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Abstract: The main outcome of this work is the construction of a surface pencil with a similarity to
Bertrand curves in Euclidean 3-space E3. Then, by exploiting the Serret–Frenet frame, we deduce the
sufficient and necessary conditions for a surface pencil with Bertrand curves as joint curvature lines.
Consequently, the expansion to the ruled surface pencil is also designed. As demonstrations of our
essential findings, we illustrate some models to emphasize the process.
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1. Introduction

The curvature line is one of the most significant curves on a surface, and it plays
a main role in differential geometry [1–4]. It is a helpful tool in surface examination for
showing the dissimilarity of the principal direction. The harmonic principal curvature
and curvature lines are also significant features on regular surfaces. The curvature line
can guide the investigation of surfaces, and it has been applied in geometric design, shape
recognition, surface polygonization, and surface accomplishment. For instance, Martin [5]
systematically inspected surface patches confined by curvature lines, which are called
principal patches. Furthermore, he showed that the presence of such patches depended
on the corresponding confirmed situation and the corresponding frame situations along
the patch border curves. Alourdas et al. [6] addressed a mode for initializing a net of
curvature lines on a B-spline surface. Maekawa et al. [7] proposed a technique to leverage
the common advantages of free-shape parametric surfaces for form analysis. Also, they
investigated the common advantages of the umbilic and attitude curvature lines that pass
through the umbilici on a parametric free-shape surface. Che and Paul [8] expanded a style
to resolve and calculate the curvature lines and their geometric features specified on an
implicit surface. Moreover, they proposed a new standard for non-umbilical and umbilical
points on an implicit surface. Zhang et al. [9] demonstrated a planner for calculating
and visualizing the curvature lines defined on an implicit surface. Kalogerakis et al. [10]
determined a powerful substructure for initializing curvature lines from point clouds. Their
approach is applicable to surfaces of random genus, with or without boundaries, and is
statistically robust to noise and outliers while preserving serious surface characteristics.
They demonstrated the approach to be efficient over a range of synthetic and real-world
input datasets with varying amounts of noise and outliers.

However, crucial work has also focused on the reverse issue: given a 3D curve, how
can we locate those surfaces that are to be interfaced with this curve as a distinctive
curve, if possible, rather than locating and furnishing curves on analytical curved surfaces?
Wang et al. [11] were the first to address the issue of assembling a surface pencil with a
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designated locative geodesic curve, through which every surface can be a candidate for
mode style. They demonstrated the necessary and sufficient conditions for the coefficients
to be satisfied by both the iso-parametric and geodesic demands. A variety of studies
have investigated the issue of surface pencils with distinctive curves [12–24]. The similarity
among curves is a popular topic in curve theory. The Bertrand curve is one of the traditional
private curves. If there is a linear consanguinity among the principal normal vectors of
two curves at their matching points, the two curves are considered a Bertrand pair [1,2].
The Bertrand curve can be investigated as the popularization of the helix. Bertrand curves
are characteristic examples of offset curves, which are used in computer-aided manufac-
turing (CAM) and computer-aided design (CAD) (see [25–29]). Nevertheless, to the best
of our knowledge, no work has been conducted on establishing surface bundle pairs with
Bertrand pairs as principal curves in Euclidean 3-space E3. This work aims to fill this gap.

The major advantage of this work is the establishment of a surface pencil pair from
a given Bertrand pair. Hence, the sufficient and necessary conditions for the specified
Bertrand pair to be the principal curves are specified in detail. As an implementation, some
interesting Bertrand pairs are chosen to create their corresponding surface pencil pairs
that have such Bertrand pairs as principal curves. We extended the study to ruled surface
pencil pairs.

2. Preliminaries

To provide a foundation for the next section, here, the primary constituents of the
theory of curves in the Euclidean 3-space E3 are briefly specified [1,2]. Consider the Serret–
Frenet apparatus ς1(u), ς2(u), ς3(u); κ(u), τ(u)} related to the unit speed curve ω(u). Then,
the Serret–Frenet formulae is expressed as follows: ς′1

ς′2
ς′3

 =

 0 κ(u) 0
−κ(u) 0 τ(u)
0 −τ(u) 0

 ς1
ς2
ς3

,
(
′ =

d
du

)
, (1)

where κ(u) and τ(u) are the natural curvature and torsion of ω(s), respectively.

Definition 1. Let ω(u) and ω̂(u) be two curves in E3 and ς2(u) and ς̂2(u) are their principal
normal vectors, respectively. Then, the pair {ω(u), ω̂(u)} is named a Bertrand pair if ς2(u)
and ς̂2(u) are linearly dependent at the matching points, ω(u) is called the Bertrand mate of
ω̂(u), and

ω(u) = ω̂(u) + f ς̂2(u), (2)

where f is a constant [1,2].

We denote a surface S as

S : r(u, t) = (r1(u, t), r2(u, t), r3(u, t)), (u, t) ∈ D ⊆ R2. (3)

If rj(u, t) = ∂r
∂j , the surface normal is

n(u, t) = ru × rt, with < n, ru >=< n, rt >= 0. (4)

The well-known theorem below establishes the conditions for any curve on a surface
S to be the principal curve [1,2].

Theorem 1. (Monge’s Theorem) A curve on a surface is a curvature line if and only if the surface
normals along the curve create a developable surface [1,2].

An iso-parametric curve is a curve ω(u) on a surface r(u, t) that has a fixed s or t
variable. In other words, there exists a value t0 such that ω(u) = r(u, t0) or ω(t) = r(s0, t).
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Let ω(u) be a parametric curve, which we call an iso-curvature line (curvature line for
short) on the surface r(u, t) if it is both a curvature line and a parameter curve on r(u, t).

3. Main Results

This section describes a process for organizing a surface pencil pair with a Bertrand
pair as joint curvature lines in E3. With this objective, let ω̂(u) be a unit speed curve, ω(u)
be its Bertrand mate, and {ς̂1(u), ς̂2(u), ς̂3(u); κ̂(u), τ̂(u)} be the Serret–Frenet apparatus
of ω̂(u), as in Equation (1). The surface pencil S with ω(s) can be written as [13]

S : r(u, t) = ω(u) + a(u, t)ς1(s)+b(u, t)ς2(s)+c(u, t)ς3(s), (5)

and the surface pencil Ŝ with ω̂(u) is

Ŝ : r̂(u, t) = ω̂(u) + a(u, t)ς̂1(s)+b(u, t)ς̂2(s)+c(u, t)ς̂3(s). (6)

where a(u, t), b(u, t), c(u, t) are all C1 functions, and T1 ≤ t0 ≤ T2, 0 ≤ s ≤ L. If the
variable t is defined as time, the functions a(u, t), b(u, t), and c(u, t) can then be realized as
the directed marching distances of a point unit in time t along the orientations ς̂1, ς̂2, and
ς̂3, respectively, and the vector ω̂(u) is considered the initial position of this point.

Our aim is to infer the sufficient and necessary conditions for which ω̂(s) is an iso-
parametric curvature line on Ŝ. Firstly, since the directrix ω̂(u) is an iso-parametric curve
on Ŝ, there exists a value t = t0 such that ω̂(u) = r̂(u, t0), that is, we obtain

a(u, t0) = b(u, t0) = c(u, t0) = 0 (7)
∂a(u, t0)

∂u
=

∂b(u, t0)

∂u
=

∂c(u, t0)

∂u
= 0.

Then,

n̂(u, t0) :=
∂r̂(u, t0)

∂u
× ∂r̂(u, t0)

∂t
= −∂c(u, t0)

∂t
ς̂2 +

∂b(u, t0)

∂t
ς̂3. (8)

Secondly, with a definite angle ϕ(u), we have a unit vector

ĝ(u) = cos ϕς̂2(u)+ sin ϕς̂3(u). (9)

Using the Serret-Frenet formulae, we find that

ĝ
′
= (ϕ

′
+ τ̂)ĝ⊥ − κ̂ cos ϕς̂1.

Moreover, the ruled surface

z(u, t) = ω̂(u) + tĝ(u); t ∈ R,

is a developable one if and only if det(ω̂
′
, ĝ, ĝ

′
) = 0, that is,

ϕ
′
(u) + τ̂(u) = 0⇔ ϕ(u) = ϕ0 −

u∫
u0

τ̂(u)du,

where u0 is the initial value of the arc length and ϕ0 = ϕ(u0). Hence, via Monge’s Theorem
and Equations (8) and (9), ω̂(u) is a curvature line on Ŝ if and only if ĝ(u)‖n̂(u, t0). In other
words, there exists a function χ(u) 6= 0 such that

− ∂c(u,t0)
∂t = χ(u) cos ϕ, ∂b(u,t0)

∂t = χ(u) sin ϕ,

ϕ(u) = ϕ0 −
u∫

u0

τ̂(u)du.

 (10)
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From Equations (7) and (10), we obtain the following theorem:

Theorem 2. ω̂ = ω̂(u) is a curvature line on Ŝ if and only if

a(u, t0) = b(u, t0) = c(u, t0) = 0,
∂c(u,t0)

∂t = χ(u) cos ϕ, ∂b(u,t0)
∂t = χ(u) sin ϕ,

ϕ(u) = ϕ0 −
u∫

u0

τ̂(u)du,

 (11)

where T1 ≤ t0 ≤ T2, 0 ≤ u ≤ L, and χ(u) 6= 0. The functions χ(u) and ϕ(u) are called
controlling functions.

We refer to Ŝ, as defined in Equation (6) and fulfilling (11), a surface pencil with a joint
curvature line. Any surface r̂(u, t), as defined in (5) and fulfilling (11), is an element of this
bundle. For further details, the functions a(u, t), b(u, t), and c(u, t) can be expressed as the
product of two factors:

a(u, t) = l(u)A(t), b(u, t) = m(u)B(t), c(u, t) = n(u)C(t) (12)

where l(s), m(s), A(t), B(t), and C(t) are C1 functions that do not identically vanish. Then,
from Theorem 2, we obtain:

Corollary 1. ω̂ = ω̂(u) is a curvature line on Ŝ if and only if

A(t0) = B(t0) = C(t0) = 0,
−n(u) dC(t0)

dt = χ(u) cos ϕ, m(u) dB(t0)
dt = χ(u) sin ϕ,

ϕ(u) = ϕ0 −
u∫

u0

τ̂(u)du,

 (13)

where T1 ≤ t0 ≤ T2, 0 ≤ u ≤ L, and χ(u) 6= 0.

However, we can assume that a(u, t), b(u, t), and c(u, t) are based only on t. In other
words, l(u) = m(u) = n(u) = 1. Then, we inspect condition (13) via the diverse terms of
ϕ(u):

(i) If τ̂(u) 6= 0, then ϕ(u) is a non-steady function of variable u, and condition (13) can be
expressed as

A(t0) = B(t0) = C(t0) = 0,
− dC(t0)

dt = χ(u) cos ϕ, dB(t0)
dt = χ(u) sin ϕ,

}
(14)

(ii) If τ̂(u) = 0, that is, the curve is a planar curve, then ϕ(u) = ϕ0 is fixed and we have:

(a) In the situation of ϕ0 6= 0, condition (13) can be expressed as

A(t0) = B(t0) = C(t0) = 0,
− dC(t0)

dt = χ(u) cos ϕ0, dB(t0)
dt = χ(u) sin ϕ0.

}
(15)

(b) If ϕ0 = 0, condition (13) can be expressed as

A(t0) = B(t0) = C(t0) = 0 = 0,
− dC(t0)

dt = χ(u), dB(t0)
dt = 0,

}
(16)

and from Equation (13), the normal n̂(s, t0)(= ĝ(u)) is coincident with ς̂2. In this
case, the curve ω̂=ω̂(u) is not only a curvature line but also a geodesic.
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Example 1. Let

ω̂(u) = (
1√
2

cos u,
1√
2

sin u,
u√
2
), 0 ≤ u ≤ 2π.

Then,
ς̂1(u) =

1√
2
(− sin u, cos u, 1),

ς̂2(u) = (− cos u,− sin s, 0),
ς̂3(u) =

1√
2
(sin u,− cos u, 1),

κ̂(u) = τ̂(u) = 1√
2
.


So, we find that ϕ(u) = − u√

2
+ ϕ0. If ϕ0 = 0, we have ϕ(u) = − u√

2
. Let

l(u) = m(u) = n(u) = 1,

A(t) = t, B(t) = −tχ(u) sin
u√
2

, C(t) = −tχ(u) cos
u√
2

, χ(u) 6= 0.

Then, from Equation (6), we obtain

Ŝ : r̂(u, t) = (
1√
2

cos u,
1√
2

sin u,
u√
2
) + t(1,−χ sin

u√
2

,−χ cos
u√
2
)

×

 −
1√
2

sin u 1√
2

cos u 1√
2

− cos u − sin u 0
1√
2

sin u − 1√
2

cos u 1√
2

.

Hence, the surface pencil S is obtained as follows: Let f =
√

2 in Equation (2), and we find that

ω(u) = (− 1√
2

cos u,− 1√
2

sin u,
u√
2
).

The Serret–Frenet vectors of !(u) are found as follows:

ς1(u) =
1√
2
(sin u,− cos u, 1), ς2(u) = (cos u, sin u, 0), ς3(u) =

1√
2
(− sin u, cos u, 1).

Then,

S : r(u, t) = (− 1√
2

cos u,− 1√
2

sin u,
u√
2
) + t(1,−χ sin

u√
2

,−χ cos
u√
2
)

×


1√
2

sin u − 1√
2

cos u 1√
2

cos u sin u 0
− 1√

2
sin u 1√

2
cos u 1√

2

.

For χ = u, −5 ≤ t ≤ 5, and 0 ≤ u ≤ 2π, the corresponding surfaces are depicted in Figure 1.
Figure 2 shows the surface with χ = −u, −5 ≤ t ≤ 5, and 0 ≤ u ≤ 2π.

Figure 1. Ŝ (red) ∪ S (yellow) surfaces.
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Figure 2. Ŝ (red) ∪ S (yellow) surfaces.

Example 2. Let ω̂(u) be expressed as

ω̂(u) = (cos u, sin u, 0), 0 ≤ u ≤ 2π.

Then,

ς̂1(u) = (− sin u, cos u, 0), ς̂2(u) = (− cos u,− sin u, 0), ς̂3(u) = (0, 0, 1).

The curvatures of this curve are κ̂ = 1, τ̂ = 0, and ϕ(u) = u
2 . By taking

l(u) = m(u) = n(u) = 1,

A(t) = t, B(t) = tχ(u) sin
u
2

, −C(t) = tχ(u) cos
u
2

, χ 6= 0.

Then,

Ŝ : r̂(u, t) = (cos u, sin u.0) + t(1,−χ(u) sin
u
2

, χ cos
u
2
)

 − sin u cos u 0
− cos u − sin u 0

0 0 1

.

Let f = 2 in Equation (2). Then, we obtain

ω(u) = (− cos u,− sin u, 0),

and
ς1(u) = (sin u,− cos u, 0), ς2(u) = (cos u, sin u, 0), ς3(u) = (0, 0, 1).

Hence, the surface pencil S is

S : r(u, t) = (− cos u,− sin u.0) + t(1,−χ(u) sin
u
2

, χ cos
u
2
)

 sin u − cos u 0
cos u sin u 0

0 0 1

.

For χ = u, 0 ≤ t ≤ 2, and 0 ≤ u ≤ 2π, the corresponding surfaces are depicted in Figure 3.
Figure 4 shows the surface with χ = −u, 0 ≤ t ≤ 2, and 0 ≤ u ≤ 2π.

Figure 3. Ŝ (red) ∪ S (yellow) surfaces.
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Figure 4. Ŝ (red) ∪ S (yellow) surfaces.

Ruled Surface Pencil Pairs with Bertrand Pairs as Joint Curvature Lines

Let r̂(u, t) be a ruled surface with the directrix ω̂(u), and ω̂(u) is also an iso-parametric
curve of r̂(u, t). Then, there exists a value t0 such that r̂(u, t0) = ω̂(u). From this, it follows
that the ruled surface pencil Ŝ can be given by

Ŝ : r̂(u, t)− r̂(u, t0) = (t− t0)ê(u), 0 ≤ s ≤ L, with, t, t0 ∈ [T1, T2], (17)

where ê(u) specifies the orientation of the rulings. From Equations (6) and (17), we obtain

(t− t0)ê(u) = a(u, t)ς̂1(u)+b(u, t)ς̂2(u)+c(u, t)ς̂3(u). (18)

0 ≤ u ≤ L, with t, t0 ∈ [T1, T2]. Equation (20) governs three equations with three unknown
functions a(u, t), b(u, t), and b(u, t). By utilizing the scalar product’s rule, we obtain

a(u, t) = (t− t0) < ê(u), ς̂1(u) >,
b(u, t) = (t− t0) < ê(u), ς̂2(u) >,
b(u, t) = (t− t0) < ê(u), ς̂3(u) > .

(19)

Via Corollary 1, if ω̂(u) is a curvature line of Ŝ, we obtain

a(u, t) = 0,
χ(u) sin ϕ =< ê(u), ς̂2(u) >,
−χ(u) cos ϕ =< ê(u), ς̂3(u) > .

(20)

The above equations are simply the necessary and sufficient conditions for Ŝ to be a ruled
surface pencil with joint directrix β(u). Let us write

ê(u) = υ(u)ς̂1(u) + σ(u)ς̂2(s) + µ(u)ς̂3(s), (21)

where υ(u), σ(u), and µ(u) are all C1 functions. From Equations (19) and (21), we obtain
σ(u) =< ê(u), ς̂2(u) >= χ(u) sin ϕ, µ(u) =< ê(u), ς̂3(u) >= −χ(u) cos ϕ.

Then,
ê(u) = υ(u)ς̂1(u) + χ(u) sin ϕς̂2(u)− χ(u) cos ϕς̂3(u).

Hence, the ruled surface pencil Ŝ can be designated as

Ŝ : r̂(u, t) = ω̂(u) + tυ(u)ς̂1(u) + tχ(u)(sin ϕς̂2(u)− cos ϕς̂3(u)),

and the ruled surface pencil S is

S : r(u, t) = ω(u) + tυ(u)ς1(u) + tχ(u)(sin ϕς2(u)− cos ϕς3(u)), .
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where 0 ≤ u ≤ L, 0 ≤ t ≤ T, and υ(u), χ(u), and ϕ(u) control the shapes of the surface
pencils S and Ŝ.

Example 3. Via Example 1, we obtain:

Ŝ : r̂(u, t) =


1√
2
(cos u− tυ(u) sin u) + tχ(u)(sin u

2 cos u + 1√
2

cos u
2 sin u)

1√
2
(sin u− tυ(u) cos u) + tχ(u)(sin u

2 sin u− 1√
2

cos u
2 cos u)

u√
2
+ t(υ(u)− χ(u) cos u

2 )

,

and

S : r(u, t) =


−1√

2
(cos u− tυ(u) sin u) + tχ(u)(sin u

2 cos u + 1√
2

cos u
2 sin u)

−1√
2
(sin u + tυ(u) cos u) + tχ(u)(sin u

2 sin u− 1√
2

cos u
2 cos u)

u√
2
+ t(υ(u)− χ(u) cos u

2 )

.

For χ(u) = 1
10
√

2
u, υ(u) = 1, −5 ≤ t ≤ 5, and 0 ≤ u ≤ 2π, the corresponding ruled surfaces are

depicted in Figure 5. Figure 6 shows the ruled surface with χ(u) = 1
10
√

2
u, υ(u) = 1, −3 ≤ t ≤ 3,

and 0 ≤ s ≤ 2π.

Figure 5. Ŝ (red) ∪ S (yellow) ruled surfaces.

Figure 6. Ŝ (red) ∪ S (yellow) ruled surfaces.

Example 4. From Example 2, we obtain:

Ŝ : r̂(u, t) =

 (1− tχ(u) sin u
2 ) cos u− tυ(u) sin u

(1 + tχ(u) sin u
2 ) sin u + tυ(u) cos u

−tχ(u) cos u
2

,

and

S : r(u, t) =

 (−1 + tχ(u) sin u
2 ) cos u + tυ(u) sin u

−(1 + tχ(u) sin u
2 ) sin u + tυ(u) sin u

−tχ(u) cos u
2

,
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For χ(u) = cos u, υ(u) = 0, 0 ≤ t ≤ 5, and 0 ≤ u ≤ 2π, the corresponding ruled surfaces are
depicted in Figure 7. Figure 8 shows the ruled surface with χ(u) = cos u, υ(u) = 0, 0 ≤ t ≤ 3,
and 0 ≤ u ≤ 2π.

Figure 7. Ŝ (red) ∪ S (yellow) ruled surfaces.

Figure 8. Ŝ (red) ∪ S (yellow) ruled surfaces.

4. Conclusions

In this paper, we considered the issue of constructing a surface pencil pair with a
Bertrand pair as common curvature lines in Euclidean 3-space E3. The extension to ruled
surfaces was also summarized. Meanwhile, significant curves were chosen to construct
the surface pencil pair and ruled surface pencil pair with the Bertrand pair as common
curvature lines. Hopefully, these scores will be useful in the field of differential geometry
and to physicists and others exploring general relativity theory. Our future research will
investigate how the principal findings presented in this study can be applied to generate
fresh outcomes in conjunction with soliton theory, submanifold theory, and other pertinent
fields that have been discussed in [30–49].
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