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Abstract: Salt-and-pepper noise (SPN) is a common type of image noise that appears as randomly
distributed white and black pixels in an image. It is also known as impulse noise or random noise.
This paper aims to introduce a new weighted average based on the Atangana–Baleanu fractional
integral operator, which is a well-known idea in fractional calculus. Our proposed method also
incorporates the concept of symmetry in the window mask structures, resulting in efficient and
easily implementable filters for real-time applications. The distinguishing point of these techniques
compared to similar methods is that we employ a novel idea for calculating the mean of regular
pixels rather than the existing used mean formula along with the median. An iterative procedure has
also been provided to integrate the power of removing high-density noise. Moreover, we will explore
the different approaches to image denoising and their effectiveness in removing noise from images.
The symmetrical structure of this tool will help in the ease and efficiency of these techniques. The
outputs are compared in terms of peak signal-to-noise ratio, the mean-square error and structural
similarity values. It was found that our proposed methodologies outperform some well-known
compared methods. Moreover, they boast several advantages over alternative denoising techniques,
including computational efficiency, the ability to eliminate noise while preserving image features,
and real-time applicability.

Keywords: salt-and-pepper noise; noise removal; different adaptive mean filters; fractional means

1. Introduction

Symmetry is a fundamental concept in mathematics that pertains to the behavior
of functions when subjected to specific transformations or operations. If a functional
equation exhibits symmetry, applying any element from the group will result in a valid
solution to the problem. This property can be advantageous in problem solving because
finding one solution enables us to derive several other solutions by repeatedly applying
the same transformation or operation. Recent decades have seen the widespread use of
symmetry in mathematical describing of important practical problems such as adaptive
control [1,2], machine learning [3], pattern recognition [4], finding analytical solutions
for partial differential equations [5], signal advancement [6], passivity control [7], time
series analysis [8], telecommunication network [9], 3D imaging [10], nonlinear system
identification [11], stochastic processes [12], optical fiber acoustic [13], UAV-based multiple
oblique image flows [14], mathematical modeling, and prediction in infectious disease
epidemiology [15,16]. For see more applications, please see [17–23].

Image processing involves various processes such as image denoising [24], image
mosaic [25], image stitching [26], edge detecting [27], medical image registration [28],
endoscopic imaging technology [29], depth estimation [30,31], feature extraction [32,33],
classifying underwater images [34], image matching [35], and image inpainting [36]. It
is generally acknowledged that symmetry is also a reliable tool in image processing for
various purposes such as image compression, object recognition, shape detection, and
image restoration. In image compression, the symmetric properties of images are utilized
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to reduce storage or transmission requirements. By exploiting symmetrical patterns, only a
fraction of the original image data needs to be stored while the rest can be reconstructed
using mirroring or other techniques. In addition, in object recognition and shape detection,
the identification and analysis of symmetric patterns and shapes in images are essential
for the accurate classification and detection of objects. For example, symmetry-based
algorithms can detect deviations from expected symmetric patterns, which can help in
identifying potential defects or abnormalities in an image. Symmetry can also be employed
to improve the visual quality of images by removing distortions or artifacts. Symmetric
image processing methods can help in restoring distorted images to their original forms by
performing operations such as bilinear interpolation or mirror image reflections.

There have been notable advancements in the development of image-denoising al-
gorithms in recent years. Noise in an image can stem from various factors, with poor
lighting conditions being a frequent culprit that results in low contrast and a lack of detail.
Camera settings, including high ISO values or long exposure times, can also cause noise
and lead to grainy or blurry images. Furthermore, noise may be introduced during image
transmission or storage. Image denoising has been a topic of interest in the field of image
processing for many years [37]. With the increasing use of digital images in various fields,
the need for high-quality images has become more important than ever before. However,
images captured in real-world scenarios are often affected by noise, which can reduce
the quality of the image and make it difficult to extract useful information [38]. In [39], a
median-based filter was designed to remove SPN from digital images. The authors of [40]
proposed an improved image-denoising algorithm based on the TV model. The concept
of local fractional entropy was applied in [41] to design an efficient fractional-based mask
in image denoising. Recently, deep learning-based methods have shown great promise
in image denoising [42,43]. These methods use neural networks to learn the underlying
structure of the noise and to remove it from the image. One popular approach is the use of
convolutional neural networks, which are effective in removing various types of noise from
images [44]. Another approach is the use of generative adversarial networks for image
denoising [45]. These techniques consist of two neural networks: a generator network
that generates fake images and a discriminator network that tries to distinguish between
real and fake images. By training these networks together, these networks can learn to
generate high-quality images that are free from noise. One of the most traditional methods
for image denoising includes filters such as median filters [46] and mean filters [47] and
using symmetric window masks in image processing. These filters can also be customized
to target specific types of noise, such as Gaussian or salt-and-pepper noise. However,
these methods have limitations when it comes to preserving important image details and
textures [48–51]. Notably, the context of symmetry is often present in image processing
filter masks used for image denoising. For example, the popular Gaussian filter mask [52]
is rotationally symmetric, meaning that it produces the same result when rotated around
its center point. This symmetry helps to ensure that the filter produces consistent results
across the image and reduces the computational complexity of the denoising operation.
Other denoising filters, such as median filters, may not have rotational symmetry but may
have reflectional symmetry, which also helps to ensure consistent results and to reduce
computational complexity.

The primary objective of this paper is to introduce and to elucidate a series of original
techniques that leverage the utilization of Atangana–Baleanu fractional operators with
noninteger orders for the purposes of mitigating salt-and-pepper noise from digital images.
Through our study, we aim to offer a comprehensive analysis of the efficacy and potential
applications of these novel techniques in the domain of image denoising. To the best of our
knowledge, the approach proposed in this study has not been previously explored in the
existing literature. Based on the findings of our experimental analysis, we contend that this
novel method holds significant promise as a viable solution for creating effective filters in
the domain of image denoising. The general structure of this article is as follows. In the
next section, we will review some basic definitions related to fractional differential calculus.
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Different structures for filters in image denoising that are used in this article are designed
in the third section of the article. Moreover, an overview of some discretizations for the
fractional integral operator of the Atangana–Baleanu type will be discussed in Section 4.
The main algorithm of the paper is presented in Section 5. Numerical simulations and
comparisons of results are given in Section 6. In conclusion, a summary of key findings and
insights gleaned from our investigation is presented in the final section of this article. These
conclusions serve to encapsulate the key takeaways from our study and offer valuable
insights for future research efforts in the field of image denoising.

2. A Summary of Some Well-Known Fractional Operators

This section includes a short overview of some basic definitions presented in fractional
calculus, which are widely used in the literature.

� The Liouville–Caputo derivative [53]:

D℘
LCH (τ) =

1
Γ(1− ℘)

∫ τ

0
(τ − φ)−℘ ˙H (φ)dφ, 0 < ℘ ≤ 1. (1)

� The Caputo–Fabrizio derivative [54]:

D℘
CFH (τ) =

(2− ℘)S (℘)

2(1− ℘)

∫ τ

0
exp
[
− ℘

(τ − φ)

1− ℘

]
˙H (φ)dφ, 0 < ℘ < 1, (2)

where S (℘) = ℘/(2− ℘).

� The Atangana–Baleanu fractional derivative in the Caputo sense [55]:

D℘
ABCH (τ) =

J (℘)

1− ℘

∫ τ

0
ML℘

[
− ℘

(τ − φ)℘

1− ℘

]
˙H (φ)dφ, 0 < ℘ ≤ 1, (3)

where ML℘(.) stands for the well-known Mittag–Leffler function given by ML℘(τ) =

∑∞
k=0

tk

Γ(℘k+1) .

� The Atangana–Baleanu fractional integral in the Caputo sense [55]:

I℘ABCH (τ) =
1− ℘

J (℘)
H (τ) +

℘

Γ(℘)J (℘)

∫ τ

0
H (φ)(τ − φ)℘−1dφ, 0 < ℘ ≤ 1,

(4)
where J (.) is a function defined by J (℘) = 1− ℘+ ℘/Γ(℘).

3. An Overview of the Atangana–Baleanu Fractional Masks

Let us assume that a given fractional integral can be approximated at a point, using
unit time-step length, in the following discrete form

I℘ H (τ) ≈ ρ0H (τ) + ρ1H (τ − 1) + ρ2H (τ℘) + ρ3H (τ − 3) + ρ4H (τ − 4) + ρ5H (τ − 5) + . . . , (5)

where ρ1, ρ2, . . . , ρ5 are the first few coefficients of the corresponding expansion of the
fractional operator. Further, this idea can be also utilized in a multivariate case such as
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xI℘ H (x, t) ≈ ρ0H (x, t) + ρ1H (x− 1, y) + ρ2H (x− 2, y) + ρ3H (x− 3, y) + ρ4H (x− 4, y) + ρ5H (x− 5, y) + . . . ,
yI℘ H (x, t) ≈ ρ0H (x, t) + ρ1H (x, t− 1) + ρ2H (x, t− 2) + ρ3H (x, t− 3) + ρ4H (x, t− 4) + ρ5H (x, t− 5) + . . . .

(6)

The obtained symmetric coefficients can be used in the design of masks in various ap-
plications of image processing. One of the possible arrangements for these masks is the
following designs using different dimensions:

• For an 3× 3 fractional integral mask, we introduce the following symmetric window mask

Ω3 = [ω3
i,j] :=

ρ1 ρ1 ρ1
ρ1 8ρ0 ρ1
ρ1 ρ1 ρ1

.

• For an 5× 5 fractional integral mask, we construct the following symmetric integral mask

Ω5 = [ω5
i,j]:=

ρ2 ρ2 ρ2 ρ2 ρ2
ρ2 ρ1 ρ1 ρ1 ρ2
ρ2 ρ1 8ρ0 ρ1 ρ2
ρ2 ρ1 ρ1 ρ1 ρ2
ρ2 ρ2 ρ2 ρ2 ρ2

.

• In addition, for an 7× 7 fractional mask, the following symmetric structure is considered

Ω7 = [ω7
i,j] :=

ρ3 ρ3 ρ3 ρ3 ρ3 ρ3 ρ3
ρ3 ρ2 ρ2 ρ2 ρ2 ρ2 ρ3
ρ3 ρ2 ρ1 ρ1 ρ1 ρ2 ρ3
ρ3 ρ2 ρ1 8ρ0 ρ1 ρ2 ρ3
ρ3 ρ2 ρ1 ρ1 ρ1 ρ2 ρ3
ρ3 ρ2 ρ2 ρ2 ρ2 ρ2 ρ3
ρ3 ρ3 ρ3 ρ3 ρ3 ρ3 ρ3

.

• For an 9× 9 fractional mask, the following symmetric windows mask is proposed

Ω9 = [ω9
i,j] :=

ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4
ρ4 ρ3 ρ3 ρ3 ρ3 ρ3 ρ3 ρ3 ρ4
ρ4 ρ3 ρ2 ρ2 ρ2 ρ2 ρ2 ρ3 ρ4
ρ4 ρ3 ρ2 ρ1 ρ1 ρ1 ρ2 ρ3 ρ4
ρ4 ρ3 ρ2 ρ1 8ρ0 ρ1 ρ2 ρ3 ρ4
ρ4 ρ3 ρ2 ρ1 ρ1 ρ1 ρ2 ρ3 ρ4
ρ4 ρ3 ρ2 ρ2 ρ2 ρ2 ρ2 ρ3 ρ4
ρ4 ρ3 ρ3 ρ3 ρ3 ρ3 ρ3 ρ3 ρ4
ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4

.

• Moreover, an 11× 11 fractional mask can be constructed similarly in a symmetric form as
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Ω11 = [ω11
i,j ] :=

ρ5 ρ5 ρ5 ρ5 ρ5 ρ5 ρ5 ρ5 ρ5 ρ5 ρ5
ρ5 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ5
ρ5 ρ4 ρ3 ρ3 ρ3 ρ3 ρ3 ρ3 ρ3 ρ4 ρ5
ρ5 ρ4 ρ3 ρ2 ρ2 ρ2 ρ2 ρ2 ρ3 ρ4 ρ5
ρ5 ρ4 ρ3 ρ2 ρ1 ρ1 ρ1 ρ2 ρ3 ρ4 ρ5
ρ5 ρ4 ρ3 ρ2 ρ1 8ρ0 ρ1 ρ2 ρ3 ρ4 ρ5
ρ5 ρ4 ρ3 ρ2 ρ1 ρ1 ρ1 ρ2 ρ3 ρ4 ρ5
ρ5 ρ4 ρ3 ρ2 ρ2 ρ2 ρ2 ρ2 ρ3 ρ4 ρ5
ρ5 ρ4 ρ3 ρ3 ρ3 ρ3 ρ3 ρ3 ρ3 ρ4 ρ5
ρ5 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ4 ρ5
ρ5 ρ5 ρ5 ρ5 ρ5 ρ5 ρ5 ρ5 ρ5 ρ5 ρ5

.

The coefficients ρ in these filters will all be determined according to the results of the next
section. In addition, the proposed higher-order fractional filters are used in the rest of the
article, especially in the case of high noise in the images.

4. Some Discretizations in Determining the Approximation of the AB
Integral Operator
4.1. Fractional Mask Based on the Grunwald–Letnikov Idea (AB1)

Definition 1. One of the most common discrete forms for derivatives of fractional order, which
have many different applications, is the Grunwald–Letnikov (GL) derivative with the following
definition [56]

Dα
GLH (τ) ≈ 1

Γ(−α)

∫ t

0

H (φ)

(τ − φ)1+α
dφ

= lim
h→0

h−α

(
H (τ) + (−α)H (τ − δ) +

α(α + 1)
2

H (τ − δ) + . . . +
Γ(α + 1)

k!Γ(α− N + 1)
H (τ − nδ)

)
,

(7)

where Γ(z) =
∫ ∞

0 exp(−ν)νz−1dφ is the well-known Gamma function, α ∈ R+ and N = [t/δ].
Using Equation (7) with ℘ = −α > 0, the corresponding integral definition of Grunwald–Letnikov
is obtained as

I℘GLH (τ) =
1

Γ(℘)

∫ t

0

H (φ)

(τ − φ)1−℘ dφ

≈ lim
h→0

h−℘
(

H (τ) + ℘H (τ − δ) +
(−℘)(−℘+ 1)

2
H (τ − δ) + . . . +

Γ(−℘+ 1)
N! Γ(−℘− N + 1)

H (τ − nδ)

)
.

(8)

Now, reconsider the definition of the AB- fractional integral defined in Equation (4), as

I℘ABH (τ) =
1− ℘

J (℘)
H (τ) +

℘

Γ(℘)J (℘)

∫ τ

0
H (φ)(τ − φ)℘−1dφ. (9)

A closer look at with Equation (8) reveals that

I℘ABH (τ) =
1− ℘

J (℘)
H (τ) +

℘

J (℘)
I℘GLH (τ). (10)

Thus, we can write

I℘ABH (τ) =
1− ℘

J (℘)
H (τ) +

℘

Γ(℘)J (℘)

∫ τ

0
H (φ)(τ − φ)℘−1dφ,

≈ 1− ℘

J (℘)
H (τ) +

℘

J (℘)
h−℘

(
H (τ) + ℘H (τ − δ) +

(−℘)(−℘+ 1)
2

H (τ − δ) + . . .
)

.
(11)

In this way, it reads
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xI℘AB−1H (x, y) ≈ 1
J (℘)

H (x, y) +
℘2

J (℘)
H (x− 1, y) +

℘3 − ℘2

2 J (℘)
H (x− 2, y) +

℘4 − 3℘3 + 2℘2

6 J (℘)
H (x− 3, y)

+
℘5 − 6℘4 + 11℘3 − 6℘2

24 J (℘)
H (x− 4, y) +

℘6 − 10℘5 + 35℘4 − 50℘3 + 24℘2

120 J (℘)
H (x− 5, y) + . . . ,

yI℘AB−1H (x, y) ≈ 1
J (℘)

H (x, y) +
℘2

J (℘)
H (x, y− 1) +

℘3 − ℘2

2 J (℘)
H (x, y− 2) +

℘4 − 3℘3 + 2℘2

6 J (℘)
H (x, y− 3)

+
℘5 − 6℘4 + 11℘3 − 6℘2

24 J (℘)
H (x, y− 4) +

℘6 − 10℘5 + 35℘4 − 50℘3 + 24℘2

120 J (℘)
H (x, y− 5) + . . . .

(12)

Hence, the coefficients of the Atangana–Baleanu fractional integral expansion are determined as
follows

ρ0 =
1

J (℘)
,

ρ1 =
℘2

J (℘)
,

ρ2 =
℘3 − ℘2

2 J (℘)
,

ρ3 =
℘4 − 3℘3 + 2℘2

6 J (℘)
,

ρ4 =
℘5 − 6℘4 + 11℘3 − 6℘2

24 J (℘)
,

ρ5 =
℘6 − 10℘5 + 35℘4 − 50℘3 + 24℘2

120 J (℘)
.

(13)

� Using coefficients in Equation (13), the so-called fractional AB1 masks of different sizes
including Ω1, Ω2, Ω3, Ω4 can be characterized.

4.2. Fractional Mask Based on the Toufik–Atangana Idea (AB2)

The following iterative scheme in determining the approximation of the AB integral
operator is suggested as follows [57]

I℘ABH (τn) =
1− ℘

J (℘)
H (τn) +

℘

B(℘)

n

∑
s=0

(
h℘H (τs)

Γ(℘+ 2)

(
(n + 1− s)℘ × (n− s + 2 + ℘)− (n− s)℘(n− s + 2 + 2℘)

)
− h℘H (τs−1)

Γ(℘+ 2)

(
(n + 1− s)℘+1 − (n− s)℘(n− s + 1 + ℘)

))
.

(14)

Hence, Equation (14) can be rewritten as

I℘ABH (τn) =

[
(1− ℘)Γ(℘+ 2) + ℘ h℘(℘+ 2)

J (℘)Γ(℘+ 2)

]
H (τn) +

[
℘ h℘

J (℘)

(
−2℘+ (℘+ 3)2℘ − 4

Γ(℘+ 2)

)]
H (τn−1)+[(

−2℘+1℘+ (℘+ 4)3℘ + ℘− 6× 2℘ + 2
)

J (℘)Γ(℘+ 2)

]
H (τn−2) + . . . .

(15)

Thus, we have the following forms
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xI℘AB−2H (x, y) ≈
[
(1− ℘)Γ(℘+ 2) + ℘ (℘+ 2)

J (℘)Γ(℘+ 2)

]
H (x, y) +

[(
℘2 + 3℘

)
2℘ − 2℘2 − 4℘

J (℘)Γ(℘+ 2)

]
H (x− 1, y)

+

[(
℘2 + 4℘

)
3℘ +

(
−2℘2 − 6℘

)
2℘ + ℘2 + 2℘

J (℘)Γ(℘+ 2)

]
H (x− 2, y)

+

[(
℘2 + 5℘

)
4℘ +

(
−2℘2 − 8℘

)
3℘ +

(
℘2 + 3℘

)
2℘

J (℘)Γ(℘+ 2)

]
H (x− 3, y)

+

[(
℘2 + 6℘

)
5℘ +

(
−2℘2 − 10℘

)
4℘ +

(
℘2 + 4℘

)
3℘

J (℘)Γ(℘+ 2)

]
H (x− 4, y)

+

[(
℘2 + 7℘

)
6℘ +

(
−2℘2 − 12℘

)
5℘ +

(
℘2 + 5℘

)
4℘

J (℘)Γ(℘+ 2)

]
H (x− 5, y) + . . . ,

yI℘AB−2H (x, y) ≈
[
(1− ℘)Γ(℘+ 2) + ℘ (℘+ 2)

J (℘)Γ(℘+ 2)

]
H (x, y) +

[(
℘2 + 3℘

)
2℘ − 2℘2 − 4℘

J (℘)Γ(℘+ 2)

]
H (x, y− 1)

+

[(
℘2 + 4℘

)
3℘ +

(
−2℘2 − 6℘

)
2℘ + ℘2 + 2℘

J (℘)Γ(℘+ 2)

]
H (x, y− 2)

+

[(
℘2 + 5℘

)
4℘ +

(
−2℘2 − 8℘

)
3℘ +

(
℘2 + 3℘

)
2℘

J (℘)Γ(℘+ 2)

]
H (x, y− 3)

+

[(
℘2 + 6℘

)
5℘ +

(
−2℘2 − 10℘

)
4℘ +

(
℘2 + 4℘

)
3℘

J (℘)Γ(℘+ 2)

]
H (x, y− 4)

+

[(
℘2 + 7℘

)
6℘ +

(
−2℘2 − 12℘

)
5℘ +

(
℘2 + 5℘

)
4℘

J (℘)Γ(℘+ 2)

]
H (x, y− 5) + . . . .

(16)

Therefore, the coefficients used in the so-called AB2 masks of different sizes will be
determined as follows

ρ0 =
(1− ℘)Γ(℘+ 2) + ℘ (℘+ 2)

J (℘)Γ(℘+ 2)
,

ρ1 =

(
℘2 + 3℘

)
2℘ − 2℘2 − 4℘

J (℘)Γ(℘+ 2)
,

ρ2 =

(
℘2 + 4℘

)
3℘ +

(
−2℘2 − 6℘

)
2℘ + ℘2 + 2℘

J (℘)Γ(℘+ 2)
,

ρ3 =

(
℘2 + 5℘

)
4℘ +

(
−2℘2 − 8℘

)
3℘ +

(
℘2 + 3℘

)
2℘

J (℘)Γ(℘+ 2)
,

ρ4 =

(
℘2 + 6℘

)
5℘ +

(
−2℘2 − 10℘

)
4℘ +

(
℘2 + 4℘

)
3℘

J (℘)Γ(℘+ 2)
,

ρ5 =

(
℘2 + 7℘

)
6℘ +

(
−2℘2 − 12℘

)
5℘ +

(
℘2 + 5℘

)
4℘

J (℘)Γ(℘+ 2)
.

(17)

4.3. Fractional Mask Based on Euler’s Method Idea (AB3)

Another possible approximation for the AB- fractional integral is derived from Euler’s
method in the form of an iterative scheme as [58]

I℘ABH (τn) =
1− ℘

J (℘)
H (τn) +

℘h℘

J (℘)Γ(℘+ 1)

n−1

∑
s=0

θn,sH (τs), (18)
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where
θn,s = (n− s)℘ − (n− s− 1)℘. (19)

Equation (18) can be reformulated in the following equivalent manner

I℘ABH (τn) =

[
1− ℘

J (℘)

]
H (τn) +

[
℘

J (℘)Γ(℘+ 1)

]
H (τn−1) +

[
2℘ − 1

J (℘)Γ(℘+ 1)

]
H (τn−2) + . . . . (20)

Thus, it reads
xI℘AB3H (x, y) ≈

[
1− ℘

J (℘)

]
H (x, y) +

[
℘

J (℘)Γ(℘+ 1)

]
H (x− 1, y) +

[
2℘ − 1

J (℘)Γ(℘+ 1)

]
H (x− 2, y)

+

[
3℘ − 2℘

J (℘)Γ(℘+ 1)

]
H (x− 3, y) +

[
4℘ − 3℘

J (℘)Γ(℘+ 1)

]
H (x− 4, y) +

[
5℘ − 4℘

J (℘)Γ(℘+ 1)

]
H (x− 5, y) + . . . ,

yI℘AB3H (x, y) ≈
[

1− ℘

J (℘)

]
H (x, y) +

[
℘

J (℘)Γ(℘+ 1)

]
H (x, y− 1) +

[
4℘ − 3℘

J (℘)Γ(℘+ 1)

]
H (x, y− 2)

+

[
3℘ − 2℘

J (℘)Γ(℘+ 1)

]
H (x, y− 3) +

[
2℘ − 1

J (℘)Γ(℘+ 1)

]
H (x, y− 4) +

[
5℘ − 4℘

J (℘)Γ(℘+ 1)

]
H (x, y− 5) + . . . .

(21)

Therefore, the coefficients used in the so-called AB3 masks of different sizes will be
determined as follows

ρ0 =
1− ℘

J (℘)
,

ρ1 =
℘

J (℘)Γ(℘+ 1)
,

ρ2 =
2℘ − 1

J (℘)Γ(℘+ 1)
,

ρ3 =
3℘ − 2℘

J (℘)Γ(℘+ 1)
,

ρ4 =
4℘ − 3℘

J (℘)Γ(℘+ 1)
,

ρ5 =
5℘ − 4℘

J (℘)Γ(℘+ 1)
.

(22)

4.4. Fractional Mask Based on the Middle Point Idea (AB4)

Let us reconsider the definition of the AB- fractional integral defined in Equation (4), as

I℘ABH (t) =
1− ℘

J (℘)
H (τ) +

℘

Γ(℘)J (℘)

∫ τ

0

H (φ)

(τ − φ)1−℘ dφ. (23)

Taking φ = τ − φ into account in the integral Equation (23) yields

I℘ABH (t) =
1− ℘

J (℘)
H (τ) +

℘

Γ(℘)J (℘)

∫ τ

0

H (τ − φ)

φ1−℘ dφ. (24)

Now, by dividing the integral given in Equation (24), we will have

I℘ABH (t) =
1− ℘

J (℘)
H (τ) +

℘

Γ(℘)J (℘)

n−1

∑
k=0

∫ τk+1

tk

H (τ − φ)

φ1−℘ dφ. (25)

Then, applying an approximation formula gives∫ τk+1

tk

H (φ)

H(φ)
dφ ≈ H (tk) +H (τk+1)

2

∫ τk+1

tk

dφ

H(φ)
, (26)
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in Equation (25), one obtains

I℘ABH (t) =
1− ℘

J (℘)
H (τ) +

℘

Γ(℘)J (℘)

n−1

∑
k=0

H (τ − tk) +H (τ − τk+1)

2

∫ τk+1

tk

dφ

φ1−℘ ,

=
1− ℘

J (℘)
H (τ) +

℘

Γ(℘)J (℘)

n−1

∑
k=0

H (τ − tk) +H (τ − τk+1)

2℘

[
τ℘

k+1 − τ℘
k

]
.

(27)

Thus, we have

I℘ABH (τn) =
1− ℘

J (℘)
H (τn) +

℘

Γ(℘)J (℘)

n−1

∑
k=0

H (τn − tk) +H (τn − τk+1)

2℘
[
((k + 1)h)℘ − (kh)℘

]
,

=
1− ℘

J (℘)
H (τn) +

1
Γ(℘)J (℘)

n−1

∑
k=0

H (τn−k) +H (τn−k+1)

2
[
((k + 1)h)℘ − (kh)℘

]
.

(28)

Upon consolidating the aforementioned findings, we can assert that [59]

I℘ABH (τn) =

[
2Γ(℘)− 2℘Γ(℘) + 1

2 J (℘)Γ(℘)

]
H (τn) +

[
℘ 3℘ − ℘

2 J (℘)Γ(℘)

]
H (τn−1) +

[
℘4℘ − ℘2℘

2 J (℘)Γ(℘)

]
H (τn−2) + . . . . (29)

The equivalent form for Equation (29) in the x and y directions will be as follows

xI℘AB4H (x, y) ≈
[

2Γ(℘)− 2℘Γ(℘) + 1
2 J (℘)Γ(℘)

]
H (x, y) +

[
℘ 3℘ − ℘

2 J (℘)Γ(℘)

]
H (x− 1, y) +

[
℘4℘ − ℘2℘

2 J (℘)Γ(℘)

]
H (x− 2, y)

+

[
℘ 5℘ − ℘ 3℘

2 J (℘)Γ(℘)

]
H (x− 3, y) +

[
℘ 6℘ − ℘ 4℘

2 J (℘)Γ(℘)

]
H (x− 4, y) +

[
℘ 7℘ − ℘ 5℘

2 J (℘)Γ(℘)

]
H (x− 5, y) . . . ,

yI℘AB4H (x, y) ≈
[

2Γ(℘)− 2℘Γ(℘) + 1
2 J (℘)Γ(℘)

]
H (x, y) +

[
℘ 3℘ − ℘

2 J (℘)Γ(℘)

]
H (x, y− 1) +

[
℘4℘ − ℘2℘

2 J (℘)Γ(℘)

]
H (x, y− 2)

+

[
℘ 5℘ − ℘ 3℘

2 J (℘)Γ(℘)

]
H (x, y− 3) +

[
℘ 6℘ − ℘ 4℘

2 J (℘)Γ(℘)

]
H (x, y− 4) +

[
℘ 7℘ − ℘ 5℘

2 J (℘)Γ(℘)

]
H (x, y− 5) . . . .

(30)

Therefore, the coefficients used in the so-called AB4 masks of different sizes will be deter-
mined as follows

ρ0 =
2Γ(℘)− 2℘Γ(℘) + 1

2 J (℘)Γ(℘)
,

ρ1 =
℘ 3℘ − ℘

2 J (℘)Γ(℘)
,

ρ2 =
℘ 4℘ − ℘ 2℘

2 J (℘)Γ(℘)
,

ρ3 =
℘ 5℘ − ℘ 3℘

2 J (℘)Γ(℘)
,

ρ4 =
℘ 6℘ − ℘ 4℘

2 J (℘)Γ(℘)
,

ρ5 =
℘ 7℘ − ℘ 5℘

2 J (℘)Γ(℘)
.

(31)

5. The Main Algorithm of the Paper

The main algorithm of the article is presented in this section. First, we assume that
C :=

[
cij
]

m×n is a matrix whose values are non-negative integers and are less than or equal
to 255. This matrix is called an image matrix.

Definition 2. If C :=
[
cij
]

m×n is an image matrix, we call the entries with values of 0 or 255 as
noise pixels and the other entries as regular pixels of the image.
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Definition 3. If the entries of an image matrix include noise components, then the matrix is called
a noise image.

Definition 4. If C is the matrix corresponding to an image, then the binary matrix of C is defined
as E :=

[
bij
]

m×n, where

cij =

{
0, aij ∈ {0, 255},
1, cij /∈ {0, 255}.

Definition 5. Let C :=
[
cij
]

m×n and 1 ≤ p ≤ min{m, n}. Then, the p symmetric padding
matrix of C is a matrix of (m + 2p)× (n + 2p) size that is defined in the following manner

C̃p =



cpp · · · cp1 cp1 cp2 · · · cpn cpn · · · cp(n−p+1)
...

. . .
...

...
...

. . .
...

...
. . .

...
c1p · · · c11 c11 c12 · · · c1n c1n · · · c1(n−p+1)
c1p · · · c11 c11 c12 · · · c1n c1n · · · c1(n−p+1)
c2p · · · c21 c21 c22 · · · c2n c2n · · · c2(n−p+1)
c3p · · · c31 c31 c32 · · · c3n c3n · · · c3(n−p+1)

...
. . .

...
...

...
. . .

...
...

. . .
...

cmp · · · cm1 cm1 cm2 · · · cmn cmn · · · cm(n−p+1)
cmp · · · cm1 cm1 cm2 · · · cmn cmn · · · cm(n−p+1)

...
. . .

...
...

...
. . .

...
...

. . .
...

c(m−p+1)p · · · c(m−p+1)1 c(m−p+1)1 c(m−p+1)2 · · · c(m−p+1)n c(m−p+1)n · · · c(m−p+1)(n−p+1)



. (32)

Example 1. For C =

 63 5 255
0 255 173

84 23 0

, we have C̃2 =


255 0 0 255 173 173 255
5 63 63 5 255 255 5
5 63 63 5 255 255 5

255 0 0 255 173 173 255
23 84 84 23 0 0 23
23 84 84 23 0 0 23
255 0 0 255 173 173 255

.

Definition 6. Let C :=
[
cij
]

m×n and 1 ≤ r ≤ p. Then, r-approximate matrix of cij in C̃p is
denoted by Cr

ij and is as follows:

Cr
ij =

[
cr

ij

]
(2r+1)×(2r+1)

=


c̃(i+p−r)(j+p−r) . . . c̃(i+p−r)(j+p+r)

... c̃(i+p)(j+p)
...

c̃(i+p+r)(j+p−r) . . . c̃(i+p+r)(j+p+r)

.
(33)

Example 2. Under the assumptions of Example 1, we have

C1
13 =

 0 255 173
63 5 255
63 5 255

. (34)

Definition 7. Let us define the matrix C̄r
ij :=

[
c̄r

ij

]
(2r+1)×(2r+1)

from Cr
ij as

c̄r
ij =

{
0, cr

ij ∈ {0, 255},
cr

ij, cr
ij /∈ {0, 255}.

(35)

In other words, this matrix consists of all regular entries of Cr
ij, and zero elsewhere.
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Example 3. Under the assumptions of Example 2, we have

C̄1
13 =

 0 0 173
63 5 0
63 5 0

.

Definition 8. Let C =
[
cij
]
(2r+1)×(2r+1) for r = 1, 2, . . . , 5 . Then, the Atangana–Baleanu mean

of C is defined as follows

ABm(C) :=
∑(i,j)∈Λ ci,jω

2r+1
i,j

∑(i,j)∈Λ ω2r+1
i,j

, (36)

where Λ =
{
(i, j)|ci∗ j∗ /∈ {0, 255}

}
, and Ω2r+1’s for r = 1, 2, . . . , 5 are filters introduced in the

Section 3.

Definition 9. Let C = [cij]m×n and D = [dij]m×n be two given matrices. The l1-distance of them
is calculated as

||C− D||1 :=
m

∑
i=1

n

∑
j=1

∣∣cij − dij
∣∣.

Considering the above symbols and definitions, the main denoising algorithm in this paper
(Algorithm 1) is presented as follows

Algorithm 1 The algorithm of the Atangana–Baleanu iterative adaptive mean filter.
Input: Obtain C as a noisy image C = [cij]m×n
Output: Obtain D as a denoised image D = [dij]m×n

Step 1. Obtain a noisy image matrix C :=
[
cij

]
m×n

where min{m, n} ≥ 5.

Step 2. Change the format of matrix C from uint8 to double if needed.
Repeat
Step 3. Set D:=C.
Step 4. For p from 5 to 1

Construct the binary matrix E :=
[
eij

]
m×n

of C.

Construct C̄p and Ēp.
For i = 1 : m

For j = 1 : n
If eij = 0

For r from 1 to p
If Er

ij 6= [0]
Construct Cr

ij.
Construct C̄r

ij.

cij ← ABm
(

C̄r
ij

)
Break

End If
End For

End If
End For

End For
Until ||C− D||1 ≤ ε.
Step 5. D is the denoised image matrix.
Step 6. Change the format of matrix D from double to uint8.

The flowchart of the algorithm is also presented in Figure 1.

Remark 1. The main difference between the proposed algorithm in this paper and the one in [60] is
that instead of the Cesáro mean in STEP 3, we used the Atangana–Baleanu fractional mean.
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Figure 1. Flowchart of the algorithm.

6. Discussion

The quality of images resulting from different algorithms is measured using various
criteria. One of these criteria is the calculation of the peak signal-to-noise ratio (PSNR),
which can be measured by the following formula

PSNR = 10 log10
255× 255

MSE
, (37)

where

MSE =
1

m× n

n

∑
j=1

m

∑
i=1

[I∗(i, j)− I(i, j)]2. (38)

PSNR measures the difference between the original image and the denoised image
in terms of their peak signal power and noise power. Higher PSNR values indicate better
image quality. Moreover, MSE measures the average squared difference between the
original and denoised images. Lower MSE values indicate better image quality.

The next known index that can be used to measure the similarity of two images is the
structural similarity index measurement, which can be calculated with the following formula

SSIM(I1, I2) =
(2µ1µ2 + c1)(2℘12 + c2)(

µ2
1 + µ2

2 + c1
)(
℘2

1 + ℘2
2 + c2

) . (39)

SSIM compares the structural information of the original and denoised images. It measures
the similarity in terms of luminance, contrast, and structure. Higher SSIM values indicate
better image quality.

We compare the results of our proposed methods AB1-AB4 in terms of PNSR and
SSIM with those of TSF, NAFSM, ASWMF, ACmF, NASNLM, and BPDF. Each of these
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algorithms mentioned above has been used in denoising of Elaine, peppers, and goldhill
images contaminated with salt-and-pepper noise with intensities of 10, 30, 50, 70, and
90 percent as shown in Figures 2–16. As is evident, salt-and-pepper noise can significantly
degrade the visual quality of an image and make it difficult to extract useful information
from the image. Further, this kind of noise can occur in any part of an image, but it tends to
be more prevalent in areas of low contrast or in regions with sharp edges.

Clean image Image with 10% SPN TSF, PSNR=40.3554 NAFSM, PSNR=40.3398

ASWMF, PSNR=38.4017 ACmF, PSNR=40.2155 NASNLM, PSNR=27.6125 BPDF, PSNR=38.8168

AB1, PSNR=40.5983 AB2, PSNR=40.5983 AB3, PSNR=40.5963 AB4, PSNR=40.5985

Figure 2. Comparison of the performance of different methods for salt-and-pepper noise ratio of 10%
for Elaine.

Clean image Image with 30% SPN TSF, PSNR=34.9954 NAFSM, PSNR=34.9894

ASWMF, PSNR=33.2803 ACmF, PSNR=35.0387 NASNLM, PSNR=23.7422 BPDF, PSNR=32.7013

AB1, PSNR=35.4142 AB2, PSNR=35.4137 AB3, PSNR=35.415 AB4, PSNR=35.4137

Figure 3. Comparison of the performance of different methods for salt-and-pepper noise ratio of 30%
for Elaine.
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Clean image Image with 50% SPN TSF, PSNR=32.1448 NAFSM, PSNR=32.082

ASWMF, PSNR=30.3694 ACmF, PSNR=32.2537 NASNLM, PSNR=23.6122 BPDF, PSNR=28.4286

AB1, PSNR=32.5749 AB2, PSNR=32.5746 AB3, PSNR=32.5751 AB4, PSNR=32.5745

Figure 4. Comparison of the performance of different methods for salt-and-pepper noise ratio of 50%
for Elaine.

Clean image Image with 70% SPN TSF, PSNR=29.6548 NAFSM, PSNR=29.4038

ASWMF, PSNR=27.3074 ACmF, PSNR=29.7173 NASNLM, PSNR=26.7181 BPDF, PSNR=23.0017

AB1, PSNR=29.8719 AB2, PSNR=29.8723 AB3, PSNR=29.8729 AB4, PSNR=29.8717

Figure 5. Comparison of the performance of different methods for salt-and-pepper noise ratio of 70%
for Elaine.
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Clean image Image with 90% SPN TSF, PSNR=26.7715 NAFSM, PSNR=23.9331

ASWMF, PSNR=21.9659 ACmF, PSNR=26.6661 NASNLM, PSNR=26.9492 BPDF, PSNR=10.6198

AB1, PSNR=26.7254 AB2, PSNR=26.7259 AB3, PSNR=26.7256 AB4, PSNR=26.7257

Figure 6. Comparison of the performance of different methods for salt-and-pepper noise ratio of 90%
for Elaine.

Clean image Image with 10% SPN TSF, PSNR=41.0874 NAFSM, PSNR=41.0027

ASWMF, PSNR=35.8212 ACmF, PSNR=40.1269 NASNLM, PSNR=30.4417 BPDF, PSNR=37.8962

AB1, PSNR=40.1372 AB2, PSNR=40.1384 AB3, PSNR=40.1366 AB4, PSNR=40.1377

Figure 7. Comparison of the performance of different methods for salt-and-pepper noise ratio of 10%
for peppers.
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Clean image Image with 30% SPN TSF, PSNR=34.4331 NAFSM, PSNR=34.4029

ASWMF, PSNR=30.6655 ACmF, PSNR=34.5025 NASNLM, PSNR=26.9355 BPDF, PSNR=30.7299

AB1, PSNR=34.6293 AB2, PSNR=34.6289 AB3, PSNR=34.6293 AB4, PSNR=34.6303

Figure 8. Comparison of the performance of different methods for salt-and-pepper noise ratio of 30%
for peppers.

Clean image Image with 50% SPN TSF, PSNR=30.893 NAFSM, PSNR=30.8728

ASWMF, PSNR=27.6334 ACmF, PSNR=31.176 NASNLM, PSNR=26.3486 BPDF, PSNR=26.1228

AB1, PSNR=31.3605 AB2, PSNR=31.3602 AB3, PSNR=31.3606 AB4, PSNR=31.3618

Figure 9. Comparison of the performance of different methods for salt-and-pepper noise ratio of 50%
for peppers.
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Clean image Image with 70% SPN TSF, PSNR=27.9287 NAFSM, PSNR=27.694

ASWMF, PSNR=24.6764 ACmF, PSNR=28.1813 NASNLM, PSNR=27.3844 BPDF, PSNR=20.5842

AB1, PSNR=28.2808 AB2, PSNR=28.2809 AB3, PSNR=28.2809 AB4, PSNR=28.2807

Figure 10. Comparison of the performance of different methods for salt-and-pepper noise ratio of
70% for peppers.

Clean image Image with 90% SPN TSF, PSNR=24.1905 NAFSM, PSNR=21.9562

ASWMF, PSNR=19.3629 ACmF, PSNR=24.2876 NASNLM, PSNR=24.3422 BPDF, PSNR=8.246

AB1, PSNR=24.3422 AB2, PSNR=24.3422 AB3, PSNR=24.3422 AB4, PSNR=24.342

Figure 11. Comparison of the performance of different methods for salt-and-pepper noise ratio of
90% for peppers.
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Clean image Image with 10% SPN TSF, PSNR=39.3379 NAFSM, PSNR=39.3203

ASWMF, PSNR=35.8613 ACmF, PSNR=39.5025 NASNLM, PSNR=29.0343 BPDF, PSNR=37.2209

AB1, PSNR=39.2001 AB2, PSNR=39.1991 AB3, PSNR=39.1996 AB4, PSNR=39.1999

Figure 12. Comparison of the performance of different methods for salt-and-pepper noise ratio of 10%.

Clean image Image with 30% SPN TSF, PSNR=33.5658 NAFSM, PSNR=33.5586

ASWMF, PSNR=30.8151 ACmF, PSNR=34.0914 NASNLM, PSNR=24.627 BPDF, PSNR=31.0598

AB1, PSNR=33.9917 AB2, PSNR=33.9901 AB3, PSNR=33.9901 AB4, PSNR=33.9895

Figure 13. Comparison of the performance of different methods for salt-and-pepper noise ratio of 30%.
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Clean image Image with 50% SPN TSF, PSNR=30.482 NAFSM, PSNR=30.4638

ASWMF, PSNR=28.2053 ACmF, PSNR=30.9998 NASNLM, PSNR=23.9509 BPDF, PSNR=27.0647

AB1, PSNR=31.0614 AB2, PSNR=31.0601 AB3, PSNR=31.0611 AB4, PSNR=31.0605

Figure 14. Comparison of the performance of different methods for salt-and-pepper noise ratio of 50%.

Clean image Image with 70% SPN TSF, PSNR=27.9736 NAFSM, PSNR=27.7778

ASWMF, PSNR=25.8119 ACmF, PSNR=28.2421 NASNLM, PSNR=26.1094 BPDF, PSNR=22.5588

AB1, PSNR=28.317 AB2, PSNR=28.3179 AB3, PSNR=28.3179 AB4, PSNR=28.318

Figure 15. Comparison of the performance of different methods for salt-and-pepper noise ratio of 70%.
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Clean image Image with 90% SPN TSF, PSNR=24.6706 NAFSM, PSNR=22.7394

ASWMF, PSNR=21.6501 ACmF, PSNR=24.6238 NASNLM, PSNR=25.0839 BPDF, PSNR=13.2094

AB1, PSNR=24.6712 AB2, PSNR=24.6707 AB3, PSNR=24.6708 AB4, PSNR=24.6709

Figure 16. Comparison of the performance of different methods for salt-and-pepper noise ratio of 90%.

Further, in Tables 1–6, the amount of MSE index obtained from different algorithms in
the Elaine, peppers, and goldhill images are reported. The results obtained in these tables
confirm that the algorithms proposed in this article have a very impressive performance and
have obtained the best results among other methods in most tests. The value considered for
the fractional order parameter ℘ was considered equal to 0.95 in all our proposed methods
while performing the experiments.

Our approach seems to be useful in applications where image quality is critical, such
as medical imaging or surveillance. In medical imaging, for example, noise reduction in
images is crucial for accurate diagnosis and treatment planning. Our method’s ability to
preserve important image details while removing noise makes it an excellent candidate for
these types of applications.

Table 1. Comparisons of MSE obtained by different masks for Elaine.

Noise Noisy TSF NAFSM ASWMF ACmF NASNLM BPDF AB1 AB2 AB3 AB4

10% 1847 5.499 5.520 8.874 5.760 101.134 7.715 5.302 5.302 5.301 5.303
30% 5521 18.480 18.506 27.718 18.409 251.650 30.209 16.946 16.946 16.948 16.948
50% 9235 36.470 36.897 55.834 35.772 261.184 88.470 33.260 33.260 33.260 33.256
70% 12,867 64.135 67.713 112.755 63.441 123.526 292.682 61.302 61.298 61.305 61.298
90% 16,595 126.05 231.62 380.34 129.49 109.80 5203.18 127.87 127.87 127.87 127.88

Table 2. Comparisons of SSIM obtained by different masks for Elaine.

Noise Noisy TSF NAFSM ASWMF ACmF NASNLM BPDF AB1 AB2 AB3 AB4

10% 0.171 0.975 0.975 0.972 0.974 7 0.806 0.969 0.976 0.976 0.976 0.976
30% 0.047 0.919 0.919 0.912 0.918 0.726 0.899 0.924 0.924 0.924 0.9248
50% 0.022 0.848 0.848 0.837 0.847 0.684 0.804 0.857 0.857 0.857 0.857
70% 0.011 0.757 0.753 0.735 0.756 0.699 0.641 0.763 0.763 0.763 0.763
90% 0.005 0.640 0.580 0.558 0.630 0.692 0.243 0.632 0.632 0.632 0.632
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Table 3. Comparisons of MSE obtained by different masks for peppers.

Noise Noisy TSF NAFSM ASWMF ACmF NASNLM BPDF AB1 AB2 AB3 AB4

10% 1999 4.522 4.610 14.335 5.518 47.783 9.694 5.518 5.516 5.519 5.519
30% 6011 17.312 17.442 45.082 17.942 106.736 42.410 17.328 17.329 17.325 17.325
50% 10,102 43.700 43.642 89.646 40.793 121.435 124.066 39.049 39.052 39.046 39.053
70% 14,039 87.155 90.318 179.179 82.002 95.531 433.330 80.039 80.039 80.038 80.036
90% 18,066 201.78 327.27 605.09 200.25 190.14 8084.16 197.85 197.85 197.84 197.84

Table 4. Comparisons of SSIM obtained by different masks for peppers.

Noise Noisy TSF NAFSM ASWMF ACmF NASNLM BPDF AB1 AB2 AB3 AB4

10% 0.173 0.987 0.986 0.977 0.987 0.882 0.981 0.987 0.987 0.987 0.987
30% 0.058 0.942 0.941 0.899 0.945 0.831 0.909 0.945 0.945 0.945 0.945
50% 0.028 0.886 0.886 0.816 0.893 0.772 0.806 0.895 0.895 0.895 0.895
70% 0.012 0.856 0.852 0.764 0.858 0.827 0.687 0.861 0.861 0.861 0.861
90% 0.005 0.751 0.682 0.572 0.746 0.784 0.190 0.748 0.748 0.748 0.748

Table 5. Comparisons of MSE obtained by different masks for goldhill.

Noise Noisy TSF NAFSM ASWMF ACmF NASNLM BPDF AB1 AB2 AB3 AB4

10% 1865 6.176 6.206 14.002 5.953 68.955 10.217 6.391 6.389 6.391 6.390
30% 5711 24.211 24.248 45.786 21.818 190.735 42.992 22.209 22.213 22.209 22.211
50% 9421 48.769 48.918 83.942 43.474 221.964 107.896 42.887 42.887 42.890 42.895
70% 13,222 88.111 91.346 145.301 82.937 135.603 301.688 81.513 81.507 81.515 81.507
90% 17,026 187.60 310.07 377.12 190.02 182.89 2695.97 188.13 188.13 188.14 188.12

Table 6. Comparisons of SSIM obtained by different masks for goldhill.

Noise Noisy TSF NAFSM ASWMF ACmF NASNLM BPDF AB1 AB2 AB3 AB4

10% 0.207 0.984 0.983 0.969 0.984 0.895 0.976 0.984 0.984 0.984 0.984
30% 0.028 0.886 0.886 0.816 0.893 0.772 0.806 0.895 0.895 0.895 0.895
50% 0.014 0.806 0.802 0.702 0.812 0.727 0.619 0.814 0.814 0.814 0.814
70% 0.014 0.806 0.802 0.702 0.812 0.727 0.619 0.814 0.814 0.814 0.814
90% 0.006 0.652 0.599 0.508 0.648 0.658 0.313 0.651 0.651 0.651 0.651

7. Conclusions

Removing noise from digital images while preserving important details is a difficult
task, as the noise can be complex, and its effect on individual pixels can be unpredictable.
In this paper, we propose a novel method for denoising digital images that contain salt-
and-pepper noise. This type of noise appears as randomly distributed white and black
pixels in an image. This paper presents a set of algorithms that are effective in removing
salt-and-pepper noise from images with high efficiency. This type of noise is a type of
image noise that appears as randomly distributed white and black pixels in an image, and it
affects individual pixels in an image, causing them to have either the highest intensity value
(white pixel) or the lowest intensity value (black pixel). The basic idea of these methods is to
introduce a new weighted average based on a well-known idea in fractional calculus, called
the Atangana–Baleanu fractional integral operator. Moreover, the concept of symmetry
is clearly used in the proposed window mask structures in this paper. Furthermore, our
proposed method has been extensively tested on various datasets to assess its effectiveness
in denoising images. We compared our method with other state-of-the-art denoising
techniques and found that it outperformed them in terms of the peak signal-to-noise ratio
(PSNR) metric and visually as well. Our proposed methods are advantageous over other
methods in image denoising because they are computationally efficient and can be easily
implemented. Moreover, they remove noise from an image while preserving its important
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features. Another significant advantage of our proposed method is that it can be easily
implemented, which is essential for real-time applications. This feature makes it practical
for use in video processing, where images are captured in rapid succession, and quick
processing times are necessary to avoid delays. In conclusion, our proposed approach to
image denoising is a significant step forward in the field of digital image processing. It
offers several advantages over existing techniques, including its ability to remove salt-and-
pepper noise while preserving important image features, computational efficiency, and
ease of implementation. Overall, we believe that our method will have a significant impact
on various applications that require high-quality image processing.
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