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1. Introduction

One of the important concepts of real analysis and mathematical programming is
convexity. Due to its various applications in various fields such as applied mathematics,
engineering sciences and other fields, this notion has been extended and generalized in
several directions and in various ways.

In [1], Meftah introduced the class of (s, m)-preinvex functions.

Definition 1 ([1]). Function C : K C [0,b*] — R is said to be (s, m)-preinvex with respect to 1],
whereyy(.,.) : Kx K— R, b* > 0ands,m € (0,1], if

Cl+pm(e ) < (1=)°C(l)+mpC(3)
holds forall l,e € K, and j € [0,1].

The previous class of function includes several classes depending on the values
of s,m and 7(.,.). Among these classes, we have convex functions [2], m-convex func-
tions [3] , s-convex functions in the second sense [4], (s, m)-convex functions in the second
sense [5], preinvex functions [6], m-preinvex functions [7] and s-preinvex functions in the
second sense [8].

In numerical analysis, numerous quadrature rules have been established to approxi-
mate the integrals defined under the aforementioned convexity classes; see [9-20].

The following inequalities are well known in the literature as Simpson’s inequalities:

Hew +ac(Be) +ce) - eljcw)du < ﬁHC(‘”Hw(e—Z)‘L,
I
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and
e +ac(2e) +3c(B) +ce) - E%,/C(u)du < ﬁHcWHw(e— 1,

where f is a four times continuously differentiable function on [/,¢], and HC ®) H =

C®(x) ’

sup
xe(le]
As the above inequalities are very popular in estimating errors of quadrature rules,
many researchers have massively studied them, as well as similar inequalities; one can
consult, for example, [21-30] and references therein.
In [31], Hua et al. offered the following Simpson-type inequalities:

e
Lew +2c(2ge) +20(B2) +c(e) - é/C(u)du
l
1 1
7 (e—1)2 s 2+ 5)22+s e—N2\ 1
< &5 (((35(1)15)(;1273&3 "D+ smrErs (@) C(45>>

1
—1)22+545 (=2 \ 1
+(stmm (0 +le@r) -

1
e—1)2\ 17
C//( )’q_c(45) > >

q (s 3)32+s+(7+s)22+s
+(35(2+s)3+s’6,/ W'+ Sames e

and

L(ew +2e(2e) +2c(H) +c(e) - & [Clu)du
S (wrten) | (235 35))

< 31+s 21+s) |C// |'i + |C//(€)|q _C7(e—l);is(1+s))$

1
21+s _ ‘C” |q + |C”(€) ’q) B Cl3(el)52435(1+s)> q

IN

1
i (|C”(l)|q + (3l+s _21+s> |C”(e)|q _ e 1)525(1+5)) )

In [32], Chiheb et al. established some Simpson-type inequalities for functions whose
second derivatives are prequasi-invex, the results of which are based on the following identity:

Lemma 1 ([32]). WeletC : [I,1+n(e,1)] — R bea function such that C' is absolutely continuous
and C" is integrable on (1,1 + 1 (e, 1)], then the following equality holds:

Fete) = T [a-pler(i+ )

+¢"(1+ 22y eD)) +c“(z+%q(e,1))}d], 1)
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where

Flel,0) = §(c@)+20(34el) o (3HRED) 4o+ (e, D)) )
I+1(el)

~iy [ clwdn. @)
1

In this paper, using the identity declared in [32], we establish some Simpson-type in-
equalities for twice differentiable (s, m)-preinvex functions. Some special cases are derived.
Applications to quadrature formulas and inequalities involving means are provided.

2. Main Results

The following special functions as well as the algebraic inequality are useful to
our study.

Definition 2 ([33]). The beta function is defined for Rel>0 and Ree>0 as follows:

1

B(l,e) = [/ =) ay
0

Definition 3 ([34]). The hypergeometric function is defined for Rec > Ree > 0 and |z| < 1

as follows:
1

2Fi(le,i2) = gty [ 1711 =) (1 = 2) ),
0

Lemma 2 ([35] Discrete Power mean inequality). Foranyl,e > 0and 0 < ¢ <1, we have
1€ 4ef <21+

Theorem 1. Welet C : [I,1+n(e,1)] C (0,00) — R be a twice differentiable function such that
C"eL|[l,l+n(e) If|C"| is (s, m)-preinvex for some fixed s,m € (0, 1], we have

2 E,l 2+25+3+3S+2 s+ 6+3X2$+3*3$+3 e
IF(e,1,C)] < &0 (( 35(S+3)(S(+2>(s+3) )) (IO mle™ ()

where F (e,1,C) is defined as in (2).

),

Proof. From Lemma 1, properties of modulus and (s, m)-preinvexity of |C”| on [I,] + 1 (e, 1)],
we have

F(e1,0)
1
< g (/](1 |+ Saten) |4
1 ' 1
+ [ia=plfr 1+ ) g+ [a-ple(1+ “”;we,l))\d])
0 0

1
< g ( [ia=p () 1ol +m(52) 17 (5]
0
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1

+/](1—] ((1+]) ‘f’/ |+M(%)S’fﬂ(%)|>d]

+ L=l m () 1)) )
i w(‘f”(m/ = (5) @+ mlr )| fr0-0)(552)

1

1 X ;
+H £ \/ (1-n (% )d1+m|f”(%)!/1(1*1)(?) dj
0

0

! 1
W] 10 =G d+mlf(5)] [0 —1)(33‘])5@)
0

0

g \+m\f”(%)!)

(/]1—1 (%) d1+/11—1 d1+/11—1 é)dj)

= TEL(|F 0] +mlf" ()
(2s+2+3s+2)s+7><25+2_35+3 (25+2+1)s+5_zs+2 st1
35(s+1)(s+2)(s+3) 35(s+1)(s+2)(s+3) 35(s+1)(s+2)(s+3)

),

2 ,l 2+25+3+3s+2 + 6+3><25+3_3s+3
P () (/@] + ()

where we used the facts that

1

1
/(1_])(2+]) d] = /](l—])( ) d]
O ?25+2+35+2)s+7x25+2_3s+3

35(s+1)(s+2)(s+3) ’

147)° 257241)545-25"2
/](1—])(%> dj /1—1 T] d] (3$(s+1)‘()s+z)‘(s+3‘)

and

The proof is finished. [J

Corollary 1. Takings =m = 1land 5(e,1) = e — I, Theorem 1 becomes

e

et a0() +20(1) i) -1 ferrn

1
< S (e + @)

®)

4)

©)
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Theorem 2. Under the assumptions of Theorem 1, if |C"|T where q > 1, is (s, m)-preinvex in the
second sense for some fixed s, m € (0,1], with % + % =1, we have

\F(LeC)

1
2 E,l 1 3S+1725+1 C// 11+m C// % q q
”é4)(B(p+1,p+1>>P<(< Ml )')

1
4 ((25“1><|C”<m‘*+m|c"<;>|q>) i (cmmm(asﬂzs+1>|c~<:,>|”> )

IN

35(1+s) 35(1+s)

where | (1,e,C) is defined as in (1.2).

Proof. From Lemma 1, properties of modulus, Holder’s inequality and (s, m)-preinvexity
of [C"|Ton [I,1 +1(e,1)], we have

[F(LeC)|
< el)(/] C// el)’d]
+/](1—])c"( el)‘d]+/t1—t ¢ (1435 el)‘cﬁ)
0
g 1 ;
< rEh (/J” pd]) (/ e |q+m(?) |C”(;)l)d1)
0

+(/01<(1+]> e |q+m(
+(F (e "’+m(3f)s\c"<:1w)df)q>

_ 3/ (1-)’d
54><3q(] ] J

X (|C”(l)]q

1
1 1 q
+<|C”(l)|q/(1+])sd]—|—m|C” o[- d])
0

0

1 i
<|C” |/]sd]+m|C"(%)| /(3—1)551])
0

1
1 3s+1_os+1) o (1)1 c'(e 9\ q
= ’7(61)( (P+1 P+1))p<<( )‘35(§+)‘5)+M| (m)| >

1
+ <(25“—1)(C”< q+m|€”(£)lq))q + (c"mum(s”l—f“)C”W'q) ;>,

AT

-N
N—
@

aQ

I

—~

SIS

~—

=
~—r

=
N——

1 q
(2+7)°d+m|C" () |q/(1 — ])sd])

0

o~~~

3 (1+s) (ED)

which completes the proof. [
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Corollary 2. Tukings =m = 1and 5j(e,1) = e — I, Theorem 2 becomes

e

Lem +2c(2ge) +ac () +c(e)) - gj/coodu

1

1
—1)? L r51e"()T+|c" ()| ) 4
< (654) (B(p+1,p+1))? (( e ;r‘ L )q
1 1
"M +|C" ()" \ 4 c"(D|+5|C" (e)|T\ 4
+(| 0l 2\ (e)\)q+<\ Ol 6\ (6))‘7>.
Corollary 3. In Corollary 2, using the discrete power mean inequality, we obtain

e +20(25) (%) i) - 4 e

2 " " a
< CBp11,pr1)) (\c ()4l (e)\”)a'

Theorem 3. Under the assumptions of Theorem 2, if |C"'|T is (s, m)-preinvex in the second sense
for some fixed s,m € (0,1] and q > 1, we have

[F(l,e,C)|
1
2(53,[) 25+2+3S+2)S+7X25+273S+3 q i
< e <<< sermeraes ¢ O + 5w ¢ G

25+2+1 +5 25+2 1
+(gs(s+1)2;2)(5+3) (Ie" ) +mlc”(£)[7)"

==

2s+2+35+2 S+7><25+2_3S+3
+ (3s(s+2)(s+3)|C”( )|+ +m! 35(s+13(s+2)(s+3) | "(51)@

)

Proof. From Lemma 1, properties of modulus, power mean inequality and (s, m)-preinvexity
of |f"|Ton [I,1+ 7(e,1)], we obtain

where [ (1,e,C) is defined as in (1.2).

\F(LeC)
< ’7(61 (/] C// el)‘d]
+/](1—])C”( el ‘d]—i—/]l—] C”( el)‘d])
0

1
q

o) (o

e (1+ Sy(en) \"d])
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NN

1
q

IN
q
O\\H

(/ a-n((&) le"a |q+m(lg,])s|c”(§1)\q)d1)
(/11—1 ) le"a |"+m(2§])slc”(,§)|q)d1)

1
q

1 1 %
= SZ:{Z}% (|C”( )| {J(l—J)(z?) d]+m|C“(r‘;1)|q4](l—J)(1?) d])
1 g
<|C" 1= () d+mle" ()" [10 —])(23]>sd])
0
1 g
(C” [1a=n@E g +mle" (&))" [a-n- é)sdf)
0

1
el 2>+2+35+2)S+7X25+2 35+3 g . ) 1
N 54x6 *% <<( 35(s+1)(5+2)(s+3) |c"(1)] +W‘6H(ﬁ)’ )

2542415452542 i
+(gs(s+1)()s+2)(s+3)> <|C” (D] +m|c” (%) )q

By

’C” ‘q + m (25+2+35+2)5+7><25+2735+3 | /,(%) ‘q)

+ (35(s+2) G73) S (512)(513)
where we used (2.1)-(2.3). The proof is completed. [

Corollary 4. Takings =m = 1and yj(e,1) = e — I, Theorem 3 becomes

e +ac(25e) +ac(H2) +cle) - 4 l/c

e—1)2 [ (5|C" (D)) T+|C" (e)| 7 ()14 (e)| 7
< (324) (( ()\;rl ()\)q+(\ ()Ier\ ()I)q

1
+(IC (l)|‘7+65\c (6)|q)">.
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Corollary 5. In Corollary 4, using the discrete power mean inequality, we obtain

e

Lew +2e(2e) +2c(H) +e(e) - & [Cluydu

1
—0)* ("M +[C" @)\
< (6108) (I Ul 2\ ()] )’7‘
Theorem 4. Under the assumptions of Theorem 2, we have the following inequality:
F(Le,C)|
1 l
2 v Fi(—s10+2;} +1 +1) 1
< (k) (Lo w1

1
25X F; 1+2 25X, F; ,,+1,+2 q
(Zhlr e )7 4 m2n o) o ) 1)

1
B (—sq+14+23 7
<3S(q+s+1)|C” Ik mzl( SZ+1q3)|C”(;)|> )

where F (1,e,C) is defined as in (1.2) and B and o F; are beta and hypergeometric functions, respec-
tively.

Proof. From Lemma 1, properties of modulus, Holder’s inequality and (s, m)-preinvexity
of |f"|7on [a,a +n(b,a)], we have

[F(1eC)l

1 1
Zel) (/(1_])pdt)
0

+ (7]‘7 C”(l + %U(e,l)) ‘qd]>
0

IN

<
—
\)—‘
~
-

Q
—
—

+
—_
.
=
—
o
—

N—
~
2
SN————

|

IN
<
o
= o
—
=
3
il
N—
==
Q
I
—~
=
N—
-
=
-
—
e
w‘+
-
N—
wn
R
Q
—
SIS
S—
-
=
-
—
—_
w‘ |
-
N—
wn
R
SN———

1

1 1
= 5 () ((W!cw P e ()’

1
25, F 1, +2 25, F; +1, +2 q
B R e O

1
Fi(—sg+1,4+2} e 7
(smlerop + mACzatien ) ),
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where we used

JiCya = dron(onizd)
]ﬂ(l?)sdf = ()Ba+1s+1),

0

Zﬂ(%ﬂ)sdf = (3 heh(-s1a+21),
ZW?)SW = 'R (-sq+19+21),
qu(é)sdf = ()t

ZMS?)SW = R (st 1+2}),

The proof is completed. O

Corollary 6. In Theorem 4, taking s = m = 1 and n(e,1) = e — I, we obtain

Lem +2c(25e) +ac(H2) +c(e /c

) ; (<3q+5>|c"<l)|q+\6”(e>|q) g
p+1 (g+1)(9+2)

+ (Rl e P (e e e 3) _

IN
I~
m
L
=
S
/N
‘w

(9+1)(g+2) (9+1)(g+2)

3. Applications
We let Y be the partition of points I = xg < x1 < -+ < x,, = a of interval [],e] and
consider quadrature formula

/C(u)du = A(C,Y) +R(C,Y),
1

where

Z Xig1— x,( X; +2C(M)+2C<m)+c(xi+l))

and R(C,Y) is the error of approximation.

Proposition 1. We let C be as in Theorem 1 and n € N. If |C"|" is an s-convex function in the
second sense for some fixed s € (0, 1], we have

xz xl 2+2>+3+3s+2 s 6+3><2‘:+3 3s+3
Z 51 ( 3%5-&-%)(55—2)(5-&-3) )(!C”(xi)| +[C"(xi41)])-
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Proof. Applying Theorem 1 with#(e,I) =e—Ilandm =1on [x;,x;41] (i=0,1,...,n—1)
of partition Y, we obtain

L (Clw) +2¢ (Bt ) o0 (M55 ) 4 C(xipa) ) - xi+11xix7l(3(u)du

Xi

2+2€+3+3S+2 s+ (643 25+3 3S+3
< Z Gy ( AL )) (IC” (x)] + [€" (xiv1)])-

We add the above inequalities foralli = 0,1, ...,#n — 1, and then multiply the resulting
inequality by (x;.1 — x;). The desired result follows from the triangular inequality. []

Proposition 2. We let C be as in Theorem 1 and n € N. If |C"| is convex function where p,q > 1
with % + % =1, we have

n—1 3 v oo
R(C,Y)| < Y- Bt (Bp 11, p 4 1)) (1 )Ty,
i=0

Proof. Applying Corollary 3 on [x;,x;41] (i =0,1,...,n — 1) of partition Y, we obtain

X71C(u)du

Xi

Xit1—Xi

ety w2 (25) (35355 1 ) -

< Z G5 (B(p 11, p 1)) <|cf"< >|‘*+Z\C"<xi+1>|").

We add above inequalities for alli = 0,1,...,n — 1, and then multiply the resulting
inequality by (x;;1 — x;). The desired result follows from the triangular inequality. [J

Proposition 3. We let C be as in Theorem 1 and n € N. If |C"| is convex function where p,q > 1
with % + % =1, we have

(S 5[ ( Ga5)IC" ) T4 1C" i)\ ©
IR(C,Y)| < %(p%) (((q )\(( ))\(DH_IZ)(XH)\)

0
1
(2043)1C" (x) "+ (g3) € (s )I7 \ 7
+( AL gIc )l )

(g D)IC” ()1 + (2045)[C” (i)' ) g
(q+1)(q9+2) )

+

Proof. Applying Corollary 6 on [x;,x;1] (i =0,1,...,n — 1) of partition Y, we obtain

Xit+1

L(e(u) +20 (2 oc (435 4 C(xip)) - gl /C(u)du

Xi

n—l

1 1
(xi x, 3 \7 [ (Ba+5)C" (x)|"+H|C" (xipa)|"\ 7
< L () (g )

1 1
2q3)]C" )+ (g+3)C" es) T\ T, ( G+ DIC" ()l + 24+5)[C" (rie)|\ 7
+( el ) T ( CES)ICEE ))

We add above inequalities for alli = 0,1, ...,n — 1, and then multiply the resulting
inequality by (x;;1 — x;). The desired result follows from the triangular inequality. [J
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For arbitrary real numbers [, ¢, t, we have:
The arithmetic mean: A(l,¢) = HTE and A(l, e t) = l+3¢+t

1
The p-logarithmic mean: £, (1, e) = (%) ’,l,e>0,] #eand p € R\{-1,0}.

Proposition 4. Welet [,e € Rwith 0 < | < e, then we have
2 1
A(B,&) + A1 Le) + A (e e) —3L3(Le)| < L5 (15",
Proof. The assertion follows from Corollary 5, with g > 2, applied to function f(x) = x3. O
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