings. The legend gives the Fibonacci color code scheme. Cell
binding relationships are not depicted.
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