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Abstract: The reconstruction of the geometry of weld-deposited materials plays an important role
in the control of the torch path in GMAW. This technique, which is classified as a direct energy
deposition technology, is experiencing a new emergence due to its use in welding and additive
manufacturing. Usually, the torch path is determined by computerised fabrication tools, but these
software tools do not consider the geometrical changes along the case during the process. The aim
of this work is to adaptively define the trajectories between layers by analysing the geometry and
symmetry of previously deposited layers. The novelty of this work is the integration of a profiling
laser coupled to the production system, which scans the deposited layers. Once the layer is scanned,
the geometry of the deposited bead can be reconstructed and the symmetry in the geometry and
a continuous trajectory can be determined. A wall was fabricated under demanding deposition
conditions, and a surface quality of around 100 microns and mechanical properties in line with those
previously reported in the literature are observed.

Keywords: welding; direct energy deposition; wire arc additive manufacturing; process monitoring

1. Introduction

The industry is moving in the direction of the assumption of concepts such as In-
dustry 4.0—Internet of Things (industry of the future), which makes traditionally manual
processes, such as welding technologies, adopt smart solutions that have ecological ben-
efits, productivity, traceability, and are quality-oriented to improve the manufacturing
and production stages [1]. Efforts are being made by researchers to develop intelligent
and sensorised automated systems. To predict and control the quality of the welding
process, integrated systems for detection, monitoring, and control have been developed [2].
Recent developments in monitoring have included the adoption of various techniques for
both melt-pool control and layer geometry [3]. It is generally based on the inclusion of
a process measurement sensor [4] and the application of either an artificial intelligence
(AI) or process intelligence technique [5]. Table 1 summarises some of the sensors used for
geometry determination in deposition processes for welding and additive manufacturing.
It can be seen from the table that there are two vision technologies: CCD (Charge-Coupled
Device) sensors, which have been previously widely used for machine vision, are losing
some attraction to the more modern CMOS (Complementary Metal–Oxide Semiconductor)
image sensors [6].
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Table 1. Sensors and measurement entity in welding and additive manufacturing.

Authors Measured Entity Measurement Methodology

Ding et al. [7] Overlapping distance (OD) and
bead height (BH) 3D laser scanner

Wang et al. [8]

Track width, layer height,
penetration, accumulated area,
penetration area, aspect ratio and
dilution ratio

Laser profile scanner

Li et al. [9] Bead width (W) and bead
height (H) Laser displacement scanner

Tang et al. [10] Arc striking (AS) and arc
extinguishing (AE) area

Infrared camera and arial
topography measurement sensor

Karmuhilan et al. [11] Bead height and width Coordinate measuring
machine (CMM)

Pradhan et al. [12] Width, penetration depth, throat
length and leg length

Internal signals + neural networks
(NN) for geometry prediction

Bi et al. [13] Melt-pool temperature and size CCD camera + photodiode

Wang et al. [14] Discontinuities/Cracks Acoustic sensor

Colodron et al. [15] Fusion bath geometry CMOS camera + optical filter

Chabot et al. [16] Temperature–height distribution IR camera

The right choice of measurement technology and the use of sensor fusion algorithms
combined with indirect measurement methods can help to reduce welding production costs
and increase productivity by detecting or predicting many welding defects or deviations
from set points [17]. These measurements make it possible to adjust the welding current
source and robot parameters online in a closed-loop control. The online evaluation of
unmeasured variables improves control systems and reduces the number of rejected parts
in the final quality inspection.

To take advantage of modern welding power sources, it is important to equip the
monitoring system with serial communication. The modelling of the estimator is an
essential step to obtain an accurate measurement system and, due to the thermal inertia
of the process, a dynamic model is more representative of the welding process than a
static one. Visual and thermal imaging techniques, image processing, and neural network
algorithms, although computationally more resource-intensive, are the most widely used
for estimating weld bead geometry and excellent results have been observed. More and
more research is being conducted on sensor fusion algorithms. Following this trend, this
paper presents a new modelling approach that uses arc weld measurements and thermal
imaging information to create a dynamic model for weld penetration estimation. This
new method obtains information about the amount and spatial distribution of energy in
the subject and uses only additive operations, which simplifies calculations and improves
model accuracy. Using it to control welding automation with a computer or integrated
equipment provides a satisfactory solution.

Although much has been published, especially in the characterisation of materials,
joints, transfer modes, process selection, and inspection methods, process monitoring is
something that is still being worked on and requires attention [18]. In this direction, in
addition to the monitoring of the correct deposition and process status, the optimisation
of weld paths based on online measurement is an issue that can improve automated
welding applications and help the incorporation of easy-to-manufacture applications in
direct energy deposition (DED) additive manufacturing. These DED, when using a filament
and an arc as a generator, are called WAAM [19]. Many of the WAAM applications that
deal with a trajectory definition often deal with the definition of parameters and trajectory
patterns for area filling (so-called slicing) [20]. In addition, since the paths are designed
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for different components, the working paths applied may affect the quality of the weld
and the weld [21]. However, in general, these developments focus on solutions for specific
T-junction types [22], cross intersection [23,24], and specific geometries [25]. This paper
covers the gap of considering interlayer growth and considers layer symmetry.

Furthermore, the use of symmetry as a phenomenon inherent to the nature of depo-
sition in this type of process has been little explored [26]. This paper aims to correctly
select the trajectory based on the measurement of the previous layer. The main novelty
presented is the incorporation of a robot-integrated sensor for layer estimation in Gas Metal
Arc Welding (GMAW) and an analytic based on mass balance and symmetric calculations
for the correct estimation of the trajectory in the consecutive pass.

2. Materials and Methods

This section describes the equipment used and the most significant welding param-
eters. It also includes a second subsection that briefly describes the architecture of the
measuring equipment used and their communication. Finally, the treatment of the profile
acquired by the sensor installed on the welding robot is described.

2.1. Materials and Set-Up

The welding tests were carried out using a robotic-fixed table welding system. The
welding equipment used has an Alpha Q 552 pulse current generator (EWM, Mündersbach,
Germany), which uses GMAW technology and powers the torch. The torch movement is
managed by a special anthropomorphic Fanuc Arc Mate 100-iC reference welding robot
(Fanuc, Oshino, Japan). In addition to generation and movement, the torch must be fed
with metal wire by means of a wire feed unit from EWM (Mündersbach, Germany) with
reference M drive 4 Rob5 XR RE and a shielding gas system. A Queltech Q4-120 profilometer
(München, Germany) is also equipped to measure the geometry of the interlayer bead. It
is positioned perpendicular to the substrate and its movement is analogous to that of the
torch in the weld. Table 2 summarises the characteristics of the laser profilometer for the
measurement of the weld layer profile.

Table 2. Characteristics of the Queltech Q4-120 laser profilometer.

Z-Range X-Range
Start

X-Range
End Distance Resolution Size Weight

(mm) (mm) (mm) (mm) (mm) (mm) (g)

120 60 80 84 0.0798 186 × 32 × 84 430

Among the modes used in GMAW welding, the synergic pulse mode is one of the
most widely used variants of welding equipment. In order to perform the pulse current
train correctly, it is necessary that the welding equipment has a digitally controlled synergic
generation source. The pulses control the melting of the material for the generation of the
droplet and the final detachment of the droplet. This material is subsequently fused to
either the substrate or the underlying layer. The generation parameters of the welding
equipment (peak/background current, peak duration, base duration, pulse frequency, etc.)
are matched and related to the process parameters (type of material and wire diameter and
shielding gas) and are unique to the selected wire speed. These calculations are collected
in a database for each material and include calculation routines. The uniformity of the
profile and penetration of the weld bead is therefore the objective of the application of these
synergic modes. Figure 1 shows the experimental set-up and the arrangement of the laser
in the measurement of the welded layer.
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Figure 1. Experimental set-up and solder layer scanning process.

The material used for the welding tests was a mild steel commonly used in many
industrial applications, and its name is ER70S-6 steel. This material was deposited in
the form of commercially produced 1.2 mm diameter wire. The composition by weight
percentage is shown in Table 3. This information was provided by the supplier. As the
substrate material, S235JR steel was used in the form of steel plates with a thickness of
10 mm.

Table 3. Chemical composition in weight % of ER70S-6 wire.

Mn Si C Cr Cu Ni S P Mo Ti Zr Fe

1.64 0.94 0.06 0.02 0.02 0.02 0.016 0.013 0.005 0.004 0.002 bal.

Table 4 shows a summary of the parameters used for the achievement of the GMAW
weld layers. The welding was carried out with the torch in a vertical position, perpendicular
to the base (substrate). The distance at which the wire exits the welding contact tip (stick-
out) was 22 mm. The shielding gas was a mixture of argon and carbon dioxide (20% CO2
and 80% Ar) with a flow rate of 17 L/min. These gas supply conditions were used according
to the welding equipment supplier’s guidelines for the material used. These parameters
had already been optimised for the use of this material on this substrate in previous papers.

Table 4. Relevant parameters for the welding process.

Wire Diameter Mode Vwire Vnozzle Stick Out

1.2 (mm) MIG/MAG 8 (m/min) 65 (cm/min) 22 (mm)

Material Density Gas Gas flow

ER70 7850 (kg/m3) %20 CO2–%80 Ar 17 (L/min)
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2.2. Data Measurement Chain in the Robotic GMAW Process

The data measurement chain necessary to implement the methodology described
in this paper is shown in Figure 2. The source data had two main sources: the robot
control from which the robot position data, execution program, power source generation
data, and wire speed data are extracted, and the profilometric laser, which has its own
coordinate axis on which the point cloud describing the 2D profile of the welded layer
will be extracted. These data are transferred to a server PC in which the communication
node makes possible the integration of all the information ensuring the synchronisation
of the data. This server PC will be used to run the algorithm and return the corrected
and optimised motion execution program. All this was developed using Robot Operating
System (ROS) tools. Additionally, the server feeds a database for access to the information
once the live cycle is performed and a GUI (Graphical User Interface) in a mobile or tablet
application that allows the operator to access profiles and to know points of the trajectory
on the acquired profiles.
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2.3. Point Cloud Preparation and Processing

The raw signal that is captured by the laser profilometer must be suitable for use in
the methodology described in this paper. Some of the sources of noise in the point cloud
originate from surface glare and dirt, so filtering and conditioning of the data are necessary.

The treatment follows three stages, as can be seen in Figure 3. They are as follows:

a. The layer profile is translated to 0 at its extreme point (see Figure 3a).
b. The profile is filtered to remove brightness with a moving median filter of order

N = 7. The trend of the signal is removed to eliminate the positioning error of the
substrate, which in this case is eight degrees. This removed angle then allows the
torch to be placed perpendicular to the substrate, which is desired (see Figure 3b).

c. Once the tilt is corrected by means of an interpolation, a greater number of points
in the cloud are extracted by means of a Piecewise Cubic Hermite Interpolating
Polynomial (pchip) interpolation because it adjusts the flat areas more adequately
than the interpolation by splines (see Figure 3c).
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3. Results

In the Results Section, the application of different methodologies to obtain the optimal
flare trajectory is described. The algorithm is based on a first calculation of the centroid of
the deposited layer; then, the symmetry point of the profile is calculated and, finally, the
trajectory that optimally compensates the growth of the layer is generated.

3.1. Methodology Based on Centroid Calculation

For the calculation of the centroid, the profile was considered as a continuous function,
where the height position z depends on the transverse position x, this continuous function
z(x) being in the measuring interval of the profilometer x = 0 to x = xmax. In this interval, the
area under the curve of the function z(x) is calculated as the following integral (Equation (1)).

AUC =
∫ x=xmax

x=0
z(x)dx (1)

The function has a paraboloid shape and its area under the curve is described by an
S-shape typical of sigmoid functions, as it can be seen in Figure 4a. The objective is to find
the point xi where the AUC(xi) is equal to half the total area:

AUC (xi) = AUC(xmax)/2 (2)
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The midpoint of this region was taken as the centroid (xi) to be considered for the
further study of the symmetry of the profile in the layer. The scanned profile and the
calculated centroid for different layers and profiles within the layer can be seen in Figure 4b.

In the first layers, the profile obtained by means of the scanner is not determinant
for the generation of a correct profile for the calculation of the centroid but more in the
case of the symmetry, so the first two layers are discarded. In these layers, the symmetry
calculation is based more on the arrangement of the substrate than on the proper geometry
of the deposited layer profile.
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3.2. Methodology Based on Symmetry Calculation

The approach for the calculation of the torch position is simple. We looked for the
point of maximum layer symmetry around the point calculated in the previous section of
the centroid. For the calculation of the symmetry, we used a similar approach to the one
used by Veiga et al. [27] for the calculation of the symmetry of the previous layer for the
definition of the trajectory of the next layer.

The function z(x) was assumed, where z is the position of the point taken from the
laser profilometer, starting from the centroid in a close interval between z(xi – 0.6) and
z(xi + 0.6). The point xi was calculated as explained in Section 3.1. At the different points
of that interval, the symmetric function zs(x) and the antisymmetric function zas(x) are
calculated according to the following equations:
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zs(x) =
(z(x) + z(−x))

2
(3)

zas(x) =
(z(x)− z(−x))

2
(4)

The symmetry and antisymmetry function were evaluated as described above in a
section close to the centroid to obtain the point of maximum symmetry. It can be seen later,
then, that due to the shape of the symmetry, this interval does not necessarily have to be
large. In Figure 5a,c, we can see the symmetric and antisymmetric functions at the most
extreme points of the analysis section. It can be seen that the greatest asymmetry occurs at
the limits of the layer with the substrate. Figure 5b shows the value of x, where the greatest
symmetry occurs between the two sides of the layer profile.
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The symmetric function is close to the functions around the evaluation value x and the
asymmetric function is closest to zero when the evaluation function z(x) is highly symmetric
around the evaluation point xe. To quantitatively measure the symmetry according to [28], a
coefficient characterising the symmetry was defined, where the coefficient C is calculated as
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C =
x=xmax−xe

∑
x=xe

‖zs(x)‖2 − ‖zas(x)‖2

‖zs(x)‖2 + ‖zas(x)‖2 (5)

Figure 6a shows the value of the coefficient C as a function of the equation position xe
around the centroid xi. C = 1 corresponds to pure symmetry and C = 0 when we have pure
asymmetry. Figure 6a shows how the point of maximum symmetry is close to the centroid,
which is consistent since the geometry of the deposited layer is intrinsically symmetric, as
mentioned in several previous papers [29–31]. Figure 6b shows an example of four layers in
two different positions; the arrow shows the centroid origin point and the dotted line (very
close and easier to observe in Figure 6a) is the position of the point of maximum symmetry.
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3.3. Methodology Based on Symmetry Calculation

Finally, this section describes the methodology used to choose the trajectory of the
torch. The premise is to maintain the length of the layer while keeping its point of maximum
symmetry at the point closest to the point of mass distribution (centroid). For this purpose,
the point that defines the trajectory in the profile is the point equidistant to the position
relation between the point of maximum symmetry and the point of the centroid in the
opposite direction. Once the points of the two-dimensional profiles are joined longitudinally,
the three-dimensional trajectory of the torch is obtained, which ensures greater symmetry
of the next layer. Figure 7 shows the average centroid of the wall and, in green, the point
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of optimal trajectory of the torch. The points in blue are those of maximum symmetry for
4 different layers in their zenithal view.
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4. Discussion

As a consequence of the application of the methodology described in this paper, it
was possible to avoid excess material in areas that create imbalances in the wall and the
material melts on the side of the solidified material. Figure 8a shows a sequence of welded
layers in which the wall is poured to the side. On the other hand, Figure 8b shows the
weld made by applying the described methodology with the same welding conditions. The
trajectory correction significantly improved the deposition of the material.
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this paper.

Once the deposited wall was observed under poor growth conditions (Figure 8a), this
effect could perhaps be overcome by acting on the generation signal or by modulating
the deposition parameters, perhaps by lowering the deposition ratio of the wire speed to
the feed rate. This wall could not be analysed to draw conclusions about the mechanical
properties. In additive arc manufacturing, components are normally produced by applying
several layers. The residual stress values in the component change as the multilayer
deposition process progresses [21,32,33]. The proper deposition and symmetrical growth of
the layers allows the better evaluation of the residual stress distribution. Therefore, only the
wall manufactured with the nozzle trajectories established by the methodology described
in this paper (Figure 8b) is analysed at this point.

The mechanical and metallographic characterisation of the mild steel walls produced
using the algorithm described in this paper is briefly described. The wall analysis was
performed on the basis of the horizontal macroscopic image of the wall. The edges of the
walls were obtained by analysing the grey images with a Gaussian filter and studying
the illumination (Figure 9b), following the method described by Artaza et al. [34]. The
relevant standard DIN EN ISO 6892-1—Tensile testing of metals at room temperature was
followed in the fabrication of test specimens. We used a saw to remove three sections of
the wall and machine a cylinder with a core diameter of 4 and a metric M-6 threaded-end
vertically parallel to the wall, as it can be seen in Figure 9a. The objective was to analyse
the mechanical properties of the wall in the most critical directions, knowing that the
material has similar values in the different test directions, but slightly worse in the vertical
direction [35].

As can be seen in Figure 10a,b, the wall has typical layer-by-layer deposition waviness
in the centre of the wall where the surface is analysed. The wall surface profile is provided
in terms of waviness parameters because it is impractical to determine roughness values
for this type of analysis. Note that both wall surfaces find an equilibrium between the
maximum and minimum values, indicating that the wall is compensated. The stress–strain
graph of the three specimens tested in the vertical direction of wall growth is shown in
Figure 10c. The curve shows the typical phases of a mild steel curve with yielding, strain
hardening, and final necking.

From Figure 10a,b, the waviness indicators in the middle section of the wall can be
seen. Both the area closest to the substrate and the area of the last layers were discarded.
Table 5 presents a summary of the main key corrugation indicators for both sides of the
wall. The waviness values are similar on both sides of the face. It is also good that the
arithmetic mean of the waviness is in the micron resolution with values close to 100 µm.
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Table 5. Summary of the main key indicators (in mm) of waviness for both sides of the wall.

Wp: Wv: Wt: Wz: Wa: Wq:

Side Max Profile
Peak Height

Max Profile
Valley
Depth

Total
Height of

Profile

Maximum
Height of

Profile

Arithmetical
Mean

Deviation

Root-Mean-
Square

Deviation

Left 0.276 −0.339 0.078 0.616 0.093 0.123
Right 0.342 −0.377 0.178 0.719 0.123 0.151

Table 6 shows the values of UTS (Ultimate Tensile Strength), YS (Yield Strength), and
Elongation at fracture (Elong) in the vertical direction. The values are acceptable within
those previously reported in the literature [18,19,21,35].

Table 6. Summary of the mechanical properties of the WAAM mild steel wall.

Test Direction UTS (MPa) YS 0.2% (MPa) Elong. (%)

Vertical Direction 476 ± 2.41 365 ± 5.67 40 ± 2.6

5. Conclusions

This paper presented a methodology for the correct trajectory definition that avoids
material detachment and ensures correct material deposition, applicable to both GMAW
welding and additive manufacturing by the same technology. Some of the conclusions that
emerged from this research are as follows:

• By using a profilometric scanner, the geometry of the layer was obtained to determine
the centroid that divides the deposited material into two equal parts.

• The maximum symmetry point and the symmetry of the layer were also obtained.
In itself, this result allows us to establish a control of the process, detecting early on
deviations with respect to the correct development of the process.

• By means of the symmetry point and the centroid, a methodology for the definition of
the interlayer trajectory was established that allows us to compensate for a deviation
from the incorrect layer growth.

• The surface quality of the demo wall was analysed, and it has an average ripple of
126 microns on one side and 98 microns on the other side.

• This methodology was applied to the fabrication of an ER70-6 mild steel multi-layer
wall with correct growth and compared to welding without the application of the
methodology, thus improving the process in cases of high deposition rate.

• As a future line of research, it would be of interest to extend the application of this
methodology to more complex parts or to welds in different types of joints.

Author Contributions: Conceptualization, F.V. and A.S.; data curation, D.C. and F.V.; formal analysis,
D.C. and F.V.; investigation, F.V. and A.S.; methodology, D.C. and F.V.; project administration, A.S.
and PV; supervision, A.S.; validation, D.C.; writing—original draft, D.C. and F.V.; writing—review
and editing, D.C., P.V. and A.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2023, 15, 268 16 of 17

References
1. Gyasi, E.A.; Kah, P.; Penttilä, S.; Ratava, J.; Handroos, H.; Sanbao, L. Digitalized Automated Welding Systems for Weld Quality

Predictions and Reliability. Procedia Manuf. 2019, 38, 133–141. [CrossRef]
2. Liu, Y. Toward Intelligent Welding Robots: Virtualized Welding Based Learning of Human Welder Behaviors. Weld. World 2016,

60, 719–729. [CrossRef]
3. Kah, P.; Shrestha, M.; Hiltunen, E.; Martikainen, J. Robotic Arc Welding Sensors and Programming in Industrial Applications. Int.

J. Mech. Mater. Eng. 2015, 10, 13. [CrossRef]
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