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Abstract: Ruled surfaces are considered one of the significant aspects of differential geometry. These
surfaces are formed by the motion of a straight line called a generator, and every curve that intersects
all the generators is called a directrix. In the present research paper, we explore a family of ruled
surfaces constructed from circular helices (W-curve) using the Frenet frame in the Euclidean space
E3. We derive the explicit formulas for the second mean curvature and second Gaussian curvature.
We present some ruled surfaces, and we describe their properties. In addition, we determine the
sufficient conditions for these surfaces to be minimal, flat, II-minimal, and II-flat. Also, we obtain
sufficient conditions for the base curve for these ruled surfaces to be a geodesic curve, an asymptotic
line, and a principal line. Furthermore, we present an application for a ruled surface whose base
curve is a circular helix, we compute some quantities for this surface such as the mean curvature and
Gaussian curvatures and we plot the ruled surface with its base curve, and at symmetric points and
along a symmetry axis.

Keywords: ruled surfaces; circular helix; W-curves; II-minimal surfaces; II-flat surfaces; second mean
curvature; second Gaussian curvature
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1. Introduction

The primary objective of classical differential geometry is to comprehend the characteris-
tics of specific types of surfaces in E3, including developable surfaces, ruled surfaces, minimal
surfaces, and other related surfaces. Ruled surfaces (R-S) in Euclidean 3-space are geometric
entities formed by straight lines, called rulings, that move through space while remaining
tangent to a fixed line, known as the directrix. These surfaces have practical applications
in fields such as architecture and computer graphics. Understanding their characteristics
contributes to a deeper comprehension of geometry and its real-world implications.

Many researchers studied the (R-S) and their diverse characteristics. Gürsoy [1]
analyzed the dual integral invariant of a closed ruled surface and presented some new
results of the geometric interpretations for the real angle of pitch and the real pitch of
a closed ruled surface. Köse [2] expressed the pitch and the angle of pitch of a closed
ruled surface in terms of the integral invariants for the dual spherical closed curve that
corresponds to the closed ruled surface. Turgut, et al. [3,4] investigated the properties of
timelike (R-S) in Minkowski 3-space, along with the structure of developable timelike (R-S).
The curve of striction, the central point, and the distribution parameter of these surfaces
were also discussed. The angles between normal vectors at various sites on a ruling,
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the behavior of tangent planes along a ruling, and the unique value of the distribution
parameter along a ruling were covered.

Ali et al. [5–7] investigated the mathematical description of helical structures in Eu-
clidean 3-space, specifically, general helices and their position vectors concerning the Frenet
frame for both general helices and slant helices. In addition, examples such as circular
general helices, spherical general helices, Salkowski curves, and circular slant helices
were presented.

Barros [8] proposed Lancret’s theorem for general helices in a three-dimensional real-
space form. This theorem distinguishes the relationship between hyperbolic and spherical
geometries, furthermore studying the problems related to general helices in the 3-sphere,
including the closed curve problem and solving natural equations.

Ilarslan, et al. [9] focused on studying the position vectors of timelike and null helices
in Minkowski space E3,1. These curves have constant curvatures, and their position vectors
are utilized to characterize timelike and null helices with images on the Lorentzian sphere
S2

1 or pseudo-hyperbolical space H2
0.

Monterde [10] described a family of curves with constant curvature and non-constant
torsion. These curves are characterized as space curves, and their normal vectors form
a constant angle with a fixed line. The relationship between these curves and rational
curves using a double Pythagorean hodograph was explored. In addition, a method for
constructing closed curves with constant curvature and continuous torsion using pieces of
Salkowski curves was presented.

Classical differential geometry employs intrinsic equations to determine the position
vectors of curves, such as κ = κ(s) and τ = τ(s), where κ and τ represent the curvature and
torsion of the curve, respectively. To understand the behavior of curves, a comprehensive
examination of position vectors is necessary. Slant helices encompass various types of helices,
including general helices, Salkowski, anti-Salkowski, and constant precession curves. A helix
is a geometric curve characterized by constant non-zero curvature and torsion. The circular
helix, also known as the W-curve, is a special type of general helix [11–13].

Recently, in [14], the (R-S) in a three-dimensional sphere with finite-type and point-
wise 1-type spherical Gauss map were investigated. Some new characterizations of the
Clifford torus and the great sphere of the 3-sphere were described. Some new applications
of spherical (R-S) in a three-dimensional sphere were provided. In [15], the first-order
infinitesimal bending of a curve in three-dimensional Euclidean space is considered to
obtain an (R-S). The properties of this kind of (R-S) were described and the conditions for
(R-S) by bending to be developable were obtained.

In [16], the dual expression of Valeontis’ concept for the parallel p-equidistant (R-S)
in Euclidean space was investigated, utilizing the Study mapping. In addition, the dual
part of the dual angle on the unit dual sphere corresponded to the p-distance and was
defined by (R-S). Furthermore, the dual parallel equidistant (R-S) was obtained. In [17],
the parallel q-equidistant (R-S) was defined such that the binormal vectors of two given
differentiable curves are parallel along the striction curves of their corresponding binormal
(R-S). In addition, the distance between the asymptotic planes is constant at certain points.
Some properties were specified and plotted for these surfaces. In the case of closed surfaces,
the integral invariants such as the pitch, the angle of the pitch, and the drall of them were
given. It is known, see, e.g., [18], that surfaces of revolutions characterize inner conditions,
i.e., there exists an equidistant vector field. For (R-S), the similar inner conditions do not
exist. Therefore, it is relevant to examine the characteristics of (R-S) in our work.

In [19–22], the features and applications of generated surfaces across various mathe-
matical fields have been specified. The investigation of equiform Bishop spherical image
governed surfaces in Minkowski 3-space yields important minimality and developability
requirements, with consequences for computer-aided geometric design and physics. Si-
multaneously, research on inextensible (R-S), which are especially important in computer
vision and animation, provides insights into tangential, normal, and binormal (R-S). These
surfaces are formed by a curve with constant torsion. Furthermore, the study of circular
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surfaces in the Euclidean 3-space provides geometric analysis, minimality criteria, and sys-
tematic parametrization, all of which are valuable applications in computer-aided design
and architecture.

Our study focuses on (R-S) constructed from the W-curve in E3. We determine some
quantities of the constructed (R-S) such as mean, Gaussian, second mean, and second
Gaussian curvatures. We provide some special (R-S) with their properties. Also, the
sufficient conditions for the constructed (R-S) to be minimal, flat, II-minimal, and II-flat
surfaces are determined. In addition, the sufficient conditions for the base curve for
constructed (R-S) to be a geodesic, an asymptotic line, and a principal line are determined.

The outline of the present research is organized as follows: In Section 2, we present
some geometric concepts about (R-S) in the Euclidean 3-space. In Section 3, we construct
(R-S) from the W-curves. In Section 4, we investigate some special (R-S) and describe
their properties. In Section 5, we provide an application of (R-S). Finally, we present
our conclusions.

2. Geometric Concepts

Consider a rectangular coordinate system in three-dimensional Euclidean space de-
noted by u = (u1, u2, u3) with metric defined as ⟨u, u⟩ = du2

1 + du2
2 + du2

3.
For any curve γ = γ(s) : I ⊂ R → E3, where s represents the arc-length parameter, we

define the moving Frenet frame along γ as F = {T(s), N(s), B(s)}. The Frenet equations
for the curve γ can be expressed as T′(s)

N′(s)
B′(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) τ(s)

 T(s)
N(s)
B(s)

. (1)

Here, κ(s) and τ(s) represent the curvature and torsion of the curve γ, respectively. The
vectors T, N, and B are mutually orthonormal vectors that satisfy the following conditions:

⟨T, T⟩ = ⟨N, N⟩ = ⟨B, B⟩ = 1,
⟨T, N⟩ = ⟨N, B⟩ = ⟨B, T⟩ = 0,
det(T, N, B) = 1.

(2)

Definition 1 ([23,24]). A ruled surface (R-S) is a surface constructed from straight lines parametrized
by γ(s) and X(s). It can be represented parametrically as

Q(s, v) = γ(s) + v X (s), (3)

where γ = γ(s) : I ⊂ R → E3 is the directrix or base curve and X(s) represents a unit vector
in the direction of the ruling of the (R-S). If there exists a common perpendicular line for two
constructive rulings on the (R-S), the point where this perpendicular intersects the main rulings
is called a central point. The locus of these central points is known as the striction curve, and its
parametrization on the (R-S) (3) is given by [4]

γ∗(s) = γ(s)− ⟨γ′(s), X′(s)⟩
∥X′(s)∥2 X(s). (4)

If ∥X′(s)∥ = 0, then the (R-S) does not have any striction curve, and it is identified as cylindrical.
In such a case, the base curve can serve as a striction curve.

Definition 2 ([25]). The unit normal vector field Un on the surface Q is defined by

Un =
Qs ∧ Qv

∥Qs ∧ Qv∥
, (5)

where Qs =
∂Q(s,v)

∂s and Qv = ∂Q(s,v)
∂v .
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Definition 3 ([25]). Let κg, κn, τg be the geodesic curvature, normal curvature, and geodesic
torsion, respectively, associated with the curve γ(s) on the surface Q. They can be defined by the
following formula:

κg = ⟨Un ∧ T, T′⟩, κn = ⟨γ′′, Un⟩, τg = ⟨Un ∧ U′
n, T′⟩.

Definition 4 ([25]). The curve γ(s) lying on a surface Q is a geodesic curve, an asymptotic line,
and a principal line if and only if κg = 0, κn = 0 , and τg = 0, respectively.

Definition 5 ([25]). Let K, H, and λ denote the Gaussian curvature (GC), mean curvature (MC),
and distribution parameter, respectively. They can be defined by the following formulas:

K =
h11h22 − h2

12
g11g22 − g2

12
, (6)

H =
g11h22 + g22h11 − 2g12h12

2
(

g11g22 − g2
12
) , (7)

λ =
det(γ′, X, X′)

∥X′∥2 . (8)

where gij and hij, i, j = 1, 2 represent the first fundamental quantities and second fundamental
quantities, respectively and they can be expressed as

g11 = ⟨Qs, Qs⟩, g12 = ⟨Qs, Qv⟩, g22 = ⟨Qv, Qv⟩. (9)

h11 = ⟨Qss, Un⟩, h12 = ⟨Qsv, Un⟩, h22 = ⟨Qvv, Un⟩. (10)

Definition 6 ([26]). Let HI I denote the second mean curvature (S-MC) for the (R-S) in E3 and
define it by

HI I = H +
1
4

∆I I log(|K|), (11)

where H and K denote the (MC) and (GC) for the (R-S). Also, let ∆I I denote the Laplacian for
functions. Explicitly, we have

HI I = H +
1

2
√
|det(I I)| ∑

i,j

∂

∂xi

(√
|det(I I)| hij ∂

∂xj (ln
√
|K| )

)
, (12)

where (hij) denotes the inverse of the matrix (hij), the indices i, j belong to {1, 2} and the parameters
x1, x2 represent the coordinates s and v, respectively.

Definition 7 ([27]). Let KI I denote the second Gaussian curvature (S-GC) for the (R-S) in E3,
which is defined from Brioschi’s formula in the Euclidean 3-space by replacing the components
of the metric tensors g11, g12, and g22 by the components of the curvature tensors h11, h12, and
h22, respectively:

KI I = 1
(det(I I))2

(∣∣∣∣∣∣
− 1

2 h11,vv + h12,sv − 1
2 h22,ss

1
2 h11,s h12,s − 1

2 h11,v
h12,v − 1

2 h22,s h11 h12
1
2 h22,v h12 h22

∣∣∣∣∣∣
−

∣∣∣∣∣∣
0 1

2 h11,v
1
2 h22,s

1
2 h11,v h11 h12
1
2 h22,s h12 h22

∣∣∣∣∣∣
)

.

(13)

It is widely acknowledged that a minimal surface exhibits the (S-GC) KI I = 0. How-
ever, it is crucial to note that a surface with a vanishing (S-GC) does not necessarily qualify
as minimal [27]. In the context of our investigation, the following definitions are essential:
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Definition 8 ([25]). A flat or developable surface in E3 is characterized by having zero (GC), while
a minimal surface is defined by having zero (MC).

Definition 9 ([28]). A non-developable surface in E3 is called II-flat surface if its (S-GC) KI I = 0
and it is called a II-minimal surface if its (S-MC) HI I = 0.

3. Construction of Ruled Surfaces in E3

We consider the (R-S) with circular helix curve γ(s) (a family of curves with constant
curvature κ(s) = κ and constant torsion τ(s) = τ) as a base curve. Therefore, the (R-S) can
be constructed by

Q(s, v) = γ(s) + vX(s), v ∈ R, X′(s) ̸= 0. (14)

X(s) =
3

∑
i=1

uiei(s) = u1T + u2 N + u3B, u2
1 + u2

2 + u2
3 = 1, (15)

where X(s) is a unit vector with fixed components. From (4), it easy to see that the
parametrization of the striction curve on the (R-S) that is described by (14) is defined by the
following form

γ∗(s) = γ(s) + u2κ
∥X′(s)∥2 X(s)

= γ(s) + u2κ
u2

2(κ
2+τ2)+(u1 κ−u3 τ)2 ( u1T + u2 N + u3B).

(16)

Theorem 1. Consider the (R-S) given by (14), then, the first fundamental quantities gij are given by

g11 = 1 − 2u2κv + ĉv2,
g12 = u1,
g22 = 1,
â = κu3 + τu1 , ĉ = κ2 + τ2 − â2.

(17)

Also, the unit normal vector field Un to the (R-S) is obtained by

Un = 1
δ

(
− b̂vT + (âu2v − u3)N + (u2 − d̂v)B

)
, (18)

where δ2 = 1 − u2
1 − 2u2κv + ĉv2 , b̂ = τ − âu1 , d̂ = κ − âu3.

Proof. The natural frame {Qs, Qv} is given by

Qs = (1 − κu2v)T + (κu1 − τu3)vN + (τu2v)B,
Qv = u1T + u2N + u3B.

(19)

Since the metric tensors (gij) are defined by (9), then by using Equation (19), we obtain:

g11 = 1 − 2u2κv +
(
(u2

1 + u2
2)κ

2 − 2u1u3κτ + (u2
2 + u2

3)τ
2
)

v2, g12 = u1, g22 = 1.

Choose
â = κu3 + τu1,
ĉ = κ2 + τ2 − â2,

(20)

then
g11 = 1 − 2u2κv + ĉv2 , g12 = u1 , g22 = 1. (21)

The vector product of the vectors Qs and Qv is given as:

Qs ∧ Qv = (âu1 − τ)vT + (âu2v − u3)N + (u2 − (κ − âu3)v)B. (22)
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For simplicity, we choose
b̂ = τ − âu1 , d̂ = κ − âu3. (23)

Then
Qs ∧ Qv = −b̂vT + (âu2v − u3)N + (u2 − d̂v)B. (24)

Also, we have

∥Qs ∧ Qv∥2 = (b̂v)2 + (âu2v − u3)
2 + (u2 − d̂v)2. (25)

By straightforward computation, we obtain

∥Qs ∧ Qv∥2 = δ2,
δ2 = 1 − u2

1 − 2u2κv + ĉv2.
(26)

Since the unit normal vector field Un to the (R-S) is defined by (5), then by using (24) and (26),
we obtain

Un = 1
δ

(
− b̂vT + (âu2v − u3)N + (u2 − d̂v)B

)
.

By using (20) and (23), we obtain the unit normal vector as the following explicit formula:

Un = 1
δ

(
(u1u3κ − (u2

2 + u2
3)τ)vT + (u1u2τv − (1 − u2κv)u3)N

+(u2 + u1u3τv − κ(u2
1 + u2

2)v)B
)

,

δ =
(

1 − u2
1 − 2u2κv + (κ2 + τ2 − (κu3 + τu1)

2 )v2
) 1

2

(27)

Theorem 2. Consider the (R-S) given by (14). Then,

h11 =
1
δ
(−âδ2 + b̂u1) , h12 =

b̂
δ

, h22 = 0, (28)

where
δ2 = 1 − u2

1 − 2u2κv + ĉv2,
â = κu3 + τu1 , b̂ = τ − âu1 , ĉ = κ2 + τ2 − â2.

Proof. Taking the second partial derivatives of (19) with respect to s and v, then we obtain

Qss = −κ(κu1 − τu3)vT + (κ − u2(κ
2 + τ2)v)N + τ(κu1 − τu3)vB,

Qsv = (−κu2)T + (κu1 − τu3)N + (τu2)B,
Qvv = 0.

(29)

Since the curvature tensors hij are defined by (10), then by using (18) and the first equation
of (29), we have

h11 =
1
δ

(
(κb̂(κu1 − τu3)− âu2

2(κ
2 + τ2)− τd̂(κu1 − τu3))v2

+ ((κ2 + τ2)u2u3 + κâu2 + τu2(κu1 − τu3))v − κu3

)
.

After some complicated computations, we obtain:

h11 =
1
δ

(
−κu3 + (κu3 + τu1)

(
2u2κv − (κ2 + τ2 − (κu3 + τu1)

2)v2
))

.
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We can rewrite h11 in the following simple form:

h11 =
1
δ
(−âδ2 + b̂u1). (30)

Also, by using (18) and the second equation of (29), we have

h12 =
1
δ

(
κb̂u2v + (κu1 − τu3)(−u3 + âu2v) + τu2(u2 − d̂̂v)

)
.

Explicitly, we obtain

h12 =
1
δ

(
− u1u3κ + (u2

2 + u2
3)τ

)
.

Or we can obtain the following simple form for h12 as

h12 = b̂
δ , (31)

In addition, the metric tensor h22 can be given by using (18) and the third equation of (29) as

h22 = 0. (32)

Lemma 1. Consider the (R-S) given by (14); then, hij are given by

h11 = 0 , h12 =
δ

b̂
, h22 = − δ

b̂2
(−âδ2 + b̂u1), (33)

where
δ2 = 1 − u2

1 − 2u2κv + ĉv2,
â = κu3 + τu1 , b̂ = τ − âu1 , ĉ = κ2 + τ2 − â2.

Lemma 2. The (GC) and (MC) for the (R-S), are given in explicit form by

K = −
( (u2

2 + u2
3)τ − u1u3κ

δ2

)2
,

H =
1

2δ3

(
(κu3 + τu1)(2u1u3κτ − (u2

1 + u2
2)κ

2 − (u2
2 + u2

3)τ
2)v2

+ 2u2(κu3 + τu1)κv − 2u1(u2
2 + u2

3)τ + u3κ(2u2
1 − 1)

)
.

(34)

Proof. Substituting from (17) and (28) into (6) and (7), then

K = − b̂2

δ4 , H = − 1
2δ3

(
âδ2 + b̂u1

)
. (35)

where

δ2 = 1 − u2
1 − 2u2κv + ĉv2 , â = κu3 + τu1 , b̂ = τ − âu1 , ĉ = κ2 + τ2 − â2.

Hence, the lemma holds.

Lemma 3. The (R-S) described by (14) in E3 is a flat surface (K = 0) at any point (s, v) on the
surface (ui ̸= 0, i = 1, 2, 3) if and only if the following condition holds:

τ

κ
=

u1u3

u2
2 + u2

3
.
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Lemma 4. The distribution parameter λ is obtained as the explicit form:

λ =
τ − (κu3 + τu1)u1

κ2 + τ2 − (κu3 + τu1)2 . (36)

Proof. Since
X(s) = u1T + u2N + u3B. (37)

Taking the derivative of (37) with respect to the parameter s, then

X′(s) = (−κu2)T + (κu1 − τu3)N + τu2B.

Also, we have
det(γ′, X(s), X′(s)) = τ − (κu3 + τu1)u1 = b̂. (38)

The norm ∥X′(s)∥ is given as

∥X′(s)∥2 = (−κu2)
2 + (κu1 − τu3)

2 + (τu2)
2.

Hence, we obtain
∥X′(s)∥2 = κ2 + τ2 − (κu3 + τu1)

2 = ĉ. (39)

Since the distribution parameter λ is defined by

λ =
det(γ′, X(s), X′(s))

∥X′(s)∥2 . (40)

Substituting from (38) and (39) into (40),

λ =
b̂
ĉ

,

where â = κu3 + τu1 , b̂ = τ − âu1 , ĉ = κ2 + τ2 − â2 .

Theorem 3. The (S-MC) of the (R-S) that is constructed by (14) is given as follows:

HI I =
−1

2b̂2 δ3

4

∑
i=0

Aivi, b̂ ̸= 0, δ ̸= 0,

A0 = 2âĉ(1 − u2
1)

2 + b̂
(
(âb̂ − 2ĉu1)(1 − u2

1) + u1(b̂2 + 4κ2u2
2)

)
,

A1 = −2u2κ
(

4 (1 − u2
1)âĉ + b̂(âb̂ + 2ĉu1)

)
,

A2 = ĉ
(

8 âu2
2κ2 + âb̂2 + 2ĉ(b̂u1 + 2â(1 − u2

1))
)

,

A3 = −8âĉ2u2κ,

A4 = 2âĉ3,

(41)

where

δ2 = 1 − u2
1 − 2u2κv + ĉv2,

â = κu3 + τu1 , b̂ = τ − âu1 , ĉ = κ2 + τ2 − â2.

Proof. The (S-MC) is defined by (12), and it can be expressed explicitly in the follow-
ing form:
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HI I = H +
1

2
√
|det(I I)|

(
∂

∂s

(√
|det(I I)|

(
h11 ∂

∂s
(ln

√
|K|) + h12 ∂

∂v
(ln

√
|K|)

))
+

∂

∂v

(√
|det(I I)|

(
h21 ∂

∂s
(ln

√
|K|) + h22 ∂

∂v
(ln

√
|K|)

)) )
,

(42)

From (28), we have:

h = det(I I) = − b̂
δ2 . (43)

Since the first equation of (34) defines the (GC) of the (R-S), then by taking the first partial
derivatives of (ln

√
|K|) with respect to the parameters s and v, we obtain

∂

∂s
(ln

√
|K|) = 0,

∂

∂v
(ln

√
|K|) = −2(−κu2 + ĉv)

δ2 .
(44)

Substituting from (33), the second equation of (34), (43) and (44) into (42), then we obtain:

HI I =
−1

2b̂2δ3

(
2âĉ δ4 + b̂(âb̂ − 2ĉu1)δ

2 + b̂3u1 + 4b̂u1(−κu2 + ĉv)2
)

. (45)

Since δ2 = 1 − u2
1 − 2u2κv + ĉv2, then we have

HI I =
−1

2b̂2 δ3

(
2â ĉ (1 − u2

1 − 2u2κv + ĉv2)2 + b̂ (âb̂ − 2ĉu1) (1 − u2
1 − 2u2κv + ĉv2)

+ b̂3u1 + 4b̂u1(−κu2 + ĉv)2
)

.
(46)

By substituting â = κu3 + τu1 , b̂ = τ − âu1 , ĉ = κ2 + τ2 − â2, into (46) and by taking
the coefficients of vi, i = 0, 1, 2, 3, 4, hence the lemma holds.

Lemma 5. Consider the (R-S) defined by (14), and whose (S-MC) is given by (41), then there
are no II-minimal (R-S) whose base curve is a circular helix at any point (s, v) in E3 for (ui ̸= 0,
i = 1, 2, 3).

Proof. The (R-S) is II-minimal surface, if the (S-MC) vanishes (HI I = 0). Then all coefficients
Ai will equal zero. Thus, we have:
For A1 = 0, b̂ ̸= 0, then κ = 0.
Also, for A2 = A3 = A4 = 0, b̂ ̸= 0, then ĉ = 0.
Since ĉ = κ2 + τ2 − (κu3 + τu1)

2, then τ = 0, which implies a contradiction.

Theorem 4. The (S-GC) KI I of the (R-S) described by (14) is given as follows:

KI I =
−1

2b̂2 δ3

4

∑
i=0

Bivi, b̂ ̸= 0, δ ̸= 0,

B0 = ĉ(1 − u2
1)
(

â(1 − u2
1) + b̂u1

)
− 2u1u2

2b̂κ2,

B1 = 2u2 ĉκ
(
− 2 (1 − u2

1)â + b̂u1

)
,

B2 = ĉ
(

4 âu2
2κ2 + 2(1 − u2

1)âĉ − b̂ĉu1

)
,

B3 = −4âĉ2u2κ,

B4 = âĉ3,

(47)
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where

δ2 = 1 − u2
1 − 2u2κv + ĉv2,

â = κu3 + τu1, b̂ = τ − âu1, ĉ = κ2 + τ2 − â2.

Proof. Taking the partial derivatives of the curvatures tensors (28) with respect to the
parameters s, v, then

h11,s = 0 , h12,s = 0 , h22,s = 0. (48)

Also,

h11,v = − 1
δ3 (âδ2 + b̂u1)(−κu2 + ĉv),

h12,v = − b̂
δ3 (−κu2 + ĉv).

(49)

In addition, the second partial derivatives of hij with respect to the parameters s, v are given
as follows:

h11,vv =
1
δ5

(
(âδ2 + b̂u1)

(
(−κu2 + ĉv)2 − ĉδ2

)
+ 2b̂u1(−κu2 + ĉv)2

)
,

h11,sv = 0 , h12,sv = 0.

(50)

Since the (S-GC) KI I of the (R-S) is defined by (13), then by substituting (43) and (48)–(50)
into (13), we obtain

KI I = − 1
2b̂2δ3

(
â ĉ δ4 + b̂ ĉu1 δ2 − 2b̂u1(−κu2 + ĉv)2

)
. (51)

By substituting δ2 = 1 − u2
1 − 2u2κv + ĉv2 , â = κu3 + τu1 , b̂ = τ − âu1, ĉ = κ2 + τ2 − â2

into (51) and by taking the coefficients of vi, i = 0, 1, 2, 3, 4, hence the lemma holds.

Lemma 6. Consider the (R-S) defined by (14), and whose (S-GC) is given by (47), then there are
no II-flat (R-S) at any point (s, v) in E3 for (ui ̸= 0, i = 1, 2, 3).

Proof. The (R-S) is II-flat surface, if the (S-GC) KI I = 0. Then all coefficients Bi will equal
zero for b̂ ̸= 0 and δ ̸= 0. So, for B1 = B2 = B3 = B4 = 0, b̂ ̸= 0, then ĉ = 0.
Also, B0 = 0 implies that κ = 0.
Since ĉ = κ2 + τ2 − (κu3 + τu1)

2, hence, τ = 0, which implies a contradiction.

Lemma 7. The geodesic curvature κg, the normal curvature κn, and the geodesic torsion τg
associated with the curve γ(s) on the surface Q are obtained by the following formula:

κg =
κ

δ
(u2 − (κ − âu3)v) ,

κn =
κ

δ
(−u3 + âu2 v) ,

τg =
κ

δ2

(
(â ĉ u2)v2 − (âκ u2

2 + ĉ u3) v + κ u2u3

)
,

(52)

where δ2 = 1 − u2
1 − 2u2κv + ĉv2 , â = κu3 + τu1 , b̂ = τ − âu1 , ĉ = κ2 + τ2 − â2.

Proof. The vector product of the normal vector Un Equation (18) with the unit tangent
vector T is

Un ∧ T =
1
δ

(
(u2 − d̂v)N − (−u3 + âu2v)B

)
. (53)
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Since the geodesic curvature κg is defined by

κg = ⟨Un ∧ T, T′⟩ = κ ⟨Un ∧ T, N⟩, (54)

taking the inner product (53) with the unit normal vector N, then we obtain

κg =
κ

δ

(
u2 − d̂v

)
. (55)

Since, d̂ = −(âu3 − κ), then

κg =
κ

δ

(
u2 + (âu3 − κ)v

)
.

Since the normal curvature κn is defined by

κn = ⟨γ′′, Un⟩ = κ ⟨N, Un⟩. (56)

Taking the inner product of the normal vector Un (18) and N, then we have

κn =
κ

δ

(
− u3 + âu2v

)
=

κ

δ

(
− u3 + u2(κu3 + τu1)v

)
.

Since the geodesic torsion τg is defined by

τg = ⟨Un ∧ U′
n, T′⟩ = κ ⟨Un ∧ U′

n, N⟩. (57)

Taking the s-derivative of the (18), then

U′
n =

1
δ

(
− κ(−u3 + âu2v)T − (b̂κv + τ(u2 − d̂v))N + τ(−u3 + âu2v)B

)
. (58)

The vector product of the vectors Un and U′
n are given, respectively, from (18) and (58) as

Un ∧ U′
n =

1
δ2

(
(τ (−u3 + âu2v)2 + (u2 − d̂ v)(b̂κv + τ(u2 − d̂ v)) )T

+ (b̂vτ(−u3 + âu2v)− κ (−u3 + âu2v) (u2 − d̂v))N

+ (b̂v(b̂κv + τ(u2 − d̂ v)) + κ(−u3 + âu2v)2)B
)

.

(59)

Substituting from (59) into (57), then we have

τg =
κ

δ2

(
b̂vτ(−u3 + âu2v)− κ (−u3 + âu2v) (u2 − d̂v)

)
.

By straightforward computation, we obtain

τg =
κ

δ2

(
â u2(κ d̂ + τ b̂)v2 − (u3 (κ d̂ + τ b̂) + â κ u2

2) v + κu2u3

)
.

Hence,
τg =

κ

δ2

(
(âĉu2)v2 − (ĉu3 + âκu2

2)v + κu2u3

)
,

where δ2 = 1 − u2
1 − 2u2κv + ĉv2 , â = κu3 + τu1 , b̂ = τ − âu1 , ĉ = κ2 + τ2 − â2.

Lemma 8. The base curve of the (R-S) (14) at any point (s, v) on the surface in E3 for
(ui ̸= 0, i = 1, 2, 3) is neither a geodesic curve nor an asymptotic line nor a principal line.

Lemma 9. The curvatures K, H, and the distribution parameter λ at the point (s, 0) are given by
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K =−
( (u2

2 + u2
3)τ − u1u3κ

u2
2 + u2

3

)2
,

H =−
2(u2

2 + u2
3)u1τ + (1 − 2u2

1)u3κ

2
(

u2
2 + u2

3

) 3
2

,

λ =
(u2

2 + u2
3)τ − u1u3κ

u2
2(κ

2 + τ2) + (u1κ − u3τ)2
.

Also, the second curvatures HI I and KI I are given by

HI I =
−1

2(u2
2 + u2

3)
3
2 ((u2

2 + u2
3)τ − u1u3κ)2

.
(
(2u1(u2

2 + u2
3)τ + u3(1 − 2u2

1)κ)

((u2
2 + u2

3)τ − u1u3κ) + 2
(

u3(u2
2 + u2

3)
2τ2

+u3(u4
2 − u2

1u2
2 + u2

3(u
2
1 + u2

2))κ
2 + 2u1(u4

2 − u4
3)κτ

)
κ

)
.

KI I =
1

2
(
u2

2 + u2
3
) 3

2 ((u2
2 + u2

3)τ − u1u3κ)2

(
2u1u2

3(1 − 3u2
1)(u

2
2 + u2

3)κ
2τ

− 2u1(u2
2 + u2

3)
3τ3 − u3(1 − 6u2

1)(u
2
2 + u2

3)
2κτ2

− u3

(
u4

1(u
2
2 − u2

3) + u2
2(u

2
2 + u2

3)
2 + u2

1(u
2
2 + u2

3)(2u2
2 + u2

3)
)

κ3
)

Lemma 10. The (R-S) constructed by (14) is a flat surface at any point (s, 0) on the surface in E3

for (ui ̸= 0, i = 1, 2, 3) if and only if the following condition holds:

τ

κ
=

u1u3

u2
2 + u2

3
.

Lemma 11. The (R-S) constructed by (14) is a minimal surface at the point (s, 0) if and only if the
following condition is satisfied:

τ

κ
= −

(
1 − 2u2

1
)
u3

2(u2
2 + u2

3)u1
.

Lemma 12. The geodesic curvature κg, the normal curvature κn and the geodesic torsion τg that
are associated with the base curve γ(s) at the point (s, 0) are given as follows:

κg =
u2κ√

u2
2 + u2

3

, κn =
−u3κ√
u2

2 + u2
3

, τg =
u2u3κ2

u2
2 + u2

3
.

At the point (s, 0), the relationship between κg, κn, and τg of the base curve γ(s) is given by

κ2
g + κ2

n = κ2, κgκn = −τg.

4. Special Ruled Surfaces and Their Characterizations

In this section, we discuss some special (R-S), and we describe some of their character-
izations.

4.1. The Ruled Surfaces with u1 = 0

Consider the (R-S) constructed by (14). At u1 = 0, u2
2 + u2

3 = 1, then the (R-S) takes
the formula
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Q(s, v) = γ(s) + v(u2N + u3B). (60)

In this case, we have

δ2 = 1 − 2u2κv + (u2
2κ2 + τ2)v2,

â = κu3, b̂ = τ, ĉ = u2
2κ2 + τ2.

Lemma 13. The (GC), (MC), and the distribution parameter λ for the (R-S) at u1 = 0 are given by

K = − τ2

(1 − 2u2κv + (u2
2κ2 + τ2)v2)2

,

H = − κu3

2
√

1 − 2u2κv + (u2
2κ2 + τ2)v2

,

λ =
τ

u2
2κ2 + τ2

.

Also, the (S-MC) and (S-GC) for the (R-S) at u1 = 0 are given by

HI I = − ∑4
i=0 Aivi

2τ2 (1 − 2u2κv + (u2
2κ2 + τ2)v2)

3
2

,

A0 = κu3

(
2u2

2κ2 + 3τ2
)

,

A1 = −2κ2u2u3

(
4 u2

2κ2 + 5τ2
)

,

A2 = κu3(u2
2κ2 + τ2)

(
12 u2

2κ2 + 5τ2
)

,

A3 = −8κ2u2u3 (u2
2κ2 + τ2)2,

A4 = 2κu3 (u2
2κ2 + τ2)3.

And

KI I = − ∑4
i=0 Bivi

2τ2 (1 − 2u2κv + (u2
2κ2 + τ2)v2)

3
2

,

B0 = κu3(u2
2κ2 + τ2),

B1 = −4κ2u2u3(u2
2κ2 + τ2),

B2 = 2κu3(u2
2κ2 + τ2)

(
3 u2

2κ2 + τ2
)

,

B3 = −4u2u3κ2(u2
2κ2 + τ2)2,

B4 = κu3(u2
2κ2 + τ2)3.

Lemma 14. The geodesic curvature κg, the normal curvature κn, and the geodesic torsion τg
associated with the base curve γ(s) at u1 = 0, take the following formula:

κg =
κu2(1 − κu2v)√

1 − 2u2κv + (u2
2κ2 + τ2)v2

,

κn =
−κu3(1 − κu2v)√

1 − 2u2κv + (u2
2κ2 + τ2)v2

,

τg =
κu3

(1 − 2u2κv + (u2
2κ2 + τ2)v2)

(
κ u2(u2

2κ2 + τ2)v2 − (2u2
2κ2 + τ2) v + κ u2

)
.
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Lemma 15. There is no flat, minimal, II-minimal, and II-flat (R-S) with u1 = 0 at every point
(s, v) in E3.

Lemma 16. The base curve for the (R-S) constructed by (60) with u1 = 0 , u2 ̸= 0 , u3 ̸= 0 is
neither a geodesic curve nor an asymptotic line nor a principal line at every point (s, v) in E3.

Lemma 17. The base curve of the (R-S) constructed by (60) with u1 = 0 in E3 has the following
properties at the point (s, 0):

κ2
g + κ2

n = κ2, κgκn = −τg.

4.2. The Ruled Surfaces with u2 = 0

Consider the (R-S) constructed by (14). For u2 = 0, u2
1 + u2

3 = 1, then, the equation for
the (R-S) (14) takes the following form:

Q(s, v) = γ(s) + v(u1T + u3B). (61)

In this case, we have,

δ2 = u2
3 + (κu1 − τu3)

2v2,

â = κu3 + τu1, b̂ = −u3(κu1 − τu3), ĉ = (κu1 − τu3)
2.

Lemma 18. The (GC), (MC), and the distribution parameter λ for the (R-S) at u2 = 0 are given by

K = −
u2

3(κu1 − τu3)
2

(u2
3 + (κu1 − τu3)2v2)2

,

H = − 1
2(u2

3 + (κu1 − τu3)2v2)3/2

(
(κu3 + τu1)(κu1 − τu3)

2v2

+ u3(κ(u2
3 − u2

1) + 2u1u3τ)
)

,

λ =
−u3

(κu1 − τu3)
.

Also, the (S-MC) and (S-GC) for the (R-S) at u2 = 0 are given by

HI I = − ∑4
i=0 Aivi

2(u2
3(κu1 − τu3)2) (u2

3 + (κu1 − τu3)2v2)
3
2

,

A0 = u3
3(κu1 − τu3)

2
(

κ(1 + 2u2
3) + 2u1u3τ

)
,

A1 = 0,

A2 = −u3(κu1 − τu3)
4
(

κ(7u2
1 − 5)− 7τu1u3

)
,

A3 = 0,

A4 = 2(κu3 + τu1) (κu1 − τu3)
6.

And

KI I = − ∑4
i=0 Bivi

2(u2
3(κu1 − τu3)2) (u2

3 + (κu1 − τu3)2v2)
3
2

,

B0 = u3
3(κu1 − τu3)

2
(
− κ(u2

1 − u2
3) + 2u1u3τ)

)
,

B1 = 0,
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B2 = u3(κu1 − τu3)
4
(

κ(1 + u2
3) + u1u3τ

)
,

B3 = 0,

B4 = (κu3 + τu1) (κu1 − τu3)
6.

Lemma 19. The geodesic curvature κg, the normal curvature κn, and the geodesic torsion τg
associated with the base curve γ(s) at u2 = 0, take the following formula:

κg =
−κu1(κu1 − τu3)v√
u2

3 + (κu1 − τu3)2v2
, κn =

−u3κ√
u2

3 + (κu1 − τu3)2v2
τg =

− u3κ(κu1 − τu3)
2 v

u2
3 + (κu1 − τu3)2v2

.

Lemma 20. The (R-S) given by (61) that constructed with u2 = 0 in E3 is a flat, II-minimal, and
II-flat surface at any point (s, v) (also at the point (s, 0)) if and only if the following condition holds:

τ

κ
=

u1

u3
.

Lemma 21. There are no minimal (R-S) with u2 = 0 at a point (s, v) in E3.

Lemma 22. The base curve for the (R-S) given by (61) is a geodesic curve and a principal line if
and only if

τ

κ
=

u1

u3
.

Lemma 23. The (R-S) given by (61) that constructed with u2 = 0 in E3 is characterized by the
following conditions at the point (s, 0):

• It is minimal and II-flat if and only if the ratio of the torsion to curvature is equal to

τ

κ
=

u2
1 − u2

3
2u1u3

.

• It is II-minimal if and only if the ratio of the torsion to curvature is equal to

τ

κ
= −

1 + 2u2
3

2u1u3
, or

τ

κ
=

u1

u3
.

• The base curve for the (R-S) is a geodesic curve and a principal line.

4.3. Ruled Surfaces with u3 = 0

Consider the (R-S) that is given by (14). For u3 = 0, then u2
1 + u2

2 = 1, thus, the
equation for the (R-S) takes the form

Q(s, v) = γ(s) + v(u1T + u2N). (62)

In this case, we have

δ2 = u2
2 − 2u2κv + (κ2 + u2

2τ2)v2,

â = τu1, b̂ = u2
2τ, ĉ = κ2 + u2

2τ2.
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Lemma 24. The (GC), (MC), and the distribution parameter λ at u3 = 0 are given by

K = −
u4

2τ2

(u2
2 − 2u2κv + (κ2 + u2

2τ2)v2)2
,

H = − −u1τ

2(u2
2 − 2u2κv + (κ2 + u2

2τ2)v2)
3
2

(
2u2

2 − 2u2κv + (κ2 + u2
2τ2)v2

)
,

λ =
u2

2τ

κ2 + u2
2τ2

.

Also, the (S-MC) and (S-GC) for the (R-S) at u3 = 0 are given by

HI I = − ∑4
i=0 Aivi

2u4
2τ2 (u2

2 − 2u2κv + (κ2 + u2
2τ2)v2)

3
2

,

A0 = 2u1u4
2τ(2κ2 + u2

2τ2),

A1 = −2u1u3
2κτ(6κ2 + 7u2

2τ2),

A2 = 7u1u2
2τ(κ2 + u2

2τ2)(2κ2 + u2
2τ2),

A3 = −8u1u2κτ(κ2 + u2
2τ2)2,

A4 = 2u1τ(κ2 + u2
2τ2)3.

And

KI I = − ∑4
i=0 Bivi

2u4
2τ2 (u2

2 − 2u2κv + (κ2 + u2
2τ2)v2)

3
2

,

B0 = 2u1u6
2τ3,

B1 = −2u1u3
2κτ(κ2 + u2

2τ2),

B2 = u1u2
2τ(κ2 + u2

2τ2)(5κ2 + u2
2τ2),

B3 = −4u1u2κτ(κ2 + u2
2τ2)2,

B4 = u1τ(κ2 + u2
2τ2)3.

Lemma 25. The geodesic curvature κg, the normal curvature κn, and the geodesic torsion τg
associated with the base curve γ(s) at u3 = 0, take the following formula:

κg =
κ(u2 − κv)√

u2
2 − 2u2κv + (κ2 + u2

2τ2)v2
,

κn =
u1u2κτ v√

u2
2 − 2u2κv + (κ2 + u2

2τ2)v2
,

τg =
u1u2κτ

(
(κ2 + u2

2τ2)v2 − κ u2 v
)

u2
2 − 2u2κv + (κ2 + u2

2τ2)v2
.

Lemma 26. Consider the (R-S) given by (62) that constructed with u3 = 0 in E3, then there is no
flat, minimal, II-minimal, and II-flat at every point (s, v).

Lemma 27. The base curve for the (R-S) that is described by (62) with u3 = 0 is neither a
geodesic curve nor an asymptotic line nor a principal line at any point (s, v) where v ̸= 0 and
u1 ̸= 0, u2 ̸= 0.

Lemma 28. At the point (s, 0), the base curve of the (R-S) given by (62) is both an asymptotic line
and a principal line for u1 ̸= 0, u2 ̸= 0.
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4.4. Ruled Surfaces with u1 = u2 = 0

Consider the (R-S) given by (14). For u1 = u2 = 0, u3 = 1, then

Q(s, v) = γ(s) + vB. (63)

δ2 = 1 + τ2v2 , â = κ , b̂ = τ, ĉ = τ2.

Lemma 29. The (GC), (MC), and the distribution parameter λ at u1 = u2 = 0, u3 = 1 are
given by

K = − τ2

(1 + τ2v2)2 , H = − κ

2
√

1 + τ2v2
, λ =

1
τ

.

Also, the (S-MC) and (S-GC) at u1 = u2 = 0, u3 = 1 are given by

HI I = − ∑4
i=0 Aivi

2τ2 (1 + τ2v2)3/2 ,

A0 = 3κτ2 , A1 = 0 , A2 = 5κτ4 , A3 = 0 , A4 = 2κτ6.

And

KI I = − ∑4
i=0 Bivi

2τ2 (1 + τ2v2)3/2 ,

B0 = κτ2 , B1 = 0 , B2 = 2κτ4 , B3 = 0 , B4 = κτ6.

Lemma 30. The geodesic curvature κg, the normal curvature κn, and the geodesic torsion τg
associated with the base curve γ(s) at u1 = u2 = 0, u3 = 1, take the following formula:

κg = 0 , κn =
−κ√

1 + τ2v2
, τg =

−κτ2v
1 + τ2v2 .

Lemma 31. At any point (s, v) on the surface Q with u1 = u2 = 0, u3 = 1, there are no flat,
minimal, II-minimal, and II-flat (R-S) in E3.

Lemma 32. The base curve of the (R-S) described by (63) with u1 = u2 = 0, u3 = 1 in E3 is a
geodesic curve at any point (s, v), and it is a principal line at a point (s, 0).

4.5. Ruled Surfaces with u1 = u3 = 0 and u2 = 1

At u1 = u3 = 0 and u2 = 1, then Equation (14) takes the form

Q(s, v) = γ(s) + v N. (64)

In this case, we have

δ2 = 1 − 2κv + (κ2 + τ2)v2,

â = 0, b̂ = τ, ĉ = κ2 + τ2.

Lemma 33. The (GC), (MC), and distribution parameter λ at u1 = u3 = 0 are given by

K = − τ2

(1 − 2κv + (κ2 + τ2)v2)2 , H = 0 , λ =
τ

κ2 + τ2

Also, the (S-MC) and (S-GC) at u1 = u3 = 0, u2 = 1 are given by

HI I = 0 , KI I = 0.
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Lemma 34. The geodesic curvature κg, the normal curvature κn, and the geodesic torsion τg
associated with the base curve γ(s) at u1 = u3 = 0, u2 = 1, take the following formula:

κg =
κ(1 − κv)√

1 − 2κv + (κ2 + τ2)v2
, κn = 0 , τg = 0. (65)

Lemma 35. At every point (s, v) on the (R-S) for u1 = u3 = 0, u2 = 1, we find that:

• The (R-S) are minimal, II-minimal, and II-flat surfaces but not flat in E3.
• The base curve of the (R-S) (64) in E3 is both an asymptotic line and a principal line.

4.6. Ruled Surfaces with u2 = u3 = 0

At u2 = u3 = 0, u1 = 1, then the (R-S) (14) takes the form

Q(s, v) = γ(s) + v T. (66)

In this case, we have
δ = κv , â = τ, b̂ = 0, ĉ = κ2.

Lemma 36. The (GC), (MC), and the distribution parameter λ for the (R-S) at u2 = u3 = 0,
u1 = 1 are given by

K = 0 , H = − τ

2κv
, λ = 0.

Also, the (S-MC) and (S-GC) at u2 = u3 = 0, u1 = 1 are undefined (b̂ = 0) due to the fact that
det(I I) = 0.

Lemma 37. The geodesic curvature κg, the normal curvature κn, and the geodesic torsion τg
associated with the base curve γ(s) at u2 = u3 = 0, u1 = 1, take the following formula:

κg = −κ , κn = 0 , τg = 0.

The base curve of the (R-S) (66) in E3 is both an asymptotic line and a principal line at any point
(s, v) on the surface.

5. Application

Consider the following (R-S):

Q(s, v) = γ(s) + v(u1T + u2N + u3B),

where γ(s) is a circular helix given by

γ(s) =
( s√

2
, cos

s√
2

, sin
s√
2

)
.

Explicitly, we have

Q(s, v) =
( 1√

2
(s + (u1 + u3)v) , (

u3 − u1√
2

sin
s√
2
− u2 cos

s√
2
)v + cos

s√
2

, (
u1 − u3√

2
cos

s√
2
− u2 sin

s√
2
)v + sin

s√
2

)
.

The Frenet frame vectors are

T(s) = 1√
2

(
1,− sin s√

2
, cos s√√

2

)
,

N(s) =
(

0,− cos s√
2
,− sin s√

2

)
,

B(s) = 1√
2

(
1, sin s√

2
,− cos s√

2

)
,
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with constant curvature and torsion κ = τ = 1
2 .

The (GC), (MC), and distribution λ, respectively, are given by

K = −
(1 − u2

1 − u1u3)
2

4(1 − u2
1 − u2v + 1

4 (2 − (u1 + u3)2)v2)2
,

H = −
(u1 + (u1 + u3)(1 − 2u2

1 − u2v + 1
4 (2 − (u1 + u3)

2)v2))

4(1 − u2
1 − u2v + 1

4 (2 − (u1 + u3)2)v2)
3
2

,

λ =
2(1 − u2

1 − u1u3)

(2 − (u1 + u3)2)
.

The visual representation of this application is illustrated in Figures 1 and 2.

(a) u1 = 2, u2 = 0, u3 = 0, v ∈ [−2, 2]. (b) u1 = 0, u2 = 0, u3 = 2, v ∈ [−1, 1].

Figure 1. The Ruled surface associated with a circular helix (the blue curve represents the base curve,
and the green point is a symmetric point) for s ∈ [−2 π, 2 π].

(a) u1 = u3 = 0, u2 = 2, v ∈ [−3, 3]. (b) u1 = u3 = 1, u2 = 0, v ∈ [−1, 1].

Figure 2. The Ruled surface associated with a circular helix (the blue curve represents the base curve,
the green point is a symmetric point, and the green line is a symmetric axis) for s ∈ [−2 π, 2 π].

6. Conclusions

In the current study, we have focused on the (R-S) that is generated from the W-curve in
E3. We have analyzed various properties of the generated (R-S), such as its mean curvature,
Gaussian curvature, second mean curvature, and second Gaussian curvature. Additionally,
we have presented specific ruled surfaces and discussed their characteristics. Furthermore,
we have established the necessary conditions for the generated (R-S) to be minimal, flat,
II-minimal, and II-flat surfaces. Moreover, we have identified the conditions for the base
curve associated with the generated (R-S) to be a geodesic curve, an asymptotic line, and a
principal line. Some of the important results of this work are listed as follows:

• If the unit director vector X(s) = u2N + u3B, then there are no minimal, flat, II-minimal,
and II-flat ruled surfaces at every point on the surface. In addition, the base curve
(circular helix) for the ruled surface is neither a geodesic curve nor an asymptotic line
nor a principal line.

• If the unit director vector X(s) = u1T + u3B, then there are no minimal ruled surfaces
at every point on the surface, and there are flat, II-minimal, and II-flat ruled surfaces
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at any point (s, v) on the surface if and only if the ratio of the torsion and curvature of
the base curve is τ

κ = u1
u3

.
Also, the base curve (circular helix) of the ruled surface is a geodesic curve and a
principal line if τ

κ = u1
u3

.
• If the unit director vector X(s) = u1T + u2N, then there are no minimal, flat, II-minimal,

and II-flat ruled surfaces at every point (s, v) on the surface. In addition, the base curve
(circular helix) for the ruled surface is neither a geodesic curve nor an asymptotic line
nor a principal line.

• If the unit director vector X(s) = u3B, then there are no minimal, flat, II-minimal, and
II-flat ruled surfaces at every point on the surface. In addition, the base curve (circular
helix) of the ruled surface is a geodesic curve at any point (s, v) on the surface and a
principal line at the point (s, 0).

• If the unit director vector X(s) = u2N, then there are minimal, II-minimal, and II-flat
ruled surfaces at every point on the surface, and there is no flat ruled surface. In
addition, the base curve (circular helix) for the ruled surface is both an asymptotic line
and a principal line at any point (s, v) on the surface.

• If the unit director vector X(s) = u1T, then there are no minimal, II-minimal, and
II-flat ruled surfaces at every point on the surface (the unit normal vector to the ruled
surface is undefined). In addition, the base curve (circular helix) for the ruled surface
is an asymptotic line and a principal line at any point (s, v) on the surface.
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