
Citation: Elsaeed, S.; Moaaz, O.;

AlNemer, G.; Elabbasy, E.M.

Higher-Order Delay Differential

Equation with Distributed Deviating

Arguments: Improving Monotonic

Properties of Kneser Solutions.

Symmetry 2023, 15, 502. https://

doi.org/10.3390/sym15020502

Academic Editors: Sergei D.

Odintsov and Alexander Zaslavski

Received: 17 January 2023

Revised: 4 February 2023

Accepted: 7 February 2023

Published: 14 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Higher-Order Delay Differential Equation with Distributed
Deviating Arguments: Improving Monotonic Properties of
Kneser Solutions
Shaimaa Elsaeed 1, Osama Moaaz 2,3,* , Ghada AlNemer 4,* and Elmetwally M. Elabbasy 3

1 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
2 Department of Mathematics, College of Science, Qassim University, P.O. Box 6644,

Buraydah 51452, Saudi Arabia
3 Faculty of Science, Mansoura University, Mansoura 35516, Egypt
4 Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University,

P.O. Box 105862, Riyadh 11656, Saudi Arabia
* Correspondence: o_moaaz@mans.edu.eg (O.M.); gnnemer@pnu.edu.sa (G.A.)

Abstract: This study aims to investigate the oscillatory behavior of the solutions of an even-order
delay differential equation with distributed deviating arguments. We first study the monotonic
properties of positive decreasing solutions or the so-called Kneser solutions. Then, by iterative
deduction, we improve these properties, which enables us to apply them more than once. Finally,
depending on the symmetry between the positive and negative solutions of the studied equation and
by combining the new condition for the exclusion of Kneser solutions with some well-known results
in the literature, we establish a new standard for the oscillation of the investigated equation.
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1. Introduction

Engineering, physics, economics, and biology are just a few of the fields where differ-
ential equations (DE) are widely used. The study of DEs depends on finding their solutions
or studying the properties of their solutions. However, many properties of the solutions of a
particular DE may be specified without finding them exactly. The study of these differential
equations is divided into two parts, the first is the qualitative study of solutions and the
second is the study of numerical methods to find an approximate solution [1].

The oscillation of solutions to delay DEs has been the focus of extensive investigations
in recent years. This is mostly because delay DEs are recognized as crucial in applications.
Delay differential equations are being used more and more frequently in new applications
for the modeling of many processes in physics, biology, ecology, and physiology. Therefore,
a lot of authors have focused on solving DEs or determining some of their key properties,
see [2].

One of the most crucial components of applied mathematics is the construction of math-
ematical models, which are essentially meant to solve real-world problems. For analysis
and forecasting in many fields of life sciences, such as population dynamics, epidemiology,
immunology, physiology, neural networks, etc., mathematical modeling, including delay
DEs, is frequently utilized. In these cases, it is suggested that the delay plays a crucial role
in representing the time needed to finish some hidden processes that are known to cause a
time lag, such as the stages of the life cycle, the interval between a cell becoming infected
and the production of new viruses, the length of the infectious period, the immune period,
and so on, see [3].
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Studying the qualitative properties, such as oscillation, symmetry, stability, periodicity,
and others, of the solutions of differential equation models contributes to understanding
and analyzing the phenomena that these models describe. Over the past 25 years, many
researchers have become interested in the oscillation theory of functional DEs. Numerous
books and hundreds of research papers in every major mathematical magazine have been
created as a consequence of this; they have examined the oscillations of higher order
DEs and more deeply studied methods for generating oscillatory criteria for higher in
the literature.

Based on the general Riccati substitution, Moaaz and Muhib [4] introduced more
efficient oscillation criteria to test the oscillation of a fourth-order half-linear delay DE. Elab-
basy et al. [5] extended the results in [4] to delay DEs with multiple delays. For odd-order
equations, Moaaz et al. [6] established criteria for the non-existence of kneser solutions of de-
lay DEs. For second-order equations, Gui and Xu [7] introduced Kamenev-type oscillation
criteria for delay DEs with distributed deviating arguments. Meanwhile, Wang [8] deduced
criteria of Philos type for such equations. Elabbasy et al. [9] and Zhao and Meng [10]
extended and improved the results in [7,8].

In this work, we consider the even-order delay DE:(
ϕ(t)u(m−1)(t)

)′
+
∫ b

a
K(t, h)u(ρ(t, h))dh = 0, t ≥ t0, (1)

where m ≥ 4 and is an even integer. Throughout this work, we assume that:

(A1) ϕ ∈ C([t0, ∞)), ϕ > 0, ϕ′ ≥ 0, and∫ ∞

t0

1
ϕ(h)

dh < ∞; (2)

(A2) K ∈ C([t0, ∞)× (a, b),R) and K(t, h) ≥ 0;
(A3) ρ ∈ C([t0, ∞)× (a, b),R), ρ(t, h) < t for h ∈ [a, b], ρ has nonnegative partial deriva-

tives with respect to t and nondecreasing with respect to h and limt→∞ ρ(t, h) = ∞
for h ∈ [a, b].

By solving (1), we purpose a function u ∈ Cm−1([tu, ∞),R) for some tu ≥ t0 such that
ϕu(m−1) ∈ C1([tu, ∞),R) and satisfies (1) on [tu, ∞). We consider only those solutions of (1)
which satisfy the condition sup{|x(t)| : t ≥ t0} > 0 for all t ≥ tx. If u is neither positive
nor negative eventually, then u is called oscillatory, or it will be nonoscillatory.

Some of the important papers that helped improve the oscillation theory of even-order
DEs are reviewed in the following:

Grace et al. [11] considered the fourth-order delay DE:(
ϕ3 ·

(
ϕ2 ·

(
ϕ1 · u′

)′)′)′
+ q · [u ◦ ρ] = 0,

where [ f ◦ g](t) := f (g(t)). They presented criteria for the oscillation of all solutions of
this equation. By using an iterative technique, Moaaz and Cesarano [12] focused on the
oscillatory behavior of the DE:(

ϕ · u(m−1)
)′

+ q · [u ◦ ρ] = 0.

Muhib et al. [13] established comparison theorems for the delay DE:(
ϕ ·
(

u(m−1)
)α)′

+
∫ b

a
K(t, h) f (u(ρ(t, h)))dh = 0.
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For neutral DEs, Zhang et al. [14] considered the even-order DE:

(u + p · [u ◦ σ])(m) + q · [ f ◦ u ◦ ρ] = 0,

where u f (u) > 0 for all u 6= 0 and f ′(u) ≥ 0, and studied the qualitative behavior of the
solutions of this equation. Moaaz et al. [15] studied the asymptotic behavior of the DE(

ϕ ·
(
(u + p · [u ◦ σ])(m−1)

)α)′
+ f (t, [u ◦ ρ]) = 0,

where | f (t, u)| ≥ K(t)|u|β. Moaaz et al. [16] considered the neutral DEs(
ϕ · (uα + p · [u ◦ σ])(m−1)

)′
+
∫ b

a
K(t, h) f (u(ρ(t, h)))dh = 0.

By using the theory of comparison and the technique of Riccati transformation, they
obtained two different conditions that ensured the oscillation. By employing the generalized
Riccati transformation, Tunc and Bazighifan [17] studied the oscillation of the DE(

ϕ ·
(
z′′′
)α
)′

+
∫ d

c
K(t, h)uα(ρ(t, h))dh = 0,

where

z := u +
∫ b

a
p(t, σ)u(ρ(t, h))dh.

In this article, in the noncanonical case, we examine the asymptotic and monotonic
features of Kneser solutions to the higher-order delay DE (1). The nature of the new at-
tributes is iterative. The property of symmetry between the positive and negative solutions
of the studied differential equations plays a key role in the study of oscillation. As the
exclusion of positive solutions necessarily means the exclusion of negative solutions, we
additionally employ the theory of comparison in conjunction with these new properties
to derive criteria for the oscillation of the studied equation. A variety of similar findings
presented in the literature are expanded upon and supplemented by our theorems.

The paper is divided into the following parts: The introduction section, which reviews
the most important relevant results. Then, we begin the main results section by deriving
some monotonic properties of the positive solutions of the studied equation. Furthermore,
we improve these properties iteratively. Then, using the comparison technique, we present
criteria that ensure the oscillation of all solutions of the studied equation. Finally, we
present in the conclusion the most important results and recommendations.

2. Main Results

We begin this section by showing some notations that make it easier to present the
main results.

Notation 1. The set of all eventually positive solutions to (1) which satisfy the property

u(s)(t)u(s+1)(t) < 0 for s = 0, 1, 2, . . . , m− 2, (3)

by Ω∗. Furthermore, we define the functions πi by

π0(t) :=
∫ ∞

t
ϕ−1(h)dh

and
πi(t) :=

∫ ∞

t
πi−1(h)dh, i = 1, 2, . . . , m− 2.
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Lemma 1. Assume that u ∈ Ω∗. If

∫ ∞

t0

πm−3(ς)

(∫ ς

t2

(∫ b

a
K($, h)dh

)
d$

)
dς = ∞, (4)

and there exists an `0 ∈ (0, 1) such that

π2
m−2(t)

πm−3(t)

∫ b

a
K(t, h)dh ≥ `0, (5)

then,

(C1) (−1)i+1u(m−i−2)(t) ≤ ϕ(t)u(m−1)(t)πi(t) for i = 0, 1, 2, . . . , m− 2;
(C2) limt→∞ u(t) = 0;
(C3) (u(t)/πm−2(t))

′ > 0;

(C4)
(

u(t)/π`0
m−2(t)

)′
< 0;

(C5) limt→∞ u(t)/π`0
m−2(t) = 0.

Proof. Assume that u ∈ Ω∗. Thus, for some t2 ≥ t1, we have u(ρ(t)) > 0 for all t ≥ t2.
Hence, from (1), we obtain(

ϕ(t)u(m−1)(t)
)′
(t) = −

∫ b

a
K(t, h)u(ρ(t, h))dh ≤ 0.

(C1) Using (3), we have that

ϕ(t)u(m−1)(t)π0(t) ≥
∫ ∞

t

ϕ(h)u(m−1)(h)

ϕ(h)
dh ≥ −u(m−2)(t),

or equivalently
u(m−2) ≥ −ϕu(m−1)π0. (6)

Integrating (6) m− 2 times over [t, ∞), we find

(−1)i+1u(m−i−2) ≤ ϕu(m−1)πi.

(C2) Since u(t) > 0 and u′(t) < 0, we obtain that limt→∞ u(t) = c ≥ 0.
Suppose that c > 0. Therefore, for some t2 ≥ t1, we have u(t) ≥ c for t ≥ t2. Hence,

(1) reduces to (
ϕ(t)u(m−1)(t)

)′
+ c

∫ b

a
K(t, h)dh ≤ 0. (7)

Integrating (7) two times over [t2, t), we arrive at

ϕ(t)u(m−1)(t)− ϕ(t2)u(m−1)(t2) ≤ −c
∫ t

t2

(∫ b

a
K($, h)dh

)
d$.

From (3), we have u(m−1)(t) < 0 for t ≥ t1. Then, ϕ(t2)u(m−1)(t2) < 0, and so

ϕ(t)u(m−1)(t) ≤ −c
∫ t

t2

(∫ b

a
K($, h)dh

)
d$. (8)

From (C1) with i = m− 3, we get that

u′

πm−3
≤ ϕu(m−1),
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which with (8) yields

u′(t) ≤ −cπm−3(t)
∫ t

t2

(∫ b

a
K($, h)dh

)
d$.

Then,

u(t) ≤ u(t2)− c
∫ t

t2

πm−3(ς)

(∫ ς

t2

(∫ b

a
K($, h)dh

)
d$

)
dς,

which with (4) gives u→ −∞ as t→ ∞, a contradiction. Then, u→ 0 as t→ ∞.

(C3) Using (C1) at i = 0, we get

(
um−2

π0

)′
=

(
π0u(m−1) + ϕ−1u(m−2)

)
π2

0
≥ 0,

which leads to

−u(m−3)(t) ≥
∫ ∞

t
π0($)

u(m−2)($)

π0($)
d$ ≥ u(m−2)(t)

π0(t)
π1(t).

This implies (
u(m−3)

π1

)′
=

1
π2

1

(
π1u(m−2) + π0u(m−3)

)
≤ 0.

By repeating with a similar approach, we obtain (u/πm−2)
′ > 0.

(C4) Since ρ(t, h) is nondecreasing with respect to h, we get ρ(t, h) ≥ ρ(t, a) for
h ∈ (a, b). Integrating (1) over [t2, t) and using (5), we find

ϕ(t)u(m−1)(t) = ϕ(t2)u(m−1)(t2)−
∫ t

t2

(∫ b

a
K($, h)u(ρ($, h))dh

)
d$

≤ ϕ(t2)u(m−1)(t2)−
∫ t

t2

u(ρ($, b))
(∫ b

a
K($, h)dh

)
d$,

hence,

ϕ(t)u(m−1)(t) ≤ ϕ(t2)u(m−1)(t2)− u(t)
∫ t

t2

(∫ b

a
K($, h)dh

)
d$

≤ ϕ(t2)u(m−1)(t2) + `0
u(t)

πm−2(t2)
− `0

u(t)
πm−2(t)

,

which with (C2) gives

ϕu(m−1) ≤ −`0
u

πm−2.
(9)

Thus, from (C1) at i = m− 3, we obtain

u′

πm−3
≤ −`0

u
πm−2.

Consequently, (
u

π`0
m−2

)′
=

1

π`0+1
m−2

(
πm−2u′ + `0πm−3u

)
≤ 0.
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(C5) Now, since u/π`0
m−2 is positive and decreasing, we get that limt→∞ u(t)/π`0

m−2(t) =
l0 ≥ 0.

Suppose that l0 > 0. Thus, for some t2 ≥ t1, we obtain that u(t)/π`0
m−2(t) ≥ l0 for

t ≥ t2. Now, let

F :=
u + ϕ · u(m−1) · πm−2

π`0
m−2.

(10)

Therefore, F(t) > 0 for t ≥ t2. From (5) and (10), we obtain

F′ =
1

π2`0
m−2

[
π`0

m−2

(
u′ − ϕu(m−1)πm−3 +

(
ϕu(m−1)

)′
πm−2

)
+`0π`0−1

m−2 πm−3

(
u + ϕu(m−1)πm−2

)]
≤ 1

π`0+1
m−2

[
−π2

m−2

(∫ b

a
K(t, h)u(ρ(t, h))dh

)
+ `0πm−3

(
u + ϕu(m−1)πm−2

)]
,

hence,

F′ ≤ 1

π`0+1
m−2

[
−`0πm−3u + `0πm−3u + `0πm−3 ϕu(m−1)πm−2

]
≤ `0

π`0
m−2

πm−3 ϕu(m−1). (11)

Using the fact that u(t)/π`0
m−2(t) ≥ l0 with (9), we obtain

ϕu(m−1) ≤ −`0
u

πm−2
≤ −`0l0π`0−1.

m−2 (12)

Combining (11) and (12) yields

F′ ≤ −`2
0l0

πm−3

πm−2
< 0.

Integrating the above inequality over [t2, t), we find

−F(t2) ≤ −`2
0l0 log

πm−2(t2)

πm−2(t)
→ ∞ as t→ ∞,

a contradiction, and thus, l0 = 0. The proof is complete.

Lemma 2. Assume that u ∈ Ω∗. If (5) holds for some `0 ∈ (0, 1), then (4) holds.

Proof. Assume that u ∈ Ω∗. Using (5), we get

∫ ς

t0

(∫ b

a
K($, h)dh

)
d$ ≥

∫ ς

t0

`0
πm−3($)

π2
m−2($)

d$

= `0

(
1

πm−2(ς)
− 1

πm−2(t0)

)
.

Using the fact that πn−2 → 0 as t→ ∞, we obtain eventually that

1
πm−2(t)

− 1
πm−2(t0)

≥ µ

πm−2(t)
,
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for µ ∈ (0, 1). Therefore,

πm−3(ς)
∫ ς

t0

(∫ b

a
K($, h)dh

)
d$ ≥ `0µ

πm−3(ς)

πm−2(ς).

Thus,∫ t

t0

πm−3(ς)

(∫ ς

t2

(∫ b

a
K($, h)dh

)
d$

)
dς ≥ `0µ ln

πm−3(t0)

πm−2(t)
→ ∞ as t→ ∞.

The proof is complete.

Lemma 3. Assume that u ∈ Ω∗, (5) holds for some `0 ∈ (0, 1). If there is an n ∈ N such that
`i ≤ `i+1 < 1 for all i = 0, 1, 2, . . . , n− 1, then

(C1,n)
(

u(t)/π`n
m−2(t)

)′
< 0;

(C2,n) limt→∞ u(t)/π`n
m−2(t) = 0,

where

`j = `0
λ`j−1

1− `j−1
, j = 1, 2, . . . , n,

and
πm−2(ρ(t, b))

πm−2(t)
≥ λ, (13)

for some λ ≥ 1.

Proof. Assume that u ∈ Ω∗. Then, from Lemma 1, we have that (C1)− (C5) hold. Using
induction, we have from Lemma 1 that (C1,0) and (C2,0) hold. Now, we assume that
(C1,s−1) and (C2,s−1) hold. Over [t1, t), integration (1) yields

ϕ(t)u(m−1)(t) = ϕ(t2)u(m−1)(t2)−
∫ t

t2

(∫ b

a
K($, h)u(ρ($, h))dh

)
d$

≤ ϕ(t2)u(m−1)(t2)−
∫ t

t2

u(ρ($, b))
(∫ b

a
K($, h)dh

)
d$. (14)

Using (C1,s−1), we obtain that

u(ρ(t, h)) ≥ π
`s−1
m−2(ρ(t, h))

u(t)

π
`s−1
m−2(t)

,

then (14) becomes

ϕ(t)u(m−1)(t) ≤ ϕ(t2)u(m−1)(t2)−
∫ t

t2

π
`s−1
m−2(ρ($, b))

u($)

π
`s−1
m−2($)

(∫ b

a
K($, h)dh

)
d$.

Since
(

u(t)/π
`s−1
m−2(t)

)′
≤ 0, we arrive at

ϕ(t)u(m−1)(t) ≤ ϕ(t2)u(m−1)(t2)

− u(t)
π`s−1

m−2 (t)

∫ t

t2

π
`s−1
m−2($)

π
`s−1
m−2(ρ($, b))

π
`s−1
m−2($)

(∫ b

a
K($, h)dh

)
d$.
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Hence, from (5) and (13), we obtain

ϕ(t)u(m−1)(t) ≤ ϕ(t2)u(m−1)(t2)− `0λ`s−1
u(t)

π`s−1
m−2 (t)

∫ t

t2

πm−3(ρ($))

π
2−`s−1
m−2 ($)

d$

= ϕ(t2)u(m−1)(t2)− `0
λ`s−1

1− `s−1

u(t)

π
`s−1
m−2(t)

(
1

π
1−`s−1
m−2 (t)

− 1

π
1−`s−1
m−2 (t2)

)
,

hence,

ϕ(t)u(m−1)(t) ≤ ϕ(t2)u(m−1)(t2)− `s
u(t)

π
`s−1
m−2(t)

1

π
1−`s−1
m−2 (t2)

− `s
u(t)

πm−2(t).

Using the property limt→∞ u(t)/π
`s−1
m−2(t) = 0, we obtain

ϕu(m−1) ≤ −`s
u

πm−2.
(15)

Thus, form (C1) at k = m− 3, we obtain

u′

πm−3
≤ −`s

u
πm−2.

Consequently, (
u

π`s
m−2

)′
=

1

π
`s+1
m−2

(
πm−2u′ + `sπm−3u

)
≤ 0.

The remainder of the proof is exactly the same as the proof of (C5) in Lemma 1.
Therefore, the proof is complete.

Theorem 1. Assume that u ∈ Ω∗ and, for some `0 ∈ (0, 1), (5) holds. If there is an n ∈ N such
that `i ≤ `i+1 < 1 for all i = 0, 1, 2, . . . , n− 1, then the delay DE

G′(t) +
1

1− `n

(∫ b

a
K(t, h)dh

)
πm−2(t)G(ρ(t, b)) = 0 (16)

has a positive solution, where `j and λ are defined as in Lemma 3.

Proof. Assume that u ∈ Ω∗. Then, from Lemma 3, we have that (C1,n) and (C2,n) hold.
Next, let

G = ϕu(m−1)πm−2 + u. (17)

Thus, from (C1) at i = m− 2, G(t) > 0 for t ≥ t2 and

G′ =
(

ϕu(m−1)
)′

πm−2 − ϕu(m−1)πm−3 + u′.

Using (C1) at i = m− 3, we find that

G′ ≤
(

ϕu(m−1)
)′

πm−2 ≤ −u(ρ(t, b))πm−2

∫ b

a
K(t, h)dh. (18)

From the proof of Lemma 3, we obtain that (15) holds. Combining (17) and (15), we
obtain

G ≤ (1− `n)u.
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Thus, (18) becomes

G′(t) +
1

1− `n

(∫ b

a
K(t, h)dh

)
πm−2(t)G(ρ(t, b)) ≤ 0. (19)

Hence, G is a positive solution of the differential inequality (19). Using [18] (Theorem 1),
Equation (16) also has a positive solution and this completes the proof.

Theorem 2. Assume that, for some `0 ∈ (0, 1), (5) holds. Assume also that there is an n ∈ N such
that `i ≤ `i+1 < 1 for all i = 0, 1, 2, . . . , n− 1 and the delay DEs (16)

v′(t) +
ε1ρm−1(t, b)

(m− 1)!(ϕ(ρ(t, b)))

(∫ b

a
K(t, h)dh

)
v(ρ(t, b)) = 0 (20)

and

v′(t) +
ε2ρm−1(t)

(m− 2)!ϕ(t)

(∫ t

t0

(∫ b

a
K($, h)dh

)
ρm−2($, b)d$

)
v(ρ(t, b)) = 0, (21)

are oscillatory for some ε1, ε2, `n ∈ (0, 1), where `j and λ are defined as in Theorem 1. Then, every
solution of (1) is oscillatory.

Proof. Assume the contrary that u is eventually a positive solution. Then, from [19]
(Lemma 2.2.1), we have the following three cases, eventually

(1) u′, u(m−1) are positive and u(m) is negative;
(2) u′, u(m−2) are positive and u(m−1) is negative;
(3) (−1)iu(i)are positive, for i = 1, 2, . . . , m− 1.

Proceeding with an approach quite similar to that used in [20] (Theorem 3), we
can guarantee that cases (1) and (2) will not be fulfilled based on the assumption that
Equations (20) and (21) oscillate.

Then, we have that (3) holds. Using Theorem 1, we obtain that (16) has a positive
solution, a contradiction. Therefore, the proof is complete.

Corollary 1. Assume that, for some `0 ∈ (0, 1), (5) holds. Assume also that there is an n ∈ N
such that `i ≤ `i+1 < 1 for all i = 0, 1, 2, . . . , n− 1,

lim inf
t→∞

∫ t

ρ(t,b)
πm−2($)

(∫ b

a
K($, h)dh

)
d$ >

1− `n

e
, (22)

lim inf
t→∞

∫ t

ρ(t,b)

1
ϕ(ρ($, b))

ρm−1($, b)
(∫ b

a
K($, h)dh

)
d$ >

(m− 1)!
e

, (23)

and

lim inf
t→∞

∫ t

ρ(t,b)

1
ϕ($)

(∫ $

t0

ρm−2(η, b)
(∫ b

a
K(η, h)dh

)
dη

)
d$ >

(m− 2)!
e

, (24)

for some ε, `n ∈ (0, 1). Then every solution of (1) is oscillatory.

Proof. In view of [21] (Corollary 2.1), Conditions (22)–(24) imply the oscillation of the
solution of (16), (20), and (21), respectively. Therefore, from Theorem 2, every solution of
(1) is oscillatory.

Example 1. We consider a special case of (1) of the form(
et
(

u(m−1)(t)
))′

+
∫ 1

0.4
k0hetu(t− h)dh = 0, (25)
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where t ≥ 1, ϕ(t) = et, K(t, h) = k0het, ρ(t, h) = t− h, k0 ∈ (0, 1), and h ∈ (0.4, 1). Note that
πi(t) = e−t, i = 0, 1, . . . , m− 2. By selecting `0 = 0.42k0, we have that (5) holds. Furthermore,
it is simple to confirm that (23) and (24) are satisfied. It follows from Corollary 1 that all solutions
of (25) are oscillatory if (22) holds; that is,

0.42k0 >
1− `n

e.

Example 2. We consider a special case of (1) of the form(
t4
(

u(m−1)(t)
))′

+
∫ 1

0
k0u
(
h

2
t
)

dh = 0, (26)

where t ≥ 1 and k0 > 0. It is easy to see that if we choose `0 = 1
6 k0, then condition (5) is satisfied.

Moreover, we note that conditions (23) and (24) hold if

k0 >
24

e ln 2.

Condition (22) reduces to

k0 >
(6− k0)

e ln 2
,

or
k0 >

6
e ln 2 + 1.

Using Corollary 1, we obtain that all solution of (26) are oscillatory if k0 > 12.738.

3. Conclusions

Delay DEs have many applications in different sciences. This is not the only motive
for studying such equations; studying these equations is full of interesting analytical issues.
Among these interesting points is the study of the monotonic properties of the so-called
Kneser solutions, whose signs differ from the signs of their first derivative.

In this article, we deduced some monotonic properties of a separation from positive
solutions of noncanonical delay DEs of higher order. Then, we refined these properties
by giving them an iterative feature. Moreover, we obtained a standard guarantee that
there are no Kneser solutions. Finally, by combining our results with well-known results
in the literature, we obtained a new oscillation criterion for the studied equation. Our
results differ from previous results that focused on the study of equations with distributed
deviating arguments in that they work to improve the monotonic properties, as well as the
fact that our criteria are iterative, meaning they can be applied multiple times.

We propose, as a future research point, to obtain an oscillation criterion using the
Riccati substitution technique for the studied equation by using the improved monotonic
properties. Moreover, it would be interesting to extend the development of oscillatory
theory of integer order differential equations to fractional order differential equations,
see [22–25].
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