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Abstract: In this paper, we focus on the research and analysis of the geometric properties and
symmetry of slant curves and contact magnetic curves in Lorentzian α-Sasakian 3-manifolds. To do
this, we define the notion of Lorentzian cross product. From the perspectives of the Legendre and
non-geodesic curves, we found the ratio relationship between the curvature and torsion of the slant
curve and contact magnetic curve in the Lorentzian α-Sasakian 3-manifolds. Moreover, we utilized
the property of the contact magnetic curve to characterize the manifold as Lorentzian α-Sasakian and
to find the slant curve type of the Frenet contact magnetic curve. Furthermore, we found an example
to verify the geometric properties of the slant curve and contact magnetic curve in the Lorentzian
α-Sasakian 3-manifolds.
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1. Introduction

Sasakian manifolds are a natural generalization of Kähler manifolds to odd-dimensional
manifolds. For (α, β) trans-Sasakian structures, if β = 0, that manifold will become an
α-Sasakian manifolds. Sasakian manifolds appear as examples of α-Sasakian manifolds
with α = 1 and β = 0 in [1]. In 2005, Yildiz and Murathan introduced the notions of
Lorentzian α-Sasakian manifolds [2]. Subsequently, many researchers started to study a
class of Lorentzian α-Sasakian manifolds [3], Ricci solitons [4], Gauss–Bonnet theorem [5],
and η-Ricci solitons [6] in Lorentzian α-Sasakian manifolds. Over the last few years, an
increasing number of scholars have had an increasing interest in the geometric properties
and symmetry of contact magnetic curves and slant curves. The notion of using slant
curves as a generalization of Legendre curves was introduced in [7]. Abdul and Rajendra
introduced slant null curves in [8]. Moreover, Inoguchi studied slant curves in normal
almost contact metric 3-manifolds and magnetic curves in quasi-Sasakian 3-manifolds
in [9,10]. Furthermore, Lee studied slant curves with CR structures in contact Lorentzian
manifolds [11] and supported the usefulness of contact magnetic curves and slant curves
in Lorentzian Sasakian 3-manifolds [12].

One motivation for this paper was our observation in [12]. That is, in Lorentzian
Sasakian 3-manifolds, the ratio relationship between κc and τc − 1 along a non-geodesic
Frenet slant curve has been proven to be constant . In this paper, we try to derive the ratio
relationship between curvature and torsion along a non-geodesic Frenet slant curve and
along a non-geodesic Frenet contact magnetic curve in Lorentzian α-Sasakian 3-manifolds.
Moreover, we try to find the type of slant curve of non-geodesic Frennet contact magnetic
curve. To do this, we first define the notion of Lorentzian cross product on almost contact
Lorentzian manifolds and derive the six properties of this Lorentzian cross product. Then,
we prove that the ratio relationship between κc and τc − α along a non-geodesic Frenet slant
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curve is constant, and the ratio relationship between κc and τc + α along a non-geodesic
Frenet contact magnetic curve is also constant, by using the method of Lorentzian cross
product in Lorentzian α-Sasakian 3-manifolds. We find that the non-geodesic contact
magnetic curve C is a slant pseudo-helix. For future research directions, we hope to do
some related work on singularity theory and symmetry (see [13–20]).

The paper is organized in the following way: In Section 2, we recall some sufficient
and necessary concepts that are the basis for our research, including some notations of slant
curves, magnetic curves and trans-Sasakian structure of (α, β). In Section 3, we introduce
the concept of Lorentzian α-Sasakian manifolds. Then, similar to the cross product in
three-dimensional almost contact metric manifolds, we define the notion of Lorentzian
cross on almost contact Lorentzian 3-manifolds. Along a non-geodesic Frenet slant curve
in Lorentzian α-Sasakian 3-manifolds, by using the methods of Lorentzian cross product,
we can prove that the ratio relationship between the κc and τc − α is constant . For a
null curve, the triad of the vector field {C′, ξα, φαC′} is not used as the basis and there
does not exist a non-geodesic null slant curve C in Lorentzian α-Sasakian 3-manifolds. In
Section 4, we utilize the property of contact mangnetic curves to characterize the manifold
as Lorentzian α-Sasakian. At the same time, we prove that the slant curve type of the
non-geodesic Frennet contact magnetic curve is a pseudo-helix and prove that the ratio
relationship between the κc and τc + α is constant along a non-geodesic Frenet contact
magnetic curve in Lorentzian α-Sasakian 3-manifolds. In Section 5, we first give a three-
dimensional manifold M = {(x, y, z) ∈ R3: z > 0} and verify that this manifold is a
Lorentzian α-Sasakian 3-manifold, where the Reeb vector field ξα is F3 and the contact form
is ηα = 1

α dz. Moreover, we prove that the Frenet slant curve C is geodesic and that there
does not exist a non-geodesic Frenet slant in Lorentzian α-Sasakian 3-manifolds. Finally,
we take a special curve γ(s) = bs + c and derive the expression of contact magnetic curves
in Lorentzian α-Sasakian 3-manifolds.

2. Preliminaries

A magnetic curve refers to the path followed by a charged particle moving under the
influence of both a magnetic and electric field. A closed 2-form magnetic field F [21] on a
semi-Riemannian manifold (M, g) satisfies

F(Xα, Yα) = g(Φα(Xα), Yα), (1)

where Xα, Yα ∈ TM and Φα is a skew-symmetric (1, 1)-type tensor field, which represents
the Lorentz force associated with F. The magnetic trajectories of F are curve C on M that
satisfies the Lorentz equation

∇L
C′C
′ = Φα(C′), (2)

where ∇L is the Levi–Civita connection associated with g. The geodesic of M naturally
satisfies the Lorentz equation, that is ∇L

C′C
′ = 0. The skew-symmetry of the Lorentz force

Φα gives rise to the property of magnetic curves C

d
dt

g(C′, C′) = 2g(Φα(C′), C′) = 0.

In other words, C has a constant speed curve |C′| = v0. Particularly, if C is parameterized
by the arc-length, the magnetic curve C is called a normal curve.

For a contact Lorentzian manifold, if (M×R, J, G) belongs to the class W4 [22], a trans-
Sasakian structure [23] is an almost contact metric structure (φα, ξα, ηα, g) on M, where J is
an almost complex structure on M×R [1,24–26], defined by

J(Xα, f
d
dt
) = (φαXα − f ξα, ηα(Xα)

d
dt
),

where Xα ∈ TM, f is a smooth function on M×R, and G is the product metric on M×R.
If the almost complex structure J is integrable, then the contact Lorentzian manifold M is
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either normal or Sasakian. The satisfaction of certain conditions is necessary and sufficient
for M to be considered normal. It is known that a contact Lorentzian manifold M is normal
if and only if M satisfies

Nφα(Xα, Yα) + 2dηα(Xα, Yα)ξα = 0, ∀Xα, Yα ∈ TM,

where Nφα is the Nijenhuis torsion of φα. This may be expressed by the condition

(∇L
Xα

φα)Yα = α(g(Xα, Yα)ξα − ηα(Yα)Xα) + β(g(φαXα, Yα)ξα − ηα(Yα)φαXα), (3)

where α and β are smooth functions on M, and we say that the trans-Sasakian structure
[27,28] is type (α, β). For (3), it follows that

∇L
Xα

ξα = −αφαXα + β(Xα − ηα(Xα)ξα), (4)

(∇L
Xα

ηα)Yα = −αg(φαXα, Yα) + βg(φαXα, φαYα). (5)

Definition 1 ([29]). A trans-Sasakian structure of (α, β) is α-Sasakian if β = 0 and α is a non-zero
constant.

In this case, α becomes a constant. If α = 1, then the α-Sasakian manifold is a Sasakian
manifold.

3. Slant Curves of the Lorentzian α-Sasakian 3-Manifolds

The concept of slant curves, which extends the idea of Legendre curves, was presented
in [7] for contact Riemannian 3-manifolds. Such as in the case of these manifolds, a curve is
considered to be slant on a contact Lorentzian manifold if its tangent vector field maintains
a constant angle with the Reeb vector field (i.e., g(C′, ξα) = constant). In particular, if
g(C′, ξα) = 0, then C is a Legendre curve where the contact angle is π

2 . On the other hand,
the Reeb flow corresponds to a curve of contact angle 0.

3.1. Lorentzian α-Sasakian Manifold

A Lorentzian α-Sasakian manifold [2] is a connected (2n+1)-dimensional differentiable
manifold equipped with a metric g, contact form ηα, 1-form φα, and vector field ξα satisfying
certain conditions:

φα
2 = I + ηα ⊗ ξα, ηα(ξα) = −1, (6)

g(φαXα, φαYα) = g(Xα, Yα) + ηα(Xα)ηα(Yα), (7)

g(Xα, ξα) = ηα(Xα), (8)

ηα ◦ φα = 0, φαξα = 0. (9)

For all Xα, Yα ∈ TM.
From (4) and (5) , a Lorentzian α-Sasakian manifold M satisfies the following condi-

tions:
∇L

Xα
ξα = −αφαXα, (10)

(∇L
Xα

ηα)Yα = −αg(φαXα, Yα), (11)

where ∇L represents the covariant difference operator on the Lorentzian metric g.
When the manifold is Lorentzian α-Sasakian, by (3) and β = 0, we can obtain the

following:
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Proposition 1. If (M2n+1, φα, ξα, ηα, g) is an almost contact Lorentzian manifold, then it is α-
Sasakian if and only if

(∇L
Xα

φα)Yα = α(g(Xα, Yα)ξα − ηα(Yα)Xα). (12)

Applying the same parameters and computations as in [30], we obtain the following:

Proposition 2. Let (M2n+1, φα, ξα, ηα, g) be a Lorentzian α-Sasakian manifold. Then,

∇L
Xα

ξα = −αφαXα − αφαhXα, (13)

where h = 1
2 £ξα

φα.

If the Lorentzian metric g has a Killing vector field ξα, that is, M2n+1 is a K-contact
Lorentzian manifold, then

∇L
Xα

ξα = −αφαXα. (14)

3.2. Frenet Slant Curves

Let C : I → M3 be a unit speed curve in a Lorentzian 3-manifold with g(C′, C′) =
ε1 = ±1. The casual character of C is given by the constant ε1. Furthermore, the second and
third casual characters of C are defined as g(Nc, Nc) = ε2 and g(Bc, Bc) = ε3, respectively.
It then follows that the relation ε1ε2 = −ε3 holds.

If the casual character of a unit speed curve C is 1, it is said to be spacelike; if it is -1,
it is said to be timelike. A Frenet curve is a unit speed curve C for which g(C′′, C′′) 6= 0.
Along a Frenet curve C, there exists an orthonormal frame field {Tc = C′, Nc, Bc}. The
Frenet–Serret equations are given by:

∇L
C′Tc = ε2κcNc,
∇L

C′Nc = −ε1κcTc − ε3τcBc,
∇L

C′Bc = ε2τcNc.
(15)

where κc = |∇L
C′C
′| is the geodesic curvature and τc is the geodesic torsion of C. The vector

fields Tc, Nc, and Bc are referred to as the tangent vector field, principal vector field, and
binormal vector field of the curve C, respectively.

A Frenet curve C is a geodesic if and only if its curvature κc is zero. A Frenet curve
with constant geodesic curvature and zero geodesic torsion is a pseudo-circle. A Frenet
curve C with constant geodesic curvature and geodesic torsion is a pseudo-helix.

In a three-dimensional almost contact metric manifold, the cross product is defined as

XαΛYα = −g(Xα, φαYα)ξα − ηα(Yα)φαXα + ηα(Xα)φαYα, ∀Xα, Yα ∈ TM.

Proposition 3. Let {Tc, Nc, Bc} be an orthonormal Frame fields in a Lorentzian 3-manifold. Then,

TcΛLNc = ε3Bc, NcΛLBc = ε1Tc, BcΛLTc = ε2Nc. (16)

Therefore, in an almost contact Lorentzian 3-manifold, we define the Lorentzian cross
product as follows:

Definition 2. Let (M3, φα, ξα, ηα, g) be an almost contact Lorentzian 3-manifold. The Lorentzian
cross product ΛL is defined as

XαΛLYα = −g(Xα, φαYα)ξα − ηα(Yα)φαXα + ηα(Xα)φαYα, ∀Xα, Yα ∈ TM. (17)

The Lorentzian cross product ΛL has the following properties:
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Proposition 4. The Lorentzian cross product ΛL in an almost contact Lorentzian 3-manifold
(M3, φα, ξα, ηα, g) has the following properties for all Xα, Yα, Zα ∈ TM:
(1) The Lorentzian cross product is bilinear and anti-symmetric;
(2) XαΛLYα is perpendicular to both Xα and Yα;
(3) XαΛLφαYα = −g(Xα, Yα)ξα + ηα(Xα)Yα;
(4) φαXα = −ξαΛLXα;
(5) Define a mixed product by det(Xα, Yα, Zα) = g(XαΛLYα, Zα), we have

det(Xα, Yα, Zα) = −g(Xα, φαYα)ηα(Zα)− g(Yα, φαZα)ηα(Xα)− g(Zα, φαXα)ηα(Yα)

and
det(Xα, Yα, Zα) = det(Yα, Zα, Xα) = det(Zα, Xα, Yα);

(6) g(Xα, φαYα)Zα + g(Yα, φαZα)Xα + g(Zα, φαXα)Yα = (Xα, Yα, Zα)ξα.

Proof. (We can prove it in a similar way [31])
Property (1) and Property (2) are trivial.
For Property (3), by using (6), (8), and (17), we obtain

XαΛLφαYα = −g(Xα, φα
2Yα)ξα − ηα(φαYα)φαXα + ηα(Xα)φα

2Yα

= −g(Xα, Yα + ηα(Yα)ξα)ξα − ηα(φαYα)φαXα + ηα(Xα)(Yα + ηα(Yα)ξα)

= −g(Xα, Yα)ξα + ηα(Xα)Yα.

For Property (4), by using (6), (9), and (17), we have

−ξαΛLXα = −g(−ξα, φαXα)ξα − ηα(Xα)φα(−ξα) + ηα(−ξα)φαXα

= φαXα.

For Property (5), from (8), (17), and φα being a skew-symmetric (1, 1)-type tensor field, we
obtain

g(XαΛLYα, Zα) = g(−g(Xα, φαYα)ξα − ηα(Yα)φαXα + ηα(Xα)φαYα, Zα)

= −g(Xα, φαYα)g(ξα, Zα)− ηα(Yα)g(φαXα, Zα) + ηα(Xα)g(φαYα, Zα)

= −g(Xα, φαYα)ηα(Zα)− g(Yα, φαZα)ηα(Xα)− g(Zα, φαXα)ηα(Yα).

Moreover, one can easily verify that

det(Xα, Yα, Zα) = det(Yα, Zα, Xα) = det(Zα, Xα, Yα).

Property (6) is easily obtained from Property (5).

Proposition 5. Let (M3, φα, ξα, ηα, g) be a Lorentzian α-Sasakian 3-manifold. Then, we have

∇L
Zα
(XαΛLYα) = (∇L

Zα
Xα)ΛLYα + XαΛL(∇L

Zα
Yα), (18)

for all Xα, Yα, Zα ∈ TM.
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Proof. By ηα(Xα) = g(Xα, ξα), ηα(Yα) = g(Yα, ξα) and (17), we have

∇L
Zα
(XαΛLYα) =∇L

Zα
(−g(Xα, φαYα)ξα − ηα(Yα)φαXα + ηα(Xα)φαYα)

=− g(∇L
Zα

Xα, φαYα)ξα − g(Xα, (∇L
Zα

φα)Yα)ξα − g(Xα, φα(∇L
Zα

Yα))ξα

− g(Xα, φαYα)∇L
Zα

ξα − g(∇L
Zα

Yα, ξα)φαXα − g(Yα,∇L
Zα

ξα)φαXα

− ηα(Yα)(∇L
Zα

φα)Xα − ηα(Yα)φα(∇L
Zα

Xα) + g(∇L
Zα

Xα, ξα)φαYα

+ g(Xα,∇L
Zα

ξα)φαYα + ηα(Xα)(∇L
Zα

φα)Yα + ηα(Xα)φα(∇L
Zα

Yα)

=(∇L
Zα

Xα)ΛLYα + XαΛL(∇L
Zα

Yα) + A(Xα, Yα, Zα),

where

(∇L
Zα

Xα)ΛLYα = −g(∇L
Zα

Xα, φαYα)ξα − ηα(Yα)φα(∇L
Zα

Xα) + ηα(∇L
Zα

Xα)φαYα,

XαΛL(∇L
Zα

Yα) = −g(Xα, φα(∇L
Zα

Yα))ξα − ηα(∇L
Zα

Yα)φαXα + ηα(Xα)φα(∇L
Zα

Yα),

A(Xα, Yα, Zα) =− g(Xα, (∇L
Zα

φα)Yα)ξα − g(Xα, φαYα)∇L
Zα

ξα − g(Yα,∇L
Zα

ξα)φαXα

− ηα(Yα)(∇L
Zα

φα)Xα + g(Xα,∇L
Zα

ξα)φαYα + ηα(Xα)(∇L
Zα

φα)Yα.

As M3 is a Lorentzian α-Sasakian 3-manifold, it satisfies (12) and (14). Hence, we have

A(Xα, Yα, Zα) = α[g(Xα, φαYα)φαZα + g(Yα, φαZα)φαXα + g(Zα, φαXα)φαYα].

Using Property (6) of Proposition 4 and (9), we have A(Xα, Yα, Zα) = 0. Hence, we obtain
(18).

The Reeb vector field ξα is defined as

ξα = ε1g(ξα, Tc)Tc + ε2g(ξα, Nc)Nc + ε3g(ξα, Bc)Bc

= ε1ηα(Tc)Tc + ε2ηα(Nc)Nc + ε3ηα(Bc)Bc.
(19)

From Property (4) of Proposition 4, Proposition 3, and (19), we have the following:

Proposition 6. For a Frenet curve C in an almost contact Lorentzian α-Sasakian 3-manifold M3,
we have

φαTc = ε2ε3(ηα(Nc)Bc − ηα(Bc)Nc),

φαNc = ε1ε3(ηα(Bc)Tc − ηα(Tc)Bc),

φαBc = ε1ε2(ηα(Tc)Nc − ηα(Nc)Tc).

By using (13) and (15), we find that differentiating ηα(Tc), ηα(NC), and ηα(Bc) along a
Frenet curve C leads to the following:

ηα(Tc)
′ = ε2κcηα(Nc)− αg(Tc, φαhTc),

ηα(NC)
′ = −ε1κcηα(Tc)− ε3(τc − α)ηα(Bc)− αg(Nc, φαhTc),

ηα(Bc)
′ = ε2(τc − α)ηα(Nc)− αg(Bc, φαhTc).

When M3 is a Lorentzian α-Sasakian 3-manifold, then

ηα(Tc)
′ = ε2κcηα(Nc), (20)

ηα(Nc)
′ = −ε1κcηα(Tc)− ε3(τc − α)ηα(Bc), (21)

ηα(Bc)
′ = ε2(τc − α)ηα(Nc). (22)
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From (20), if C is a geodesic curve, i.e., κc = 0, in a Lorentzian α-Sasakian 3-manifold,
then C is naturally a slant curve. Considering a non-geodesic curve C, we have the
following:

Proposition 7. In a Lorentzian α-Sasakian 3-manifold, a non-geodesic Frenet curve C is considered
a slant curve if and only if ηα(Nc) = 0.

Proof. From (20) and C being a non-geodesic Frenet curve, we obtain κc 6= 0. On the one
hand, if C is a slant curve, we have ηα(C′) = ηα(Tc) = constant. Therefore, if ηα(Tc)′ = 0,
we obtain ηα(Nc) = 0. On the other hand, if ηα(Nc) = 0, we obtain ηα(Tc)′ = 0; therefore
ηα(Tc) = constant. Hence, the non-geodesic Frenet curve C is a slant curve.

From (20), (22), and Proposition 7, we obtain that ηα(Nc) and ηα(Bc) are constant.
Thus, by using (21), we obtain the following:

Theorem 1. The ratio relationship between the κc and τc − α along a non-geodesic Frenet slant
curve is a constant in Lorentzian α-Sasakian 3-manifold M3.

We will now consider a Legendre curve C as a spacelike curve with a spacelike normal
vector. For the Legendre curve C, ηα(C′) = ηα(Tc) = 0, ηα(Nc) = 0, and ηα(Bc) is a
constant. Hence, by (21), we have the following:

Corollary 1. The torsion of a Legendre curve is α in a Lorentzian α-Sasakian 3-manifold M3.

It can be observed that the ratio relationship between κc and τc − α along a non-
geodesic Frenet slant curve is a constant containing a Legendre curve.

3.3. Null Slant Curves

Null curves exhibit distinct properties from spacelike and timelike curves, and their
general theory is developed in [32,33]. These curves find significant applications in general
relativity.

Suppose a regular curve C is a null(lightlike) curve on M3, i.e., at each point x of C,
we have

g(C′, C′) = 0, C′ 6= 0.

The general Frenet frame along C in a Lorentzian α-Sasakian 3-manifold M3 is repre-
sented by F = {Tc = C′, Nc, Wc}, and it is determined by:

g(Tc, Nc) = g(Wc, Wc) = 1, g(Tc, Tc) = g(Nc, Nc) = g(Nc, Wc) = g(Tc, Wc) = 0. (23)

We can easily show that C is geodesic for a null Legendre curve C. Therefore, we
assume that C is non-geodesic for the following research .

The general Frenet equations with respect to the frame F and the covariant derivative
∇L on M3 are known from [8]

∇L
Tc

Tc = hTc + κcWc,

∇L
Tc

Nc = −hNc + τcWc,

∇L
Tc

Wc = −τcTc − κcNc,

(24)

where h is a smooth function, κc is the geodesic curvature of C, and τc is the torsion of C.
There is known to exist a parameter q, called the parameter of a distinguished parameter,
for which the function h vanishes in (24). The pair (C(q), F), where F is a Frenet frame
along C with respect to a distinguished parameter q, is called a frame null curve (see [33]).
Generally, (C(q), F) is not unique as it depends on the distribution of q and the screen.
Therefore, under Lorentzian transformations, we seek a Frenet frame that has the minimum
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number of curvature functions that are invariant. Such a frame is called the Cartan Frenet
frame for the null curve C of the Frenet frame. In [33], it is shown that if the null curve C(q)
is non-geodesic, such that the following condition for C′′ = d

dq C′ holds,

g(C′′, C′′) = κc = 1,

then there only exists one Cartan Frenet frame F that satisfies the following Frenet equations:

∇L
Tc

Tc = Wc,

∇L
Tc

Nc = τcWc,

∇L
Tc

Wc = −τcTc − Nc.

(25)

Lemma 1. Suppose C is a null curve on a three-dimensional almost contact Lorentzian α-Sasakian
3-manifold. It follows that the triad of vector fields {C′, ξα, φαC′} cannot be considered as a basis of
Tx M3 at x ∈ C.

Proof. From (6) and (23) at each point x of C, we find that ξα is a timelike vector field and C′

is a lightlike vector field. Hence, it is easy to verify that ξα and C′ are linearly independent
vector fields along C. If we assume φαC′ belongs to the plane H = span{ξα, C′}, in the
case of functions m and n, we have φαC′ = mξα + nC′. We also obtain C′ + ηα(C′)ξα =
mnξα + n2C′ by applying φα to both sides of this equality, which implies n2 = 1 . Thus,
{C′, ξα, φαC′} are linear vector fields along C, which confirms our assertion.

In summary, in Lorentzian α-Sasakian 3-manifolds, it is impossible for a non-geodesic
null slant curve C to exist.

4. Contact Magnetic Curves

The Reeb vector field ξα is Killing, in a Lorentzian α-Sasakian 3-manifold. Hence, the
2-form Φα is dηα, i.e., dηα(Xα, Yα) = g(Xα, φαYα), for all Xα, Yα ∈ TM.

Let C : I → M3 be a smooth curve on a contact Lorentzian manifold (M3, φα, ξα, ηα, g).
Then, we define a magnetic field on M3 by

Fξα ,q(Xα, Yα) = −qdηα(Xα, Yα), (26)

where Xα, Yα ∈ TM, q is a nonzero constant, and Fξα ,q represents the contact magnetic field
with strength q.

Using (1), (26), and dηα(Xα, Yα) = g(Xα, φαYα), we obtain Φα(Xα) = qφαXα. Hence,
from (2), the Lorentz equation is

∇L
C′C
′ = qφαC′. (27)

This is the geodesic generalized equation under the arc-length parametrization, i.e.,∇L
C′C
′ =

0. For q = 0, it can be observed that the contact magnetic field vanishes identically and the
magnetic curves on M3 are indeed geodesic. These solutions satisfying Equation (27) are
referred to as contact magnetic curves or trajectories.

In contact Lorentzain 3-manifolds, by using (13) and (27), differentiating g(ξα, C′)
along a contact magnetic curve C is

d
dt

g(ξα, C′) = g(∇L
C′ξα, C′) + g(ξα,∇L

C′C
′)

= g(−αφαC′ − αφαhC′, C′) + g(ξα, qφαC′)

= −αg(φαhC′, C′).
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Therefore, we utilize the property of contact magnetic curves to characterize the
conditions of contact magnetic curves and slant curves in Lorentzian 3-manifolds in the
following theorem.

Theorem 2. A contact magnetic curve C is a slant curve if and only if M3 is α-Sasakian in a
contact Lorentzian 3-mainfold M3.

Proof. On the one hand, if C is a slant curve, g(C′, ξα) = constant, so d
dt g(ξα, C′) = 0 and

M is α-Sasakian. On the other hand, if M is α-Sasakian, the manifold is K-contact, so h = 0
and g(C′, ξα) = constant. Hence, C is a slant curve.

Following this along a non-geodesic Frenet contact magnetic curve C, we find the
curvature κc and torsion τc, and we assume that ηα(C′) = ηα(Tc) = a, for a constant a.
Then, using (7), (15), and (27), we obtain

ε2κc
2 = q2g(φαC′, φαC′) = q2(ε1 + a2).

According to the assumptions and deductions made, it can be concluded that C has constant
curvature

κc = |q|
√

ε2(ε1 + a2), (28)

and from (15), (27), and (28), the principal normal vector field Nc is

Nc =
δε2√

ε2(ε1 + a2)
φαC′, (29)

where δ = q
|q| .

By utilizing Proposition 3, (17), and (29), the binormal Bc is calculated as

ε3Bc = TcΛLNc

= C′ΛL
( δε2√

ε2(ε1 + a2)
φαC′

)
=

δε2√
ε2(ε1 + a2)

(−ε1ξα + aC′).

Differentiating the binormal vector field Bc, we obtain

∇L
C′Bc =

δε2ε3√
ε2(ε1 + a2)

∇L
C′(−ε1ξα + aC′)

=
δε2ε3√

ε2(ε1 + a2)
∇L

C′(αε1 + aq)φαC′.
(30)

On another aspect of the binormal vector field, by (15), we obtain

∇L
C′Bc = ε2τcNc = τc

δφαC′√
ε2(ε1 + a2)

. (31)

From (30) and (31), as ε1ε2ε3 = −1, we obtain

τc = −α− ε1aq.

Furthermore, if C is a non-geodesic curve, then

τc + α

κc
= − δε1a√

ε2(ε1 + a2)
.

Therefore, we obtain the following:
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Theorem 3. Let C be a non-geodesic Frenet curve in a Lorentzian α-Sasakian 3-manifold. If C
is a contact magnetic curve and α is a constant, then it is a slant pseudo-helix with curvature
κc = |q|

√
ε2(ε1 + a2) and τc = −α− ε1aq. Moreover, the ratio of κc and τc + α is a constant

along a non-geodesic Frenet contact magnetic curve.

Assuming a Legendre curve is a spacelike curve with a spacelike normal vector field
and ηα(C′) = a = 0, we assume that C is a Legendre curve and we can conclude that:

Corollary 2. If a non-geodesic Legendre curve C is a contact magnetic curve in a Lorentzian
α-Sasakian 3-manifold, then it is a Legendre pseudo-helix with curvature κc = |q| and torsion
τc = −α.

Using Equation (28) for the geodesic curvature, if ε1 = 1, then ηα(C′) = a and
1 ≤ 1 + a2, and we have ε2 = 1. As ε1ε2ε3 = −1, we can deduce that ε3 = −1. If ε1 = −1,
then ηα(C′) = a = coshx0, as C is a geodesic for a = coshx0 = 1. Assuming C is a non-
geodesic curve, we have a2 > 0, which implies that −1 + a2 > 0, and we can deduce that
ε2 = ε3 = 1. Therefore, we obtain the following:

Theorem 4. If a non-geodesic Frenet curve C is a contact magnetic curve in a Lorentzian α-
Sasakian 3-manifold M3, then C is one of the following:
(1) a spacelike curve with a spacelike normal vector field or
(2) a timelike curve.

Moreover, we have the following content:

Corollary 3. There is no spacelike curve with a timelike normal vector field in Lorentzian α-
Sasakian 3-manifold M3 if C is a non-geodesic Frenet curve.

5. Example of Lorentzian α-Sasakian 3-Manifolds

In this section, we present an example to validate our results.

Example 1. We consider the three-dimensional manifold M = {(x, y, z) ∈ R3 : z > 0} in [6],
where (x, y, z) are the standard coordinates of R3. Let

F1 = e−z ∂

∂y
, F2 = e−z(

∂

∂x
+

∂

∂y
), F3 = α

∂

∂z
,

where these vector fields are linearly independent at each point of M, and we take the contact form
ηα = 1

α dz and the Reeb vector field of ηα is ξα = F3 = α ∂
∂z .

Let g be the Lorentzian metric

g = e2zdx2 + e2z(−dx + dy)2 − 1
α2 dz2

and

g(F1, F1) = g(F2, F2) = 1, g(F3, F3) = −1, g(F1, F2) = g(F1, F3) = g(F2, F3) = 0.

Then, we have
[F1, F2] = 0, [F1, F3] = αF1, [F2, F3] = αF2.

The (1,1)-type field φα is defined by

φαF1 = −F1, φαF2 = −F2, φαF3 = 0. (32)

By applying linearity of φα and g, we have
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ηα(ξα) = g(ξα, ξα) = −1, φα
2Xα = Xα + ηα(Xα)ξα, g(φαXα, φαYα) = g(Xα, Yα) + ηα(Xα)ηα(Yα)

for all Xα, Yα ∈ TM. The Levi–Civita connection ∇L of M is

∇L
F1

F1 = αF3, ∇L
F1

F2 = 0, ∇L
F1

F3 = αF1,

∇L
F2

F1 = 0, ∇L
F2

F2 = αF3, ∇L
F2

F3 = αF2,

∇L
F3

F1 = 0, ∇L
F3

F2 = 0, ∇L
F3

F3 = 0.

(33)

The contact form ηα satisfies dηα(Xα, Yα) = g(Xα, φαYα). Moreover, the structure (φα, ξα, ηα, g)
is α-Sasakian.

From the above results, we use the curvature tensor R(Xα, Yα)Zα = α2[g(Yα, Zα)Xα −
g(Xα, Zα)Yα]. Then, obtaining the components of the curvature tensor is straightforward, as
follows:

R(F1, F2)F1 = −α2F2, R(F1, F3)F1 = −α2F3, R(F2, F3)F1 = 0,

R(F1, F2)F2 = α2F1, R(F1, F3)F2 = 0, R(F2, F3)F2 = −α2F3,

R(F1, F2)F3 = 0, R(F1, F3)F3 = −α2F1, R(F2, F3)F3 = −α2F2.

The sectional curvature [25] is given by

K(ξα, Fi) = −R(ξα, Fi, ξα, Fi) = 1, f or i = 1, 2

and
K(F1, F2) = R(F1, F2, F1, F2) = −α2.

Thus, we see that the Lorentzian α-Sasakian 3-manifold M3 has constant holomorphic sectional
curvature µ = −α2.

Suppose C is a Frenet slant curve in Lorentzian α-Sasakian 3-manifolds that is parameterized
by arc-length. In this case, the tangent vector field takes on the following form:

T = C′ =
√

ε1 + a2cosγF1 +
√

ε1 + a2sinγF2 + aF3, (34)

where a = constant, γ = γ(s). Using (33), we obtain

∇L
C′C
′ =

√
ε1 + a2[(−γ′sinγ + aαcosγ)F1 + (γ′cosγ + aαsinγ)F2 + α

√
ε1 + a2F3]. (35)

On the one hand, from (27) and (32), we have κc = 0, that is, C is a geodesic curve; in a Lorentzian
α-Sasakian 3-manifold, C is naturally a slant curve. From (35), (27), and (32), there does not exist a
non-geodesic slant Frenet curve in M.

Let C(s) = (x(s), y(s), z(s)) be a curve in Lorentzian α-Sasakian manifolds. Then, the
tangent vector field C′ of C is

C′ = (
dx
ds

,
dy
ds

,
dz
ds

) =
dx
ds

∂

∂x
+

dy
ds

∂

∂y
+

dz
ds

∂

∂z
.

By utilizing the relation:

∂

∂x
= ez(F2 − F1),

∂

∂y
= ezF1,

∂

∂z
=

1
α

F3,
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From (34), the system of differential equations for the slant curve C in M is

dx
ds

(s) =
√

ε1 + a2sinγe−z,

dy
ds

(s) =
√

ε1 + a2(sinγ + cosγ)e−z,

dz
ds

(s) = aα.

(36)

In this particular case, take a special curve γ(s) = bs+ c, where b, c ∈ R. Suppose C : I → M
is a non-geodesic curve that is parameterized by arc-length s in the Lorentzian α-Sasakian 3-manifold.
If C is a contact magnetic curve, then the parametric equations of C are provided by Equation (36)

x(s) = − 1
b e−z

√
ε1 + a2cos(bs + c) + x0,

y(s) = 1
b e−z

√
ε1 + a2(−cos(bs + c) + sin(bs + c)) + y0,

z(s) = aαs + z0.

where x0, y0, z0 are constants.

6. Conclusions

This paper solves an interesting question of geometric properties and symmetry of
two special types of curves in the Lorentzian α-Sasakian 3-manifolds. We prove the ratio
relationship between κc and τc − α or κc and τc + α along the two special types of curves.
We also use the properties of the slant curve and contact magnetic curve to characterize the
manifold as a Lorentzian α-Sasakian 3-manifold. Finally, we provide an example and verify
the slant curve and contact magnetic curve in the Lorentzian α-Sasakian 3-manifolds. As
a future work, we plan to proceed to study some applications of contact magnetic curves
and slant curves with singularity theory and submanifold theory, etc. in [34–37] to obtain
new results and theorems.
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