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Abstract: In this paper, we consider the nonlinear Neumann problem (Pε): −∆u + V(x)u =

K(x)u(n+2)/(n−2)−ε, u > 0 in Ω, ∂u/∂ν = 0 on ∂Ω, where Ω is a smooth bounded domain in
Rn, n ≥ 4, ε is a small positive real, and V and K are non-constant smooth positive functions on Ω.
First, we study the asymptotic behavior of solutions for (Pε) which blow up at interior points as
ε moves towards zero. In particular, we give the precise location of blow-up points and blow-up
rates. This description of the interior blow-up picture of solutions shows that, in contrast to a case
where K ≡ 1, problem (Pε) has no interior bubbling solutions with clustered bubbles. Second, we
construct simple interior multi-peak solutions for (Pε) which allow us to provide multiplicity results
for (Pε). The strategy of our proofs consists of testing the equation with vector fields which make it
possible to obtain balancing conditions which are satisfied by the concentration parameters. Thanks
to a careful analysis of these balancing conditions, we were able to obtain our results. Our results are
proved without any assumptions of the symmetry or periodicity of the function K. Furthermore, no
assumption of the symmetry of the domain is needed.

Keywords: partial differential equations; Schrödinger equation; Neumann elliptic problems; blow-up
analysis; critical Sobolev exponent

1. Introduction and Main Results

In this paper, we consider the following nonlinear Neumann equation:

(PV,K,q) :

{
−∆u + V(x)u = K(x)uq, u > 0 in Ω

∂u
∂ν = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn, n ≥ 3, 1 < q < ∞ and K and V are smooth
positive functions defined by Ω.

Such equations arise in various areas of applied sciences; for example, the Keller–Segel
model in chemotaxis [1], the Gierer–Meinhardt model for biological pattern formation [2],
and stationary waves for nonlinear Schrödinger equations, see, e.g., [3–5].

In the last few decades, equation (PV,K,q) has been widely studied. Most of the works
have been carried out when the functions K(x) ≡ 1 and V(x) = µ > 0. In this case, it is
well known that the problem (Pµ,1,q) strongly depends on the constant µ, the exponent
q, and the dimension n. When q is subcritical, that is, 1 < q < (n + 2)/(n − 2), the only
solution to (Pµ,1,q) is the constant one for a small µ [6], whereas for a large µ, non-constant
solutions for (Pµ,1,q) exist and blow up at interior points or at boundary points, or at mixed
points (some of them in the interior and others on the boundary), see the review in [7].
When q is critical, that is, q = (n + 2)/(n − 2), the problem (Pµ,1,q) becomes more difficult.
On one hand, Zhu [8] proved that, if Ω is convex, n = 3 and µ is small, then (Pµ,1,q) has
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only constant solutions. On the other hand, if n ∈ {4, 5, 6} and µ id small, (Pµ,1,q) admits
non-constant solutions [9–11]. For a large µ, (Pµ,1,q) also has solutions which blow up,
as in the subcritical case, at boundary points as µ tends to infinity [12–15]. However, in
contrast with the subcritical case, at least one blow-up point has to be on the boundary [16].
In [17,18], the authors considered the problem (Pµ,1,q) for a fixed µ when the exponent q is
close to the critical one; that is, q = (n + 2)/(n − 2)± ε and ε is a small positive parameter.
They showed the existence of a single-boundary blow-up solution for n ≥ 4. They also
constructed single interior blowing-up solutions when n = 3. Recently, it has been proved
that, unlike dimension three, problem (Pµ,1,q) has no solution, blowing up at only interior
points when n ≥ 4, q = (n + 2)/(n − 2) + ε and ε is small, positive, and real [19]. In light
of the results mentioned above, we see that problem (PV,K,q) requires further study.

In [20], the authors considered problem (PV,1, n+2
n−2−ε); that is, a case in which the func-

tions K ≡ 1 and q = (n + 2)/(n − 2)− ε and ε is small, positive, and real. They constructed
simple interior bubbling solutions. They also showed the presence of interior bubbling
solutions with clustered bubbles. Note that, in the results of [20], all concentration points
in the interior bubbling solutions constructed (simple and clustered) converge to critical
points of the function V as ε moves towards zero. The same phenomena appears in [21]
when the author studied the location of the blow up of the ground states of (PV,1, n+2

n−2−ε)

in the hall space. Indeed, he proved that, under some conditions of V, the ground-state
solution concentrates at a global minimum of V. In view of these results, a natural question
arises: what happens when the function K is not constant? In particular, do interior bub-
bling solutions (simple and clustered) still exist? If this is the case, do the concentration
points converge, as ε moves towards zero, to critical points of V or K? These questions
motivate the present paper. We show that simple interior bubbling solutions still exist and,
in contrast with problem (PV,1, n+2

n−2−ε) studied in [20], we prove that (PV,K, n+2
n−2−ε) has no

interior bubbling solutions with clustered bubbles. In addition, we show that the presence
of a non-constant function K, in equation (PV,K, n+2

n−2−ε), excludes the role played by the
function V in determining the locations of interior concentration points. Indeed, ignoring
the presence of the function V, all the interior blow-up points converge to critical points of K
as ε moves towards zero. To state our results, we need to define some notation. Throughout
the remainder of this paper, we consider the following nonlinear Neumann problem:

(Pε) :

{
−∆u + V(x)u = K(x)up−ε, u > 0 in Ω,

∂u
∂ν = 0 on ∂Ω,

where Ω is a bounded domain in Rn of class C1, n ≥ 4, ε is a small positive parameter,
p + 1 = 2n

n−2 is the critical Sobolev exponent for the embedding H1(Ω) ↪→ Lq(Ω), and K
(resp., V) is a C3 (resp. C2) positive function defined by Ω.

Problem (Pε) has a variational structure. Solutions to (Pε) are the positive critical
points of the functional

Iε(u) =
1
2

∫
Ω

(
|∇u|2 + V(x)u2

)
− 1

p + 1 − ε

∫
Ω

K(x)|u|p+1−ε (1)

defined by H1(Ω) equipped with the norm ∥.∥ and its corresponding inner product
given by:

∥u∥2 =
∫

Ω

(
|∇u|2 + u2

)
dx, (u, v) =

∫
Ω
(∇u∇v + uv)dx.

Note that all solutions uε to (Pε) satisfy ∥uε∥ ≥ C with a positive constant C indepen-
dent of ε. Thus, the concentration compactness principle [22,23] implies that, if uε is an
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energy-bounded solution to (Pε) which converges weakly to 0, then uε has to blow up at a
finite number N of points of Ω. More precisely, uε can be written as

uε =
N

∑
i=1

K(ai,ε)
(2−n)/4δai,ε ,λi,ε + vε where (2)

∥vε∥H1 → 0, λi,ε → ∞, ai,ε → ai ∈ Ω ∀i as ε → 0, (3)

εij :=

(
λi,ε

λj,ε
+

λj,ε

λi,ε
+ λi,ελj,ε

∣∣ai,ε − aj,ε
∣∣2) 2−n

2

→ 0 as ε → 0 ∀i ̸= j (4)

and δa,λ are the so-called bubbles defined by

δa,λ(x) = c0
λ

n−2
2

(1 + λ2 | x − a |2) n−2
2

, λ > 0, a, x ∈ Rn, c0 = (n(n − 2))
n−2

4 (5)

and which are, see [24], the only solutions to the following problem

−∆u = u
n+2
n−2 , u > 0 in Rn.

In this paper, our aim is to deal with the qualitative properties and existence of interior
concentrating solutions for problem (Pε). More precisely, we consider the case where

d(ai,ε, ∂Ω) ≥ d0 > 0 ∀ i ∈ {1, · · · , N}. (6)

We first start by studying the asymptotic behavior of solutions to (Pε) which blow up
at interior points as ε moves towards zero. It should be noticed that the symmetry of the
domain simplifies the choice of the blow up points and reduces the number of unknown
variables. In this paper, our results are proved without any assumptions of the symmetry
of domain or of the function K. We give a complete description of the interior blow-up
pictures of solutions that weakly converge to zero. Namely, we prove:

Theorem 1. Let n ≥ 4, K (resp., V) : Ω → R be a C3 (resp., C2) positive function, and y1, · · · yq
be the critical points of satisfying K; if n ≥ 5, then we make following assumption

−c2
∆K(yi)

K(yi)
+ dnV(yi) ̸= 0 ∀ i ∈ {1, · · · , q}, (7)

where

c2 =
n − 2

4n
cp+1

0

∫
Rn

|x|2(|x|2 − 1)
(1 + |x|2)n+1 dx and dn =

(n − 2)c2
0

2

∫
Rn

(|x|2 − 1)
(1 + |x|2)n−1 dx.

Let (uε) be a sequence of solutions of (Pε) having the form (2) and satisfying (3), (4), and (6).
In addition if the number N of concentration points (defined in (2)) is bigger than or equal to 2, we
assume that all the critical points y′is of K are non-degenerate. Then, the following facts hold

(i) For any i ∈ {1, · · · , N}, there exists ji ∈ {1, · · · , q}, such that the concentration point ai,ε
converges to the critical point yji of K as ε → 0. In addition, if n ≥ 5, we have

−c2
∆K(yji )

K(yji )
+ dnV(yji ) > 0. (8)
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(ii) For any i ∈ {1, · · · , N}, we have
d4
c1

V(yji )
ln λi,ε

λ2
i,ε

= ε(1 + oε(1)) if n = 4,(
− c2

c1

∆K(yji
)

K(yi)
+ dn

c1
V(yji )

)
1

λi,ε2 = ε(1 + oε(1)) if n ≥ 5,
(9)

where d4 := 2
√

2 meas(S3) and

c1 =
(n − 2)2

4
cp+1

0

∫
Rn

(|x|2 − 1) ln(1 + |x|2)
(1 + |x|2)n+1 dx.

(iii) If the number N of concentration points satisfies N ≥ 2, then N ≤ m and a positive constant
c exists independent of ε such that the concentration points satisfy

|ai,ε − ak,ε| ≥ c ∀ i ̸= k,

where m is defined by

m =

{
cardinal of {y is a non-degenerate critical point of K} if n = 4,
cardinal of {y is a non-degenerate critical point of K satisfying (8)} if n ≥ 5.

Remark 1.

1. When the number N of the concentration points satisfies N ≥ 2, the non-degeneracy assump-
tion is used to show that two concentration points cannot converge to the same critical point of
K. This shows that the presence of a Morse function K in the equation (PV,K, n+2

n−2−ε) excludes
the existence of interior bubbling solutions with clustered bubbles.

2. Theorem 1 also excludes the existence of solutions which resemble the form of a super-position
of spikes centered at one point, as in the slightly super-critical problem [25].

3. It is easy to construct a function K satisfying (7) and (8) for any positive function V. For
example, assuming, without the loss of generality, 0 ∈ Ω and taking a positive real γ such
that B(0, 2γ) ⊂ Ω. Let a := (γ, 0, · · · , 0), we can take

K(x) = R − ln(γ2 + 2|x − a|2)− ln(γ2 + 2|x + a|2)

with R chosen to be large so that K > 0 in Ω. By easy computations, we can check
that ∆K(x) < 0 for any x ∈ Ω, and K has only three critical points which are 0, b :=
(γ/

√
2, 0, · · · , 0), and −b. These critical points are non-degenerate. Clearly, (7) and (8) are

satisfied for any positive function V.

Our next result provides a kind of converse of Theorem 1. More precisely, our aim
is to construct solutions to (Pε) which blow up at multiple interior points as ε moves
towards zero.

Theorem 2. Let n ≥ 4, K (resp., V) : Ω → R be a C3 (resp., C2) positive function. Let N ≤ m
(where m is defined in Theorem 1) and y1, · · · yN be non-degenerate critical points of K. If n ≥ 5,
we further assume that they satisfy assumption (8). Then, there exists, for ε small, a sequence of
solutions to (Pε) which decomposes as in (2) with the properties (3), (4), (6), and (9). In particular
(Pε) admits at least 2m − 1 solutions.

To prove our results, we make a refined asymptotic analysis of the gradient of the
functional Iε and we then test the equation using vector fields which make possible to
obtain balancing conditions satisfied by the concentration parameters. Through a careful
study of these balancing conditions, we obtain our results.

The rest of this paper is organized as follows: in Section 2, we make a precise estimate
of the infinite dimensional part of uε. Section 3 is devoted to the expansion of the gradient
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of the functional Iε. In Section 4, we study the asymptotic behavior of the solutions to
(Pε) which blow up at interior points as ε moves towards zero. This allows us to provide
proof for Theorem 1. In Section 5 we construct solutions of (Pε) which blow up at multiple
interior points as ε moves towards zero which gives the proof for Theorem 2. Lastly, in
Section 6, we present some future perspectives.

2. Estimate of the Infinite Dimensional Part

For N ∈ N∗ , let (uε) be a sequence with the form (2) with the properties (3), (4), and (6).
It is well known that there is a unique way to choose λi, ε, ai,ε, and vε such that

uε =
N

∑
i=1

αi,εδai,ε ,λi,ε + vε with (10)
∣∣∣α4/n−2

i,ε K(ai,ε)− 1
∣∣∣→ 0 as ε → 0 ∀i ∈ {1, . . . , N},

ai,ε → āi ∈ , λi,ε → ∞ as ε → 0 ∀i ∈ {1, . . . , N},
εij → 0 as ε → 0 ∀i ̸= j, ∥vε∥H1 → 0, vε ∈ Eaε ,λε

(11)

where (aε, λε) ∈ ΩN × (0, ∞)N , Eaε ,λε denotes

Eaε ,λε =

{
v ∈ H1(Ω) :

∫
Ω
∇v∇δai,ε ,λi,ε =

∫
Ω
∇v∇

∂δai,ε ,λi,ε

∂λi,ε
=
∫

Ω
∇v

∂δai,ε ,λi,ε

∂aj
i,ε

= 0,

∀1 ⩽ i ⩽ N, ∀1 ⩽ j ⩽ n}. (12)

For the proof of this fact, see [26,27]. To simplify the notation, we will set, in the
sequel, ai = ai,ε, λi = λi, ε, δi = δai,ε ,λi,ε, αi = αi,ε, and Ea,λ = Eaε ,λε. Throughout the sequel,
we assume that uε is written as in (10) and (11). To study the case of interior blowing-up
solutions, we need to introduce the following set

O(N, µ0) =
{
(α,λ, a, v) ∈ (R+)

N × (R+)
N × ΩN × H1(Ω) : |α4/n−2

i K(ai)− 1| < µ0,

λi > µ−1
0 , ε ln λi < µ0, d(ai, ∂Ω) > c, εij < µ0, v ∈ Ea,λ, ∥v∥ < µ0

}
, (13)

where µ0 is positive, small, and real.
Next, we are going to deal with the v-part in (10). To this end, we perform an expansion

of the associated functional Iε defined by (1) with respect to v ∈ Ea,λ satisfying |v| < µ0,
where µ0 is a positive small constant. Let (α, λ, a, 0) ∈ O(N, µ0), taking ū = ∑N

i=1 αiδi and
v ∈ Ea,λ with ∥v∥ < µ0, we observe that

Iε(ū + v) =
1
2

∫
Ω
|∇ū|2 + 1

2

∫
Ω
|∇v|2 + 1

2

∫
Ω

V(x)ū2 +
1
2

∫
Ω

V(x)v2

+
∫

Ω
V(x)ū v − 1

p + 1 − ε

∫
Ω

K(x)|ū + v|p+1−ε.

But we have∫
Ω

K(x)|ū + v|p+1−ε =
∫

Ω
K(x)ūp+1−ε + (p + 1 − ε)

∫
Ω

K(x)ūp−εv

+
(p + 1 − ε)(p − ε)

2

∫
Ω

K(x)ūp−1−εv2 + Rε(v),

where

Rε(v) = O
(∫

Ω
|v|p+1−ε

)
+ (if n ⩽ 5)O

(∫
Ω

ūp−2−ε|v|3
)
= O

(
∥v∥min(3,p+1−ε)

)
(14)
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which implies that

Iε(ū + v) = Iε(ū) + ⟨lε, v⟩+ 1
2

Qε(v) + Rε(v) where

⟨lε, v⟩ =
∫

Ω
V(x)ūv −

∫
Ω

K(x)ūp−εv, (15)

Qε(v) =
∫

Ω
|∇v|2 +

∫
Ω

V(x)v2(x)− (p − ε)
∫

Ω
K(x)ūp−1−εv2. (16)

Notice that the derivatives of Rε satisfy

R′
ε(v) = O

(
∥v∥min(2,p−ε)

)
and R′′

ε (v) = O
(
∥v∥min(1,p−1−ε)

)
. (17)

Next, we are going to prove the uniform coercivity of the quadratic form Qε.

Proposition 1. Let n ≥ 3 and (α, λ, a, 0) ∈ O(N, µ0). Then, there exists ε0 > 0 and C > 0 such
that, for ε ∈ (0, ε0), the quadratic form Qε, defined by (16), satisfies

Qε(v) ≥ C∥v∥2 ∀v ∈ Ea,λ.

Proof. On one hand, since ε ln λi is small and Ω is bounded, Taylor’s expansion implies that

δ−ε
i = c−ε

0 λ
−ε(n−2)/2
i

(
1 + O

(
ε ln
(

1 + λ2
i |x − ai|2

)))
= 1 + o(1). (18)

On the other hand, letting v ∈ Ea,λ, we have

ε
∫

Ω
Kūp−1−εv2 ⩽ cε

N

∑
i=1

∫
Ω

δ
p−1−ε
i v2 ⩽ cε∥v∥2, (19)

∫
Ω

Kūp−1−εv2 =
N

∑
i=1

∫
Ω

K(αiδi)
p−1−εv2 +

{
∑j ̸=i O

(∫
Ω

(
δiδj
)(p−1)/2v2

)
if n ≥ 4,

∑j ̸=i O
(∫

Ω δ3
i δjv2) if n = 3.

(20)

But, using estimate E2 of [26] and Holder’s inequality, we obtain∫
Ω

(
δiδj
)(p−1)/2v2 ⩽ c

(
ε

n/(n−2)
ij ln ε−1

ij

)2/n
∥v∥2 = cε

2/(n−2)
ij (ln ε−1

ij )2/n∥v∥2. (21)

Thus, combining (18)–(21), we obtain

Qε(v) =
∫

Ω
|∇v|2 +

∫
Ω

Vv2 − p
N

∑
i=1

α
p−1
i

∫
Ω

Kδ
p−1
i v2 + o(∥v∥2). (22)

But, we have

α
p−1
i

∫
Ω

Kδ
p−1
i v2 = α

p−1
i K(ai)

∫
Ω

δ
p−1
i v2 + O

(∫
Ω
|K(x)− K(ai)|δ

p−1
i v2

)
and we notice that∫

Ω
|K(x)− K(ai)|δ

p−1
i v2 ≤ c

∫
Ω
|x − ai|δ

p−1
i v2 = o(∥v∥2).

Using the fact that α
p−1
i K(ai) = 1 + o(1), we obtain

Qε(v) =
∫

Ω
|∇v|2 +

∫
Ω

Vv2 − p
N

∑
i=1

∫
Ω

δ
p−1
i v2 + o

(
∥v∥2

)
. (23)
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But, according to the proof of Proposition 1 in [20], a positive constant c exists such that

∫
Ω
|∇v|2 +

∫
Ω

Vv2 − p
N

∑
i=1

∫
Ω

δ
p−1
i v2 ≥ c∥v∥2

which gives the desired result. The proof of the proposition is thereby complete.

Next, we are going to give the estimate of the infinite dimensional variable vε. Our
result reads as follows.

Proposition 2. Let n ≥ 3 and (α, λ, a, 0) ∈ O(N, µ0). Then, if µ0 > 0 is small enough, a unique
v̄ε ∈ Ea,λ exists which minimizes Iε

(
∑N

i=1 αiδai ,λi + v
)

with respect to v ∈ Ea,λ, and ∥v∥ is small.
In particular, we have 〈

I′ε
( N

∑
i=1

αiδai ,λi + v̄ε

)
, w

〉
= 0 ∀w ∈ Ea,λ. (24)

In addition, v̄ε satisfies the following estimate

∥v̄ε∥ ≤ cRε,a,λ, where (25)

Rε,a,λ = ε +
N

∑
i=1

|∇K(ai)|
λi

+


∑j ̸=i εij + ∑ λ

(2−n)/2
i if n ≤ 5,

∑j ̸=i εij(ln ε−1
ij )2/3 + λ−2

i (ln λi)
2/3 if n = 6,

∑j ̸=i ε
(n+2)/(2(n−2))
ij (ln ε−1

ij )(n+2)/(2n) + λ−2
i if n ≥ 7.

Proof. Using estimate (17), Proposition 1, and the implicit function theorem, we derive
that, for a ε small, v̄ε ∈ Ea,λ exists, such that ∥v̄ε∥ = O(∥lε∥), where lε is defined by (15).
Thus, we need to estimate lε. To this end, letting v ∈ Ea,λ, we observe that∫

Ω
Vū|v| ⩽ c

N

∑
i=1

αi

∫
Ω

δi|v| ⩽ c
N

∑
i=1

∥v∥R(λi) where

R(λi) =

{
λ−2

i ln2/3(λi) if n = 6,

λ
−min(2, n−2

2 )
i if n ̸= 6.

(26)

We also observe that

∫
Ω

Kūp−εv =
N

∑
i=1

α
p−ε
i

∫
Ω

Kδ
p−ε
i v +

∑j ̸=i O
(∫

Ω

(
δiδj
) p−ε

2 |v|
)

if n ≥ 6,

∑j ̸=i O
(∫

Ω δ
p−1−ε
i δj|v|

)
if n ≤ 5.

(27)

But, using (18) and estimate E2 of [26], we obtain

∫
Ω

(
δiδj
) p−ε

2 |v| ⩽ c
∫

Ω

(
δiδj
) p

2 |v| ⩽ c
(∫

Ω

(
δiδj
) n

n−2

) n+2
2n

∥v∥ ⩽ c∥v∥ε
n+2

2(n−2)
ij ln

n+2
2n ε−1

ij . (28)

For n ≤ 5, we have 1 < 2n
n+2 < 8n

n2−4 . Thus, it follows from (18) and Lemma 6.6 of [19]
that

∫
Ω

δ
p−1−ε
i δj|v| = O

(∫
Ω

δ
p−1
i δj|v|

)
= O

∥v∥
(∫

Ω
δ

2n
n+2
j δ

8n
n2−4
i

) n+2
2n

 = O
(
∥v∥ εij

)
. (29)

For the other term in right hand side of (27), using estimate (18), we obtain
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∫
Ω

Kδ
p−ε
i v = c−ε

0 λε−
ε(n−2)

2

∫
Ω

Kδ
p
i v + O

(
ε
∫

Ω
δ

p
i |v| ln

(
1 + λ2

i |x − ai|2
))

= c−ε
0 λε−

ε(n−2)
2 K(ai)

∫
Ω

δ
p
i v + O

(
|∇K(ai)|

∫
Ω
|x − ai|δ

p
i |v|

)
+ O

(∫
Ω
|x − ai|2δ

p
i |v|+ ε ∥v∥

)
. (30)

Observe that∫
Ω
|x − ai|δ

p
i |v| ≤ c∥v∥

(∫
Ω
|x − ai|

2n
n+2 δ

p+1
i

)(n+2)/(2n)
⩽

c∥v∥
λi

, (31)

∫
Ω
|x − ai|2δ

p
i |v| ⩽ c∥v∥

(∫
Ω
|x − ai|

4n
n+2 δ

p+1
i

)(n+2)/(2n)
⩽

c∥v∥
λ2

i
. (32)

Now, using (6), the fact that ε ln λi is small, and vε ∈ Ea,λ, we obtain

c−ε
0 λε−

ε(n−2)
2 K(ai)

∫
Ω

δ
p
i v = O

(∫
∂Ω

|∂δi
∂ν

vε|
)

= O

(
1

λ
(n−2)/2
i

∫
∂Ω

|v|
)

= O
( ∥v∥

λ
(n−2)/2
i

)
. (33)

It follows from (30)–(33) that∫
Ω

Kδ
p−ε
i v = O

( |∇K(ai)|
λi

∥v∥+ ∥v∥
λimin(2,(n−2)/2)

+ ε ∥v∥
)

. (34)

Combining (26)–(29) and (34), our proposition follows.

3. Expansion of the Gradient of the Associated Functional

In this section, we are going to perform the expansion of the gradient of the associated
Euler–Lagrange functional Iε in O(N, µ0). Notice that, for u, h ∈ H1(Ω), we have

〈
I′ε(u), h

〉
=
∫

Ω
∇u.∇h +

∫
Ω

V uh −
∫

Ω
K|u|p−1−εuh. (35)

Let (α, λ, a, 0) ∈ O(N, µ0). In (35), we will take u = ∑N
i=1 αiδi + v̄ε := ū + v̄ε and

h = fi ∈ {δi, λi∂δi/∂λi, λ−1
i ∂δi/∂ai} with 1 ≤ i ≤ N. Thus, we need to estimate each term

in (35). We start by dealing with the last integral in the right hand side of (35). Namely, we
prove the proposition below.

Proposition 3. Let n ≥ 3 and (α, λ, a) be such that (α, λ, a, 0) ∈ O(N, µ0). Let us denote
that ū = ∑N

i=1 αiδi and uε = ū + v̄ε, where v̄ε in defined in Proposition 2. Then, for fi ∈
{δi, λi∂δi/∂λi, λ−1

i ∂δi/∂ai} with 1 ≤ i ≤ N, the following fact holds∫
Ω

K|uε|p−1−εuε fi =
∫

Ω
K(αiδi)

p−ε fi + (p − ε) ∑
k ̸=i

∫
Ω

K(αiδi)
p−1−ε(αkδk) fi

+ ∑
k ̸=i

∫
Ω

K(αkδk)
p−ε fi + (p − ε)

∫
Ω

K(αiδi)
p−1−εv̄ε fi

+ O
(
∥v̄ε∥2 + ∑

k ̸=r
ε

n
n−2
kr ln ε−1

kr

)
+ (if n = 3) O

(
∑
k ̸=r

ε2
kr ln2/3 ε−1

kr

)
. (36)
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Proof. We have∫
Ω

K|uε|p−1−εuε fi =
∫

Ω
Kup−ε fi + (p − ε)

∫
Ω

Kup−1−εvε fi

+ O
( ∫

[u≤|vε |]
|vε|p−ε| fi|+

∫
[|vε |≤u]

up−2−ε|vε|2| fi|
)

. (37)

Observe that∫
[u≤|vε |]

|vε|p−ε| fi|+
∫
[|vε |≤u]

up−2−ε|vε|2| fi| ≤
∫
[u≤|vε |]

|vε|p+1−ε +
∫

Ω
up−1−ε|vε|2

≤ c∥vε∥2.

Thus∫
Ω

K|uε|p−1−εuε fi =
∫

Ω
Kūp−ε fi + (p − ε)

∫
Ω

Kūp−1−εv̄ε fi + O
(
∥v̄ε∥2

)
. (38)

To deal with the second integral in the right hand side of (38), we write∫
Ω

Kūp−1−εv̄ε fi =
∫

Ωi

· · ·+
∫

Ω\Ωi

· · · , where (39)

Ωi = {x ∈ Ω : ∑
k ̸=i

αkδk(x) ≤ 1
2

αiδi(x)}.

For n ≥ 6, we have p − 1 ≤ 1. Using (28), we obtain

∫
Ω\Ωi

K|uε|p−1−ε|v̄ε|| fi| ≤ c ∑
k ̸=i

∫
Ω\Ωi

(δkδi)
p−ε

2 |v̄ε| ≤ c ∑
k ̸=i

∥v̄ε∥ε
n+2

2(n−2)
ik (ln ε−1

ik )
n+2
2n . (40)

and for n ≤ 5, using (29), we obtain

∫
Ω\Ωi

K|uε|p−1−ε|v̄ε|| fi| ≤ c ∑
k ̸=i

∫
Ω\Ωi

(δk)
p−1−εδi|v̄ε|

≤ c∥v̄ε∥ ∑
k ̸=i

εik ≤ c∥v̄ε∥2 + c ∑
k ̸=i

ε2
ik. (41)

For the first integral in the right hand side of (39), we write∫
Ωi

Kūp−1−εv̄ε fi =
∫

Ωi

K(αiδi)
p−1−εv̄ε fi + O

( ∫
Ωi

(αiδi)
p−2−ε

(
∑
k ̸=i

(αkδk)
)
|v̄ε|| fi|

)
=
∫

Ω
K(αiδi)

p−1−εv̄ε fi −
∫

Ω\Ωi

K(αiδi)
p−1−εv̄ε fi

+ (if n ≥ 6)O
(

∑
k ̸=i

∫
Ωi

(δiδk)
p
2 |v̄ε|

)
+ (if n ≤ 5)O

(
∑
k ̸=i

∫
Ωi

δ
p−1
i δk|v̄ε|

)
. (42)

Using Estimate E2 from [26], (39), (40), and (42), we obtain∫
Ω

Kūp−1−εv̄ε fi = α
p−1−ε
i

∫
Ω

Kδ
p−1−ε
i v̄ε fi + O

(
∥v̄ε∥2

)
+ O

(
∑
k ̸=i

(
ε

n
n−2
ik ln ε−1

ik

)min(2 n−2
n ; n+2

n ))
. (43)
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Now, we are going to estimate the first integral on the right hand side of (38). To this
end, letting Ωi be defined by (39), we write∫

Ω
Kūp−ε fi =

∫
Ωi

Kūp−ε
ε fi +

∫
Ω\Ωi

Kūp−ε
ε fi := I1 + I2. (44)

For the first integral (I1) in (44), using (18) and the fact that | fi| ≤ cδi, it holds that

I1 =
∫

Ωi

K(αiδi)
p−ε fi + (p − ε)

∫
Ωi

K(αiδi)
p−1−ε

(
∑
k ̸=i

αkδk

)
fi

+ O
( ∫

Ωi

(αiδi)
p−2
(

∑
k ̸=i

αkδk

)2
| fi|
)

=
∫

Ω
K(αiδi)

p−ε fi + (p − ε) ∑
k ̸=i

∫
Ω

K(αiδi)
p−1−εαkδk fi

+ ( if n ≥ 4) ∑
k ̸=i

O
( ∫

Ω
(δiδk)

n
n−2

)
+ ( if n = 3)O

(
∑
k ̸=i

∫
Ω

δ4
i δ2

k

)
.

Thus, using Estimate E2 from [26], we obtain

I1 = α
p−ε
i

∫
Ω

Kδ
p−ε
i fi + (p − ε) ∑

k ̸=i

∫
Ω

K(αiδi)
p−1−ε(αkδk) fi

++( if n ≥ 4)O
(

ε
n

n−2
ik ln ε−1

ik

)
++( if n = 3)O

(
ε2

ik(ln ε−1
ik )

2
3

)
. (45)

For the second integral on the right hand side of (44), using (18), the fact that | fi| ≤ cδi,
and Estimate E2 from [26], we have∫

Ω\Ωi

Kūp−ε fi =
∫

Ω\Ωi

K
(

∑
k ̸=i

αkδk

)p−ε
fi + O

( ∫
Ω\Ωi

(
∑
k ̸=i

αkδk

)p−1
(αiδi)| fi|

)
= ∑

k ̸=i

∫
Ω\Ωi

K(αkδk)
p−ε fi + O

(
∑

k,r ̸=i,k ̸=r

∫
Ω\Ωi

inf
k ̸=r,k ̸=i

(δk, δr) sup
k ̸=r,k,r ̸=i

(δk, δr)
p−1δi

)
+ O

(
∑
k ̸=i

∫
Ω\Ωi

(δkδi)
n

n−2

)
+ (if n = 3) O

(
∑
k ̸=i

∫
Ω\Ωi

δ4
k δ2

i

)
= ∑

k ̸=i

∫
Ω

K(αkδk)
p−ε fi + O

(
∑
k ̸=r

∫
Ω
(δkδr)

n
n−2

)
+ (if n = 3) O

(
∑
k ̸=i

ε2
ik ln2/3 ε−1

ik

)
= ∑

k ̸=i

∫
Ω

K(αkδk)
p−ε fi + O

(
∑
k ̸=r

ε
n

n−2
kr ln ε−1

kr

)
+ (if n = 3) O

(
∑
k ̸=i

ε2
ik ln2/3 ε−1

ik

)
. (46)

Combining (38), (43), (44), (45), and (46), we obtain the desired result.

Next, we deal with the linear term in Proposition 3 with respect to v̄ε. Namely, we
prove the following Lemma.

Lemma 1. Let n ≥ 3 and (α, λ, a) such that (α, λ, a, 0) ∈ O(N, µ0). Then, for i ∈ {1, . . . , N},
the following fact holds:

∣∣∣ ∫
Ω

Kδ
p−1−ε
i v̄ε fi

∣∣∣ ≤ c∥v̄ε∥
(

ε +
|∇K(ai)|

λi
+

1
λ2

i

)
+

c∥vε∥/λ
n−2

2
i if fi ∈ {δi, λi

∂δi
∂λi

},

c∥vε∥/λ
n
2
i if fi =

1
λi

∂δi
∂ai

,

where v̄ε is defined in Proposition 2.

Proof. Using (18), the fact that | fi| ≤ cδi, (31), and (32), we obtain
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∫
Ω

Kδ
p−1−ε
i v̄ε fi

= K(ai)
∫

Ω
δ

p−1−ε
i v̄ε fi + O

(
|∇K(ai)|

∫
Ω
|x − ai|δ

p
i |v̄ε|+

∫
Ω
|x − ai|2δ

p
i |v̄ε|

)
= c−ε

0 λ
−ε(n−2)

2
i K(ai)

∫
Ω

δ
p−1
i v̄ε fi + O

( |∇K(ai)|
λi

∥v̄ε∥+
∥v̄ε∥
λ2

i

)
+ O

(
ε
∫

Ω
δ

p
i |v̄ε| ln(1 + λ2

i |x − ai|2)
)

= c−ε
0 λ

−ε(n−2)
2

i K(ai)
∫

Ω
δ

p−1
i v̄ε fi + O

(
∥v̄ε∥

( |∇K(ai)|
λi

+
1

λ2
i
+ ε
))

. (47)

If fi = δi, since v̄ε ∈ Ea,λ we have∫
Ω

δ
p−1
i v̄ε fi =

∫
Ω

δ
p
i v̄ε = −

∫
Ω

∆δi v̄ε = −
∫

∂Ω

∂δi
∂ν

v̄ε.

But, since ai → āi ∈ Ω, we have |∂δi/∂ν| ≤ cλ
(2−n)/2
i uniformly on ∂Ω. Therefore

we obtain ∫
Ω

δ
p−1
i v̄ε fi = O

( ∥v̄ε∥
λ
(n−2)/2
i

)
. (48)

If fi = λi
∂δi
∂λi

, using again the fact that v̄ε ∈ Ea,λ and ai → āi ∈ Ω, we obtain

∫
Ω

δ
p−1
i v̄ε fi = λi

1
p

∫
Ω
−∆
(

∂δi
∂λi

)
v̄ε = −λi

p

∫
∂Ω

∂

∂ν

(
∂δi
∂λi

)
v̄ε = O

( ∥v̄ε∥
λ
(n−2)/2
i

)
. (49)

Lastly, if fi =
1
λi

∂δi
∂ai

, we obtain, in the same way,

∫
Ω

δ
p−1
i v̄ε fi =

1
λi

1
p

∫
Ω
−∆
(

∂δi
∂ai

)
v̄ε = − 1

pλi

∫
∂Ω

∂

∂ν

(
∂δi
∂ai

)
v̄ε = O

(∥v̄ε∥
λn/2

i

)
. (50)

Clearly, our lemma follows from (47)–(50).

Next, we are going to make the statement in Proposition 3 more precise.
We start with the case where fi = δi.

Proposition 4. Let n ≥ 3 and (α, λ, a) such that (α, λ, a, 0) ∈ O(N, µ0). Let us denote that
uε = ∑N

i=1 αiδi + v̄ε := ū + v̄ε, where v̄ε is defined in Proposition 2. Then, for 1 ≤ i ≤ N, we have

∫
Ω

K|uε|p−1−εuεδi = α
p−ε
i λ

−ε(n−2)
2

i K(ai)Sn

+ O
(

ε +
1

λ2
i
+ ∥v̄ε∥2 + ∑

k ̸=i
εik

)
+ (if n = 3) O

( 1
λi

)
.

Proof. Using (38) and (43) with fi = δi, we obtain∫
Ω

K|uε|p−1−εuεδi =
∫

Ω
Kūp−εδi + (p − ε)α

p−1−ε
i

∫
Ω

Kδ
p−ε
i v̄ε + O

(
∥v̄ε∥2 + ∑

k ̸=i
εik

)
. (51)

The second integral on the right hand side of (51) is estimated in Lemma 1. For the
first one, we write
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∫
Ω

Kūp−εδi = α
p−ε
i

∫
Ω

Kδ
p+1−ε
i + ∑

k ̸=i
O
( ∫

Ω
δ

p
i δk +

∫
Ω

δiδ
p
k

)
= α

p−ε
i

∫
Ω

Kδ
p+1−ε
i + O

(
∑
k ̸=i

εik

)
.

Now, observe that, for r positive small, using (18) we obtain∫
Ω

Kδ
p+1−ε
i = K(ai)

∫
B(ai ,r)

δ
p+1−ε
i + O

(∫
B(ai ,r)

|x − ai|2δ
p+1
i

)
+
∫

Ω\B(ai ,r)
Kδ

p+1−ε
i

= K(ai)
∫
Rn

cp+1−ε
0 λ

−ε(n−2)
2

i dx

(1 + |x|2)n− ε(n−2)
2

+ O

(
1

λ2
i
+

1
λn

i

)

= K(ai)λ
−ε(n−2)

2
i Sn + O

(
ε +

1
λ2

i

)
.

Combining the previous estimates with Lemma 1, we easily derive our proposi-
tion.

Next, we take fi = λi
∂δi
∂λi

in Proposition 3 and our aim is to prove the following result.

Proposition 5. Let n ≥ 4 and (α, λ, a) such that (α, λ, a, 0) ∈ O(N, µ0). Let us denote that
uε = ∑N

i=1 αiδi + v̄ε := ū + v̄ε, where v̄ε is defined in Proposition 2. Then, for i ≤ N, we have

∫
Ω

K|uε|p−1−εuελi
∂δi
∂λi

= α
p−ε
i λ

−ε(n−2)
2

i

(
−c̄1εK(ai)− c̄2

∆K(ai)

λ2
i

)
+ O

(
∥v̄ε∥2

)
+ O(R)

+ c1 ∑
k ̸=i

λi
∂εik
∂λi

αk

(
α

p−1−ε
i K(ai)λ

−ε(n−2)
2

i + α
p−1−ε
k K(ak)λ

−ε(n−2)
2

k

)
,

where c1, c2 are defined in Theorem 1 and

R = ε2 +
1

λn−2
i

+ ∑
k ̸=r

ε
n

n−2
kr ln ε−1

kr +
N

∑
k=1

( |∇K(ak)|2

λ2
k

+
(ln λk)

2

λ4
k

)
,

c1 =
∫
Rn

c
2n

n−2
0

(1 + |x|2)
n+2

2
.

Proof. Applying Proposition 3 with fi = λi(∂δi)/∂λi, we need to estimate the integrals
involved in (36). For a small positive r, since K is a C3-function on Ω, we have∫

Ω
Kδ

p−ε
i λi

∂δi
∂λi

= K(ai)
∫

B(ai ,r)
δ

p−ε
i λi

∂δi
∂λi

+
1
2

∫
B(ai ,r)

D2K(ai)(x − ai, x − ai)δ
p−ε
i λi

∂δi
∂λi

+ O
(∫

B(ai ,r)
|x − ai|4δ

p+1
i

)
+ O

(
1

λn
i

)
. (52)

Next, we recall the following estimate which is extracted from [20] (see estimate (91)
of [20]) ∫

B(ai ,r)
δ

p−ε
i λi

∂δi
∂λi

= −εc̄1λ
−ε(n−2)

2
i + O

( ln λi
λn

i
+ ε2

)
. (53)
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Combining estimates (52) and (53), we obtain∫
Ω

Kδ
p−ε
i λi

∂δi
∂λi

= − c̄1εK(ai)

λ
ε(n−2)

2
i

+
∆K(ai)

2n

∫
B(ai ,r)

|x − ai|2δ
p−ε
i λi

∂δi
∂λi

+ O

(
ε2 +

(ln λi)
σn

λ4
i

)
. (54)

But, using (18), we have

1
2n

∫
B(ai ,r)

|x − ai|2δ
p−ε
i λi

∂δi
∂λi

= c−ε
0 λ

−ε(n−2)
2

i
1

λ2
i

(n − 2)
4n

∫
B(0,λir)

|x|2(1 − |x|2)dx
(1 + |x|2)n+1 + O

( ε

λ2
i

)
= −c2λ

−ε(n−2)
2

i
1

λ2
i
+ O

( 1
λn

i
+

ε

λ2
i

)
. (55)

Thus, combining (54) and (55), we obtain∫
Ω

Kδ
p−ε
i λi

∂δi
∂λi

= −c̄1 ελ
−ε(n−2)

2
i K(ai)− c̄2λ

−ε(n−2)
2

i
∆K(ai)

λ2
i

+ O
(

ε2 +
(ln λi)

σn

λ4
i

)
. (56)

Next, we are going to estimate the second integral on the right hand side of (36). To
this end, using (18), we obtain

p
∫

Ω
Kδ

p−1−ε
i δkλi

∂δi
∂λi

= pK(ai)
∫

Ω
δ

p−1−ε
i δkλi

∂δi
∂λi

+ O
(
|∇K(ai)|

∫
Ω
|x − ai|δ

p
i δk

)
+ O

(∫
Ω
|x − ai|2δ

p
i δk

)
= pK(ai)c−ε

0 λ
−ε(n−2)

2
i

∫
Rn

δ
p−1
i δkλi

∂δi
∂λi

+ O
(∫

Rn\Ω
δ

p
i δk

)
+ O

(
ε
∫

Ω
δ

p
i δk ln

(
1 + λ2

i |x − ai|2
))

+ O

(
|∇K(ai)|

(∫
Ω
|x − ai|

n
2 δ

2n
n−2
i

) 2
n ( ∫

Ω
(δiδk)

n
n−2

) n−2
n

)

+ O

(( ∫
Ω
|x − ai|nδ

p+1
i

)2/n}( ∫
Ω
(δiδk)

n
n−2

) n−2
n

)
. (57)

But, using estimate F16 of [26], we have

p
∫
Rn

δ
p−1
i δkλi

∂δi
∂λi

= λi

∫
Rn

δ
p
k

∂δi
∂λi

= c1λi
∂εik
∂λi

+ O
(

ε
n

n−2
ik ln ε−1

ik

)
. (58)

We also have∫
Rn\Ω

δ
p
i δk =

∫
Rn\Ω

δ
p−1
i (δiδk) ≤

( ∫
Rn\Ω

δ
p+1
i

) 2
n
( ∫

Ω
(δiδk)

n
n−2

) n−2
n

≤ c
λ2

i
εik ln

n−2
n ε−1

ik , (59)

ε
∫
Rn

δ
p
i δk ln

(
1 + λ2

i |x − ai|2
)
≤ ε

∫
Rn
(δiδk)δ

p−1
i ln

(
1 + λ2

i |x − ai|2
)

≤ εεik ln
n−2

n ε−1
ik . (60)
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And (57)–(60) imply that

p
∫

Ω
Kδ

p−1−ε
i δkλi

∂δi
∂λi

= c−ε
0 λ

−ε(n−2)
2

i K(ai)c1λi
∂εik
∂λi

+ O
(

ε
n

n−2
ik ln ε−1

ik

)
+ O

((
ε +

|∇K(ai)|
λi

+
(ln λi)

2/n

λ2
i

)
εik(ln ε−1

ik )(n−2)/n
)

. (61)

Now, in the same way, we consider the third integral in the right hand side of (36) and
we write∫

Ω
Kδ

p−ε
k λi

∂δi
∂λi

= K(ak)
∫

Ω
δ

p−ε
k λi

∂δi
∂λi

+ O
(
|∇K(ak)|

∫
Ω
|x − ak|δ

p
k δi

)
+ O

(∫
Ω
|x − ak|2δ

p
k δi

)
= K(ak)c−ε

0 λ
−ε(n−2)

2
k c1λi

∂εik
∂λi

+ O
(

ε
n/(n−2)
ik ln ε−1

ik

)
+ O

((
ε +

|∇K(ak)|
λk

+
(ln λk)

2/n

λ2
k

)
ε

n/(n−2)
ik (ln ε−1

ik )(n−2)/n
)

. (62)

Combining (56), (61), (62), Lemma 1, and Proposition 3, we obtain the desired re-
sult.

Now, taking fi =
1
λi

∂δi
∂ai

in Proposition 3, we are going to prove the following crucial result.

Proposition 6. Let n ≥ 3 and (α, λ, a) be such that (α, λ, a, 0) ∈ O(N, µ0). Let us denote that
uε = ∑N

i=1 αiδi + v̄ε, where v̄ε is defined in Proposition 2. Then, for 1 ≤ i ≤ N, the following
fact holds∫

Ω
K|uε|p−1−εuε

1
λi

∂δi
∂ai

= α
p−ε
i λ

−ε(n−2)
2

i c̄4
∇K(ai)

λi
+ c1 ∑

k ̸=i
αk

1
λi

∂εik
∂ai

(
α

p−1−ε
i K(ai)λ

−ε(n−2)
2

i

+ α
p−1−ε
k K(ak)λ

−ε(n−2)
2

k

)
+ O

(
∥v̄ε∥2

)
+ O(Ri),

where

Ri =ε2 +
1

λ3
i
+ ∑

k

|∇K(ak)|2

λ2
k

+ ∑
k ̸=i

λk|ai − ak|ε
n+1
n−2
ik + ∑

k ̸=r
ε

n
n−2
kr ln ε−1

kr + ∑
k

(ln λk)
4/n

λ4
k

+ (if n = 3)O
(

∑
k ̸=r

ε2
kr ln2/3 ε−1

kr

)
and c̄4 =

n − 2
n

cp+1
0

∫
Rn

|x|2dx
(1 + |x|2)n+1 .

Proof. Taking r positive small and denoting that Bi := B(ai, r), we write∫
Ω

Kδ
p−ε
i

1
λi

∂δi
∂ai

=
∫

Bi

Kδ
p−ε
i

1
λi

∂δi
∂ai

+ O
( ∫

Rn\Bi

δ
p
i

1
λi

∣∣∣ ∂δi
∂ai

∣∣∣)
=
∫

Bi

∇K(ai)(x − ai)δ
p−ε
i

1
λi

∂δi
∂ai

+ O
( ∫

Bi

|x − ai|3δ
p+1
i +

1
λn+1

i

)
. (63)

But using (18), we have∫
Bi

∇K(ai)(x − ai)δ
p−ε
i

1
λi

∂δi
∂ai

=
c−ε

0

λ
ε(n−2)

2
i

∫
Bi

∇K(ai)(x − ai)δ
p
i

1
λi

∂δi
∂ai

+ O
(

ε
|∇K(ai)|

λi

)
. (64)
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Notice that, for 1 ≤ j ≤ n, we have

∫
Bi

∇K(ai)(x − ai)δ
p
i

1
λi

∂δi
∂(ai)j

=
n

∑
k=1

∂K
∂xk

(ai)
∫

Bi

(x − ai)kδ
p
i

1
λi

∂δi
∂(ai)j

=
∂K
∂xj

(ai)
∫

Bi

(x − ai)jδ
p
i

1
λi

∂δi
∂(ai)j

= (n − 2)cp+1
0

∂K
∂xj

(ai)
∫

Bi

λn+1
i (x − ai)

2
j

(1 + λ2
i |x − ai|2)n+1

dx.

We notice that the last integral is independent of the index j. Then we obtain

∫
Bi

∇K(ai)(x − ai)δ
p
i

1
λi

∂δi
∂(ai)j

= (n − 2)cp+1
0

∂K
∂xj

(ai)
1
n

∫
Bi

λn+1
i |x − ai|2

(1 + λ2
i |x − ai|2)n+1

dx

=
(n − 2)

n
cp+1

0
∂K
∂xj

(ai).
1
λi

∫
B(0,λir)

|x|2
(1 + |x|2)n+1 dx

=
∂K
∂xj

(ai)
c̄4

λi
+ O

(
1

λn+1
i

)
. (65)

Clearly, (63), (64), and (65) imply that

∫
Ω

Kδ
p−ε
i

1
λi

∂δi
∂ai

= c−ε
0 λ

−ε(n−2)
2

i c̄4
∇K(ai)

λi
+ O

(
ε|∇K(ai)|

λi
+

1
λ3

i

)
. (66)

For the second integral on the right hand side of (36), following the proof of (57), we write

p
∫

Ω
Kδ

p−1−ε
i δk

1
λi

∂δi
∂ai

= pK(ai)
∫

Ω
δ

p−1−ε
i δk

1
λi

∂δi
∂ai

+ O
(
|∇K(ai)|

∫
Ω
|x − ai|δ

p
i δk

)
+ O

(∫
Ω
|x − ai|2δ

p
i δk

)
= pK(ai)c−ε

0 λ
−ε(n−2)

2
i

∫
Rn

δ
p−1
i δk

1
λi

∂δi
∂ai

+ O
(( (ln λi)

2
n

λ2
i

+ ε +
|∇K(ai)|

λi

)
εik(ln ε−1

ik )
(n−2)

n

)
. (67)

But, using estimate F11 of [26], we have

p
∫
Rn

δ
p−1
i δk

1
λi

∂δi
∂ai

=
1
λi

∫
Rn

δ
p
k

∂δi
∂ai

= c1
1
λi

∂εik
∂ai

+ O
(

λk|ai − ak|ε
n+1
n−2
ik

)
. (68)

Combining (67) and (68), we obtain

p
∫

Ω
Kδ

p−1−ε
i δk

1
λi

∂δi
∂ai

= c−ε
0 λ

−ε(n−2)
2

i K(ai)c1
1
λi

∂εik
∂ai

+ O
(

λk|ai − ak|ε
n+1
n−2
ik

)
+ O

((
ε +

|∇K(ai)|
λi

+
(ln λi)

2/n

λ2
i

)
εik(ln ε−1

ik )(n−2)/n

)
. (69)

Lastly, in the same way, we deal with the third integral on the right hand side of (36),
and we write
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∫
Ω

Kδ
p−ε
k

1
λi

∂δi
∂ai

= K(ak)
∫

Ω
δ

p−ε
k

1
λi

∂δi
∂ai

+ O
(
|∇K(ak)|

∫
Ω

δ
p−1
k (δkδi)|x − ak|

)
+ O

( ∫
B(ak ,r)

|x − ak|2δ
p
k δi

)
= K(ak)c

−ε
0 λ

−ε(n−2)
2

k

(
c1

1
λi

∂εik
∂ai

+ O
(

λk|ai − ak|ε
n+1
n−2
ik

))
+ O

((
ε +

|∇K(ak)|
λk

+
(ln λk)

2/n

λ2
k

)
εik(ln ε−1

ik )(n−2)/n
)

. (70)

Combining (66), (69), (70), Lemma 1, and Proposition 3, we obtain the desired result.

Now, we are ready to give the expansions of the gradient of the associated Euler–
Lagrange functional Iε in the set O(N, µ0). Namely we prove the following crucial result

Proposition 7. Let (α, λ, a) be such that (α, λ, a, 0) ∈ O(N, µ0) and Let uε = ∑N
i=1 αiδai ,λi + v̄ε,

where v̄ε is defined in Proposition 2. Then, for 1 ≤ i ≤ N, the following facts hold:

(i) For n ≥ 3, we have〈
I′ε(uε), δi

〉
= αiSn

(
1 − α

p−1−ε
i λ

− ε(n−2)
2

i K(ai)

)
+ O(R1i(ε, a, λ)),

where Sn is defined in (83).
(ii) For n ≥ 4, we have〈

I′ε(uε), λi
∂δi
∂λi

〉
= −dnαi V(ai)

lnσn λi

λ2
i

+ α
p−ε
i λ

− ε(n−2)
2

i

(
c̄2

∆K(ai)

λ2
i

+ c̄1εK(ai)

)
,

+ c1 ∑
k ̸=i

αk λi
∂εik
∂λi

[
1 − ∑

j=i,k
α

p−1−ε
j K(aj)λ

− ε(n−2)
2

j

]
+ O

(
R2i(ε, a, λ)

)
,

where d4 = 2
√

2 meas(S3), c1 is defined in Proposition 5, and where c̄1, c̄2, dn for n ≥ 5 are
defined in Theorem 1.

(iii) For n ≥ 3, we have〈
I′ε(uε),

1
λi

∂δi
∂ai

〉
= −α

p−ε
i λ

− ε(n−2)
2

i c̄4
∇K(ai)

λi

+ c1 ∑
k ̸=i

αk
1
λi

∂εik
∂ai

[
1 − ∑

j=i,k
α

p−1−ε
i K(ai)λ

− ε(n−2)
2

i

]
+ O

(
R3i(ε, a, λ)

)
,

where c̄4 is defined in Proposition 6 and where

R1i(ε, a, λ) = ε + ∥v̄ε∥2 + ∑
j ̸=i

εij + ∑
j

1
λn−2

j
+

lnσn λi

λ2
i

with σn :=

{
0 if n ̸= 4,
1 if n = 4,

R2i(ε, a, λ) = ε2 + ∑
k ̸=r

ε
n

n−2
kr ln ε−1

kr +
N

∑
k=1

|∇K(ak)|2

λ2
k

+
N

∑
k=1

(ln λk)
4/n

λ4
k

+
N

∑
k=1

1
λn−2

k

+ ∑
k ̸=i

εik|ai − ak|2| lnσn |ai − ak||+ ∑
k ̸=i

εik
lnσn(min(λi, λk))

min(λi, λk)2 + ∥v̄ε∥2,

R3i(ε, a, λ) = ε2 +
lnσn λi

λ3
i

+ ∑
k

|∇K(ak)|2

λ2
k

+ ∑
k ̸=i

λk|ai − ak|ε
n+1
n−2
ik + ∑

k ̸=r
ε

n
n−2
kr ln ε−1

kr

+ ∑
k

(ln λk)
4/n

λ4
k

+ ∥v̄ε∥2 +
1
λi

∑
k ̸=i

εik + ∑
k

1
λn−1

k

.

Proof. Claim (i) follows from estimates (50)–(54) and (56) from [20] and Proposition 4.
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Next, we are going to prove estimate (ii). First , we know that (see Estimate (51)
of [19])

∫
Ω
∇uε∇

(
λi

∂δi
∂λi

)
= ∑

k ̸=i
c1αkλi

∂εik
∂λi

+ O

(
∑
k ̸=i

ε
n

n−2
ik ln ε−1

ik + ∑
k

1
λn−2

k

)
. (71)

Second, taking r positive small and using estimates (52),(53) and Lemma 6.6 of [19],
we obtain∫

Ω
Vuελi

∂δi
∂λi

= αiV(ai)
∫

B(ai ,r)
δiλi

∂δi
∂λi

+ O
(∫

B(ai ,r)
|x − ai|2δ2

i

)
+ O

(∫
Ω\B(ai ,r)

δ2
i

)
+ ∑

j ̸=i

∫
Ω

αjVδjλi
∂δi
∂λi

+ O
( ∫

Ω
|v̄ε|δi

)
= −dnV(ai)αi

lnσn λi

λ2
i

+ O
(

∑
k ̸=i

εik|ai − ak|2| lnσn |ai − ak|
)

+ O
( 1

λ
min(n−2;4)
i

)
+ O

(
∑
k ̸=i

εik lnσn (min(λi, λk))

min(λi, λk)2

)
+ O

(
∥v̄ε∥2

)

+ (if n = 6)O

(
ln

4
3 λi

λ4
i

)
(72)

where we have used (26).
Combining (71), (72) and Proposition 5, we easily obtain Claim (ii).
To prove Claim (iii), we first use Proposition 3.4 of [19] to derive∫

Ω
∇uε · ∇

(
1
λi

∂δi
∂ai

)
= c1

1
λi

∑
k ̸=i

αk
∂εik
∂ai

+ O
(

∑
k

1
λn−1

k

+ ∑
k ̸=i

λk|ai − ak|ε
n+1
n−2
ik

)
. (73)

Second, taking r positive small, we write∫
Ω

Vuε
1
λi

∂δi
∂ai

=O
( ∫

B(ai ,r)
δi

1
λi

∣∣∣ ∂δi
∂ai

∣∣∣|x − ai|+
∫

Ω\B(ai ,r)
δi

1
λi

∣∣∣ ∂δi
∂ai

∣∣∣)
+ O

(
∑
k ̸=i

∫
Ω

Vδk
1
λi

∣∣∣ ∂δi
∂ai

∣∣∣+ ∫
Ω
|v̄ε|

1
λi

∣∣∣ ∂δi
∂ai

∣∣∣). (74)

But, using Lemma 6.3 of [19], we have

∫
B(ai ,r)

δi
1
λi

∣∣∣ ∂δi
∂ai

∣∣∣|x − ai| ≤
c
λi

∫
B(ai ,r)

δ2
i ≤ c


λ−3

i if n ≥ 5,
λ−3

i ln λi if n = 4,
λ−2

i if n = 3.

(75)

∫
Ω\B(ai ,r)

δi
1
λi

∣∣∣ ∂δi
∂ai

∣∣∣ ≤ c
λn−1

i

, (76)

∫
Ω
|v̄ε|

1
λi

∣∣∣ ∂δi
∂ai

∣∣∣ ≤ c∥v̄ε∥
(∫

Ω

(
δi

λi|x − ai|

) 2n
n+2
) n+2

2n

≤ c∥v̄ε∥


λ−3/2

i if n = 3,
λ−2

i ln3/4 λi if n = 4,
λ−2

i if n ≥ 5.

(77)



Symmetry 2024, 16, 291 18 of 28

Furthermore, for k ̸= i, it holds that∫
Ω

Vδk
1
λi

∣∣∣ ∂δi
∂ai

∣∣∣ ≤ c
∫

Ω

δiδk
λi|x − ai|

≤ c
λi

(∫
Ω
(δiδk)

n−1
n−2

) n−2
n−1
(∫

Ω

dx
|x − ai|n−1

) 1
n−1

≤ c
λi

εik. (78)

Combining estimates (74)–(78), we obtain∫
Ω

Vuε
1
λi

∂δi
∂ai

= O
(
∥v̄ε∥2 +

1
λi

∑
k ̸=i

εik +
(ln λi)

σn

λ
min(3;n−1)
i

)
. (79)

Combining estimates (73), (79) and Proposition 6, we easily derive estimate (iii). This
completes the proof of our proposition.

4. Asymptotic Behavior of Interior Bubbling Solutions

Our aim in this section is to study the asymptotic behavior of solutions to (Pε) which
blow up at interior points as ε moves towards zero. We begin by proving the following
crucial fact:

Lemma 2. Let n ≥ 3 and (uε) be a sequence of solutions of (Pε). Then, for all i ∈ {1, . . . , N}, the
following fact holds:

ε ln λi −→ 0 as ε −→ 0.

Proof. Multiplying (Pε) by δi and integrating over Ω, we obtain

−
N

∑
j=1

αj

∫
Ω

∆δj · δi −
∫

Ω
∆vεδi +

N

∑
j=1

αj

∫
Ω

V(x)δj(x)δi +
∫

Ω
V(x)vε(x)δi

=
∫

Ω
K(x)

( N

∑
j=1

αjδj + vε

)p−ε
δi. (80)

First, using Lemma 6.6 of [19] and Appendix B of [28], we obtain

−
∫

Ω
∆δjδi =

∫
Ω

δ
p
j δi = O

(
εij
)
= o(1) ∀j ̸= i, (81)

−
∫

Ω
∆δi · δi =

∫
Ω

δ
p+1
i = Sn + O

(
1

λn
i

)
, (82)

where
Sn = cp+1

0

∫
Rn

dx
(1 + |x|2)n . (83)

Second, since vε ∈ Ea,λ and ∂uε/∂ν = 0, we observe that

−
∫

Ω
∆vεδi =

∫
Ω
∇vε∇δi −

∫
∂Ω

∂vε

∂ν
δi =

N

∑
j=1

αj

∫
∂Ω

∂δj

∂ν
δi = O

(
n

∑
k=1

1
λn−2

k

)
= o(1), (84)

∫
Ω

V(x)δ2
i +

∫
Ω

V(x)|vε(x)|δi(x) = O

(
lnσn λi

λ
min(2,n−2)
i

+ ∥vε∥
(∫

δ
2n

n+2
i

) n+2
2n
)

= o(1) (85)

where σn = 0 if n ̸= 4 and σn = 1 if n = 4.
Third, using Lemma 6.6 of [19], we get, for j ̸= i,∫

Ω
V(x)δjδi = O

(∫
Ω

δjδi

)
= O

(
εij
)
= o(1). (86)
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Next, we are going to estimate the right hand side of (80). To this end, we write

∫
Ω

K
( N

∑
j=1

αjδj + vε

)p−ε
δi =

∫
Ω

K(αiδi)
p−εδi + O

(
∑
j ̸=i

∫
Ω

(
δ

p−ε
j δi + δ

p−ε
i δj

))
+ O

( ∫
Ω

(
|vε|p−εδi + δ

p−ε
i |vε|

))
. (87)

But, using Estimate E2 of [26], we have∫
Ω

(
δ

p−ε
j δi + δjδ

p−ε
i

)
=
∫

Ω

(
(δiδj)δ

p−1−ε
j + (δiδj)δ

p−1−ε
i

)
≤
( ∫

Ω
(δiδj)

n
n−2

) n−2
n
( ∫

Ω
δ
(p−1−ε) n

2
j

) 2
n
+
∫

Ω
(δiδj)

n
n−2

) n−2
n
( ∫

Ω
δ
(p−1−ε) n

2
i

) 2
n
)

= O
(

εij(ln ε−1
ij )(n−2)/n)

)
= o(1). (88)

We also have∫
Ω

(
|vε|p−εδi + δ

p−ε
i |vε|

)
≤ c∥vε∥p−ε

( ∫
Ω

δ
2n

n−2
i

) n−2
2n

+ ∥vε∥
( ∫

Ω
δ
(p−ε) 2n

n+2
i

) n+2
2n

= o(1). (89)

Concerning the first integral in the right hand side of (87), we write∫
Ω

Kδ
p+1−ε
i = K(ai)

∫
Ω

δ
p+1−ε
i + O

( ∫
Ω
|x − ai|δ

p+1−ε
i

)
= K(ai)

∫
Rn

cp+1−ε
0 λ

n−ε(n−2)/2
i(

1 + λ2
i |x − ai|2

)n−ε(n−2)/2
+ O

( 1
λi

∫
Rn

|x|λ−ε(n−2)/2
i

(1 + |x|2)n−ε(n−2)/2

)

+ O
( ∫

Rn\Ω

λ
n−ε(n−2)/2
i(

1 + λ2
i |x − ai|2

)n−ε(n−2)/2

)
.

But, we observe that

∫
Rn

cp+1−ε
0 λ

n−ε(n−2)/2
i(

1 + λ2
i |x − ai|2

)n−ε(n−2))/2
=
∫
Rn

cp+1
0 c−ε

0 λ
−ε(n−2)/2
i

(1 + |x|2)n−ε(n−2)/2
= λ

−ε(n−2)/2
i (Sn + O(ε)),

∫
Rn

|x|λ−ε(n−2)/2
i

(1 + |x|2)n−ε(n−2)/2
≤ c

∫
Rn

|x|λ−ε(n−2)/2
i

(1 + |x|2)n = O
(

λ
−ε(n−2)/2
i

)
,

∫
Rn\Ω

λ
n−ε(n−2)/2
i(

1 + λ2
i |x − ai|2

)n−ε(n−2)/2
= O

( 1

λ
n−ε(n−2)/2
i

)
= o(1).

The above estimates imply that

α
p−ε
i

∫
Ω

Kδ
p+1−ε
i = α

p−ε
i K(ai)λ

− ε(n−2)
2

i (Sn + O(ε)) + o(1). (90)

Combining estimates (80)–(90) and using the fact that α
p−1
i K(ai) = 1+ o(1), we obtain

Sn + o(1) = λ
−ε(n−2)/2
i (Sn + o(1))

which implies that λ
−ε(n−2)/2
i = 1 + o(1). The proof of the Lemma is thereby complete.



Symmetry 2024, 16, 291 20 of 28

Next, we consider (uε) a sequence of solutions to (Pε) which have the form (2) and
satisfy (3), (4), and (6). We know that uε can be written in the form (10) where αi, λi, ai,
and vε satisfy (11). Using Lemma 2, we see that (α, λ, a, vε) ∈ O(N, µ0). Since uε is a
solution to (Pε), we see that (24) is satisfied with vε. Thus, through its uniqueness, we
obtain vε = v̄ε, where v̄ε is defined in Proposition 2. Therefore vε satisfies Estimate (25). We
start by proving Theorem 1 in the case of a single interior blow-up point, that is N = 1. In
this case estimate (25) becomes

∥vε∥ ≤ c
(

ε +
|∇K(a)|

λ

)
+ c

{
λ−min(2,(n−2)/2) if n ̸= 6,
λ−2 ln2/3 λ if n = 6.

(91)

Combining (91) and Proposition 7, we obtain

αp−1−ελ−ε
(n−2)

2 K(a) = 1 + O(ε) +

{
λ−2 ln λ if n = 4,
λ−2 if n ≥ 5

(92)

− d4V(a)
ln λ

λ2 + αp−1−ελ−ε
(n−2)

2 c̄1 ε K(a) = O
(

ε2 +
1

λ2

)
(for n = 4) (93)(

− dnV(a) + αp−1−ελ−ε
(n−2)

2 c̄2∆K(a)
) 1

λ2 + αp−1−ελ−ε
(n−2)

2 c̄1ε K(a)

= O
(

ε2 +
|∇K(a)|2

λ2 +
1

λn−2 +
ln2 λ

λ4

)
(for n ≥ 5) (94)

∇K(a)
λ

= O
(

ε2 +
(ln λ)σn

λ3 +
1

λmin(4,n−2)

)
(for n ≥ 4). (95)

Putting (92) and (95) in (93) and (94), we obtain

− d4V(a)
ln λ

λ2 + c̄1 ε = O
(

ε2 +
1

λ2

)
(for n = 4), (96)(

− dnV(a) + c̄2
∆K(a)
K(a)

) 1
λ2 + c̄1ε = O

(
ε2 +

1
λn−2 +

ln2 λ

λ4

)
(for n ≥ 5). (97)

Using (96) and (97), we obtain{
ε ≤ cλ−2 ln λ if n = 4,
ε ≤ cλ−2 if n ≥ 5.

(98)

Putting (98) in (95), we derive that{
|∇K(a)| ≤ cλ−1 if n = 4,
|∇K(a)| ≤ cλ−2 if n ≥ 5.

This implies that the concentration point a converges to a critical point y of K. Using
this information, we see that (96) and (97) show that (8) and (9) are satisfied. This completes
the proof of Theorem 1 in the case of N = 1.

Next, we are going to prove Theorem 1 in the case of multiple interior blow-up points;
that is, N ≥ 2. Without loss of generality, we can assume that

λ1 ≤ λ2 ≤ · · · ≤ λN .

First, using the estimate of ∥vε∥ given by Proposition 2 and the fact that uε is a solution
to (Pε), the Claims of Proposition 7 become
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(Eαi ) α
p−1−ε
i λ

−ε
(n−2)

2
i K(ai) = 1 + O

(
ε + ∑

j ̸=i
εij + ∑

k

lnσn λk

λ2
k

)
(Eλi ) αi

(
− dnV(ai)(ln λi)

σn + c̄2
∆K(ai)

K(ai)

) 1
λ2

i
+ αi c̄1ε − c1 ∑

k ̸=i
αkλi

∂εik
∂λi

= o
(

ε + ∑
k ̸=r

εkr + ∑
k

(ln λk)
σn

λ2
k

)
+ O

(
∑
k

|∇K(ak)|2

λ2
k

)
(Eai )

∣∣∣∇K(ai)

λi

∣∣∣ ≤ c
(

ε2 + ∑
k ̸=r

εkr +
(ln λi)

σn

λ3
i

+ ∑
k

1
λn−2

k

+ ∑
k

|∇K(ak)|2

λ2
k

+ ∑
k

ln2 λk

λ4
k

)
,

where d4 = meas(S3)c2
0, dn is defined in Theorem 1 for n ≥ 5 and where we have used

(Eαi ) in (Eλi ) and (Eai ).
Summing (Eai ), we obtain

N

∑
i=1

∣∣∣∇K(ai)

λi

∣∣∣ ≤ c
(

ε2 + ∑
k ̸=r

εkr + ∑
i

(ln λi)
σn

λ3
i

+ ∑
i

1
λn−2

i

)
. (99)

Putting (99) in (Eλi ), we obtain

−α2
i d4V(ai)

ln λi

λ2
i

+ α2
i c̄1ε − c1 ∑

k ̸=i
αiαkλi

∂εik
∂λi

= o
(

ε + ∑
k ̸=r

εkr + ∑
k

ln λk

λ2
k

)
if n = 4, (100)

(
c̄2

∆K(ai)

K(ai)
− dnV(ai)

) α2
i

λ2
i
+ α2

i c̄1ε − c1 ∑
k ̸=i

αiαkλi
∂εik
∂λi

= o
(

ε + ∑
k ̸=r

εkr + ∑
k

1
λ2

k

)
if n ≥ 5. (101)

Now, for the sake of clarity, we will split the rest of the proof into three claims.

Claim 1. For n ≥ 4, we have
ε + ∑

k ̸=r
εkr ≤

c
λ2

1
(ln λ1)

σn .

To prove Claim 1, we first notice that

−λk
∂εik
∂λk

≥ c εik and − λi
∂εik
∂λi

− 2λk
∂εik
∂λk

≥ c εik for λk ≥ λi. (102)

Thus, multiplying (100) and (101) by 2i and summing over i ∈ {1, · · · , N}, we obtain

O
( (ln λ1)

σn

λ2
1

)
+ c̄1ε ∑

i
α2

i 2i − c1 ∑
i

∑
k ̸=i

αiαk2iλi
∂εik
∂λi

= o
(

ε + ∑
k ̸=r

εkr +
(ln λ1)σn

λ2
1

)
. (103)

Clearly, the combination of (102) and (103) completes the proof of Claim 1.
To proceed further, we introduce the following set

D = {1, · · · , N} \ {j ≤ N :
λ1

λj
→ 0}. (104)

Then, our second claim reads:
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Claim 2. For each j ∈ D, there exists ij such that the concentration point aj converges to a critical
point yij of K. In addition, we have

λj|aj − yij | ≤ c lnσn λj and ij ̸= ik ∀ j, k ∈ D with j ̸= k.

To prove Claim 2, letting j ∈ D, we put Claim 1 and estimate (99) in (Eaj). This leads to

|∇K(aj)|
λj

≤ c
(ln λ1)

σn

λ2
1

≤ c
(ln λj)

σn

λ2
j

, (105)

which implies that |∇K(aj)| tends to 0. Hence, there exists ij such that the concentration point
aj converges to a critical point yij of K. Furthermore, since yij is assumed to be non-degenerate,
Estimate (105) implies that

λj|aj − yij | ≤ λj|∇K(aj)| ≤ c (ln λj)
σn .

To complete the proof of Claim 2, arguing by contradiction, we assume that j, k ∈ D exist with
j ̸= k satisfying yij = yik . Since j, k ∈ D, we obtain

λjλk|aj − ak|2 ≤ c (lnσn λ1)
2.

This implies that

ε jk ≥
(

c + c(lnσn λ1)
2
)(2−n)/n

≥ c(lnσn λ1)
2−n >>

lnσn λ1

λ2
1

which gives a contradiction to Claim 1. The proof of Claim 2 is thereby complete.

Next, we state and prove the third claim.

Claim 3. The set D is equal to {1, · · · , N}, that is, all the rate λ′
js of the concentration are of the

same order.

To prove Claim 3, arguing by contradiction, we assume that D ̸= {1, · · · , N}. Let
j = maxD. Multiplying (Eλi ) by 2iαi and summing over i ≥ j + 1, we obtain

O
( (ln λj + 1)σn

λj + 12

)
+ c̄1ε ∑

i≥j+1
α2

i 2i − c1 ∑
i≥j+1

∑
l ̸=i

αiαl2
iλi

∂εil
∂λi

= o
(

ε + ∑
k ̸=r

εkr +
(ln λ1)

σn

λ2
1

)
.

Thus, using (102) and Claim 1, we obtain

∑
i≥j+1

∑
l ̸=i

εil + ε = o
( (ln λ1)

σn

λ2
1

)
. (106)

Now, using (106) and Claim 2, we obtainε1k = o
(
(ln λ1)

σn

λ2
1

)
if k ≥ j + 1,

ε1k ≤ c
(λ1λk |a1−ak |2)(n−2)/2 ≤ c

λn−2
1

= o
(
(ln λ1)

σn

λ2
1

)
if k ≤ j.

(107)

Writing (Eλ1) and using (107), Claim 1 and (106), we obtain, for n = 4,

−d4V(a1)α1
ln λ1

λ2
1

= o
( ln λ1

λ2
1

)
,
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which gives a contradiction. Therefore our claim follows for n = 4. In the same way for
n ≥ 5, using (106) and (107), (101), with i = 1, implies that

α1

(
− dnV(a1) + c̄2

∆K(a1)

K(a1)

) 1
λ2

1
= o

( 1
λ2

1

)
. (108)

In addition, using Claim 2, the concentration point a1 converges to a critical point yi1
of K. Thus estimate (108) becomes(

− dnV(yi1) + c̄2
∆K(yi1)

K(yi1)

)
= o(1)

which gives a contradiction. This implies that our claim also follows for n ≥ 5.
To complete the proof of Theorem 1, it remains to be shown that Estimate (9) holds.

Combining Claims 2 and 3, we see that

εij ≤
c

(λiλj)(n−2)/2
= o

( lnσn λ1

λ2
1

)
∀ i ̸= j.

Thus, for n = 4, using (100), for each i, we obtain

−d4V(yki
)

ln λi

λ2
i

+ c̄1 ε = o
( ln λi

λ2
i

)
which implies estimate (9) for n = 4.

For n ≥ 5, using again (101), we obtain

(
− dnV(yki

) + c̄2
∆K(yki

)

K(yki
)

) 1
λ2

i
+ c̄1 ε = o

( 1
λ2

i

)
which implies estimate (9) for n ≥ 5. This completes the proof of Theorem 1.

5. Construction of Interior Bubbling Solutions

The goal of this section is to prove Theorem 2; that is, we are going to construct
solutions to (Pε) which blow up at N interior point(s) as ε goes to zero, with N ≥ 1. As the
proof of the theorem is simpler in the case of one concentration interior point, we will focus
on the case of multiple interior blow-up points. The proof of the theorem for one blow-up
point is easily deduced from our proof by eliminating the terms which involve more than
one point. We will follow [20] (see also [29]). Let y1, · · · , yN be non-degenerate critical
points of K satisfying (8) if n ≥ 5. Inspired by Theorem 1, we introduce the following set
which depends on the kind of the blow-up points we want to obtain.

M(N, ε) = {(α, λ, a, v) ∈ (R+)
N × (R+)

N × ΩN × H1(Ω) : |α
4

n−2
i K(ai)− 1| < c ε ln2 ε,

1
c
<

λ2
i ε

lnσn λi
< c, |ai − yi| < c ε1/5 ∀1 ≤ i ≤ N, v ∈ Ea,λ and ∥v∥ < c

√
ε}, (109)

where c is a positive constant, Ea,λ is defined by (12), σn = 0 if n ≥ 5 and σn = 1 if n = 4.
Notice that such a condition imposed on the parameter λi in M(N, ε) implies that

1
λi

= O( f (ε)) with f (ε) =

{√
ε if n ≥ 5,√
ε/| ln ε| if n = 4.

(110)

We also introduce the following function

gε : M(N, ε) → R, (α, λ, a, v) 7→ gε(α, λ, a, v) = Iε

( N

∑
i=1

αiδai ,λi + v
)

.
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Since the variable v ∈ Ea,λ, the Euler–Lagrange multiplier theorem implies that the
following proposition holds.

Proposition 8. (α, λ, a, v) ∈ M(N, ε) is a critical point of gε if, and only if, u = ∑N
i=1 αiδi + v is

a critical point of Iε; that is, if, and only if, ts (A, B, C) ∈ RN ×RN × (Rn)N exists such that the
following system holds

∂gε

∂αi
(α, λ, a, v) = 0 ∀i ∈ {1, ..., N}, (111)

∂gε

∂λi
(α, λ, a, v) = Bi

∫
Ω
∇vλi

∂2δi

∂λ2
i
+

n

∑
j=1

Cij

∫
Ω
∇v

1
λi

∂2δi

∂λi∂aj
i

∀i ∈ {1, ..., N}, (112)

∂gε

∂ai
(α, λ, a, v) = Bi

∫
Ω
∇vλi

∂2δi
∂λi∂ai

+
n

∑
j=1

Cij

∫
Ω
∇v

1
λi

∂2δi

∂aj
i∂ai

∀i ∈ {1, ..., N}, (113)

∂gε

∂v
(α, λ, a, v) =

N

∑
k=1

(
Ak

∂φk
∂v

+ Bk
∂ψk
∂v

+
n

∑
j=1

Ckj
∂ξkj

∂v

)
, (114)

where

φk(α, λ, a, v) =
∫

Ω
∇v∇δk, ψk(α, λ, a, v) = λk

∫
Ω
∇v∇ ∂δk

∂λk
,

ξkj(α, λ, a, v) =
1

λk

∫
Ω
∇v∇ ∂δk

∂aj
k

.

The proof of Theorem 2 will be carried out through a careful analysis of the previous
system on M(N, ε). Observe that vε, defined in Proposition 2, satisfies equation (114).
In the sequel, we will write vε instead of vε. Taking (α, λ, a, 0) ∈ M(N, ε), we see that
uε = ∑N

i=1 αiδi + vε is a critical point of Iε if and only if (α, λ, a) satisfies the following
system for each 1 ≤ i ≤ N

(Eαi )
〈

I′ε(u), δi
〉
= 0 (115)(

Eλi

) 〈
I′ε(u), αi

∂δi
∂λi

〉
= Bi

∫
Ω
∇vλi

∂2δi

∂λ2
i
+

n

∑
j=1

Cij

∫
Ω
∇v

1
λi

∂2δi

∂λi∂aj
i

(116)

(Eai )

〈
I′ε(u), αi

∂δi
∂ai

〉
= Bi

∫
Ω
∇vλi

∂2δi
∂λi∂ai

+
n

∑
j=1

Cij

∫
Ω
∇v

1
λi

∂2δi

∂aj
i∂ai

. (117)

Notice that, since (α, λ, a, 0) ∈ M(N, ε), we have

|ai − aj| ≥ c > 0 and εij =

{
O(ε(n−2)/2) if n ≥ 5,
ε/| ln ε| if n = 4.

The following result is a direct consequence of Proposition 7.

Lemma 3. For a small ε, the following statements hold:

∥vε∥ ≤ c

{
ε7/10 if n ≥ 5,√

ε/| ln ε| if n = 4,
R1i =≤ c

{
ε if n ≥ 5,
ε/| ln ε| if n = 4,

,

R2i; R3i ≤ c

{
ε7/5 if n ≥ 5,
ε/| ln ε| if n = 4,

where R1i, R2i, and R3i are defined in Propositions 7.
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Next, our aim is to estimate the numbers A′
is, B′

is, and C′
ijs which appear in

Equations (115)–(117).

Lemma 4. Let (α, λ, a, 0) ∈ M(N, ε). Then, for a small ε, the following estimates hold:

Ai = O(ε ln2 ε), Bi = O(ε) and Cij = O(ϕ(ε)) ∀ 1 ≤ i ≤ N, ∀ 1 ≤ j ≤ n,

where

ϕ(ε) =

{
ε7/10 if n ≥ 5,
ε7/10/

√
| ln ε| if n = 4.

Proof. Applying ∂gε

∂v (see (114)) to the functions δi, λi
∂δi
∂λi

and 1
λi

∂δi

∂aj
i

, we obtain the following

quasi-diagonal system

cAi + O
(
( f (ε))n−2

( N

∑
k=1

(|Ak|+ |Bk|+
n

∑
j=1

|Ckj|)
))

=
〈∂gε

∂v
, δi

〉
,

c′Bi + O
(
( f (ε))n−2

( N

∑
k=1

(|Ak|+ |Bk|+
n

∑
j=1

|Ckj|)
))

=
〈∂gε

∂v
, λi

∂δi
∂λi

〉
,

c′′Cil + O
(
( f (ε))n−2

( N

∑
k=1

(|Ak|+ |Bk|+
n

∑
j=1

|Ckj|)
))

=
〈∂gε

∂v
,

1
λi

∂δi

∂al
i

〉
,

where

c =
∫
Rn

|∇δi|2, c′ =
∫
Rn

∣∣∣∣λi∇
∂δi
∂λi

∣∣∣∣2 and c′′ =
∫
Rn

∣∣∣∣∣ 1
λi
∇ ∂δi

∂aj
i

∣∣∣∣∣
2

. (118)

Combining Proposition 7, Lemma 3 and the fact that (α, λ, a, 0) ∈ M(N, ε), we derive
that for all i ∈ {1, · · · , N} we have〈

∂gε

∂v
, δi

〉
= O(ε ln2 ε),

〈
∂gε

∂v
, λi

∂δi
∂λi

〉
= O(ε) and

〈
∂gε

∂v
,

1
λi

∂δi
∂ai

〉
= O(ϕ(ε)).

Thus, we obtain

M(A, B, C)T = (O(ε ln2 ε), O(ε), O(ϕ(ε))T ,

where M is the matrix defined by mij = O(( f (ε))n−2) ∀ i ̸= j and

mii =


c + O(( f (ε))n−2) for 1 ≤ i ≤ N
c′ + O(( f (ε))n−2) for N + 1 ≤ i ≤ 2N
c′′ + O(( f (ε))n−2) for 2N + 1 ≤ i ≤ N(n + 2),

where c, c′, and c′′ are defined in (118).
Hence Lemma 4 follows.

Next, we are going to study equations (Eαi ), (Eλi ), (Eai ). To obtain an easy system to
solve, we perform the following change of variables

βi = 1 − α
p−1
i K(ai),

lnσn λi

λ2
i

=
c1

χ(yi)
ε(1 + ∧i), zi = ai − yi 1 ≤ i ≤ N, (119)

where

χ(yi) =

{
d4 V(yi) if n = 4,

−c2
∆K(yi)
K(yi)

+ dn V(yi) if n ≥ 5.
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Using this change of variables, we rewrite our system in the following simple form:

Lemma 5. For ε small, the system (115)–(117) is equivalent to the following system

(S)


βi = O(ε| ln ε|) ∀ 1 ≤ i ≤ N
∧i = O(ε2/5 + |zi|2) ∀ 1 ≤ i ≤ N

D2K(yi)(zi, .) = O
(

ε9/10 + |zi|2
)

∀ 1 ≤ i ≤ N.
(for n ≥ 5),

(S)


βi = O(ε| ln ε|) ∀ 1 ≤ i ≤ N
∧i = O(1/| ln ε|+ |zi|2) ∀ 1 ≤ i ≤ N

D2K(yi)(zi, .) = O
(√

ε/| ln ε|+ |zi|2
)

∀ 1 ≤ i ≤ N.
(for n = 4).

Proof. Using the fact that

α
p−1−ε
i = α

p−1
i + O(ε) and λ

−ε n−2
2

i = 1 + O(ε ln λi),

we see that equation (115) is equivalent to

(E′
αi
) βi = O(ε| ln ε|) ∀1 ≤ i ≤ N.

For the second equation (116), we start by the case where n ≥ 5. Using Proposition 7
and Lemmas 3 and 4, we obtain

c1 ε −
(
− c2

∆K(ai)

K(ai)
+ dn V(ai)

) 1
λ2

i
= O

(
ε7/5

)
.

Writing
V(ai) = K(yi) + O(|zi|);

∆K(ai)

K(ai)
=

∆K(yi)

K(yi)
+ O(|zi|),

we obtain
∧i = O(ε2/5 + |zi|). (120)

Now, Using again Proposition 7 and Lemmas 3 and 4, we obtain

∇K(ai) = O(λiε
7/5) = O(ε9/10)

which implies the third equation in the system (S). Using the fact that yi is a non-degenerate
critical point of K, we deduce that

|zi| ≤ c
(

ε9/10 + |zi|2
)

.

Putting the last inequality in (120), we obtain the second equation in the system (S)
which completes the proof of the lemma for n ≥ 5. In the same way, we prove the lemma
in the case where n = 4.

To complete the proof of Theorem 2, we rewrite the system (S) in the following form
βi = U1,i(ε, β,∧, z) ∀ 1 ≤ i ≤ N
∧i = U2,i(ε, β,∧, z) ∀ 1 ≤ i ≤ N
D2K(yi)(zi, .) = U3,i(ε, β,∧, z) ∀ 1 ≤ i ≤ N,

and we define the following linear map

L : RN ×RN × (Rn)N → RN ×RN × (Rn)N

(β,∧, z) 7→ (β,∧, D2K(y1)(z1, .), · · · , D2K(yN)(zN , .)),
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where β = (β1, · · · , βN), ∧ = (∧1, · · · ,∧N) and z = (z1, · · · , zN).
We see that L is invertible. Thus, applying Brouwer’s fixed point theorem, we deduce

that the system (S) has at least one solution (βε,∧ε, zε) for a small ε (for more details,
see [20]). As in [20], we prove that the constructed function uε = ∑N

i=1 αiδi + vε is positive.
Lastly, as a straightforward consequence of this construction, we see that (Pε) admits at
least 2m − 1 solutions provided that ε is small, where m is defined in Theorem 1. This
completes the proof of Theorem 2.

6. Conclusions

By using a careful asymptotic analysis of the gradient of the associated Euler–Lagrange
functional in the neighborhood of the so-called bubbles, we were able to give a complete
description of the interior blow-up picture of solutions of (Pε) that weakly converge to zero.
We also constructed interior multi-peak solutions which lead to a multiplicity result for the
problem. Notice that, when the number of concentration points is bigger than or equal to
two, a non-degeneracy assumption for the critical points of K was needed to prove that the
concentration points are uniformly separated. However, some questions remain open:

(i) What happens if a degenerate critical point of K exists, particularly when K satisfies
some flatness assumption?

(ii) Do solutions exist which involve some interior concentration points which converge
to the boundary?
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