Next Article in Journal
A Note on the Lagrangian of Linear 3-Uniform Hypergraphs
Next Article in Special Issue
Fractional-View Analysis of Fokker-Planck Equations by ZZ Transform with Mittag-Leffler Kernel
Previous Article in Journal
A Multi-Cavity Iterative Modeling Method for the Exhaust Systems of Altitude Ground Test Facilities
Previous Article in Special Issue
Quasi-Synchronization and Quasi-Uniform Synchronization of Caputo Fractional Variable-Parameter Neural Networks with Probabilistic Time-Varying Delays
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A New Extension to the Intuitionistic Fuzzy Metric-like Spaces

1
Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54600, Pakistan
2
Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore 54770, Pakistan
3
Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad 44000, Pakistan
4
Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
5
Department of Natural Sciences, Community College Al-Riyadh, King Saud University, Riyadh 11451, Saudi Arabia
6
Ecole Supérieure des Sciences Economiques et Commerciales de Tunis, Université de Tunis, Tunis 1002, Tunisia
*
Author to whom correspondence should be addressed.
Submission received: 16 June 2022 / Revised: 2 July 2022 / Accepted: 5 July 2022 / Published: 7 July 2022

Abstract

:
In this manuscript, we introduce the concept of intuitionistic fuzzy controlled metric-like spaces via continuous t-norms and continuous t-conorms. This new metric space is an extension to intuitionistic fuzzy controlled metric-like spaces, controlled metric-like spaces and controlled fuzzy metric spaces, and intuitionistic fuzzy metric spaces. We prove some fixed-point theorems and we present non-trivial examples to illustrate our results. We used different techniques based on the properties of the considered spaces notably the symmetry of the metric. Moreover, we present an application to non-linear fractional differential equations.

1. Introduction

In today’s multifaceted environment, uncertainty and fuzziness are widespread in many applications. Zadeh [1] pioneered the concept of fuzzy sets (FSs) to capture the ambiguity and fuzziness of information. Since its origin, many extensions of FSs have been proposed to better represent sophisticated information, including intuitionistic fuzzy sets (IFSs), picture FSs, q-rung orthopair FSs, and neutrosophic sets.
Recently, Harandi [2] initiated the concept of metric-like spaces, which generalized the notion of metric spaces in a nice way. Alghamdi et al. [3] used the concept metric-like spaces to introduce the notion of b-metric-like spaces. Mlaiki [4] introduced the concept of controlled metric type spaces and proved various results. Mlaiki et al. [5] proposed the notion of controlled metric-like spaces (CMLSs) and proved several results for contractive mappings.
Kramosil and Michalek [6] proposed the approach of fuzzy metric spaces (FMSs), while George and Veeramani [7] introduced the concept of FMSs. Garbiec [8] gave the fuzzy interpretation of the Banach contraction principle in FMSs. Dey and Saha [9] gave an extension of the Banach fixed point theorem in the context of FMSs. Nadaban [10] introduced the notion of fuzzy b-metric spaces (FBMSs) and proved several theorems. Schweizer and Sklar [11] carried out some work for statistical metric spaces. Gregory and Sapena [12] proved various fixed-point results in the context of FMSs. Mehmood et al. [13] initiated the notion of fuzzy extended b-metric space (FEBMS). Recently, Sezen [14] generalized the concept of controlled type metric spaces and introduced the concept of Controlled fuzzy metric spaces (CFMS). In this sequel, Shukla and Abbas [15] generalized the concept of metric-like spaces and introduced fuzzy metric-like spaces (FMLSs). Javed et al. [16] proposed fuzzy b-metric-like spaces. Shukla et al. [17] proposed an amazing notion of 1-M complete FMSs and proved various theorems.
The approach of intuitionistic fuzzy metric spaces (IFMSs) via continuous t-norms and continuous t-conorms was presented by Park in [18]. Rafi and Noorani [19] proved several fixed-point results in the context of IFMSs. Sintunavarat and Kumam [20] proved fixed point theorems for a generalized intuitionistic fuzzy contraction in IFMSs. Later, Konwar [21] presented intuitionistic fuzzy b-metric space (IFBMS). Alaca et al. [22] and Mohamad [23] proved several fixed-point results. Saadati and Park [24] did amazing work on intuitionistic fuzzy topological spaces. In addition, Sezen in [14], introduced the concept of controlled fuzzy metric spaces.
The goal of this manuscript is to introduce intuitionistic fuzzy controlled metric-like spaces (IFCMLSs) by using the approach in [5], also to extend various fixed point (FP) results for contraction mappings, which is an improvement of the present literature’s methodology using different techniques based on the properties of contractions and the considered metric such as the triangle inequality and the symmetry. In closing, and inspired by work carried out in [25,26,27,28,29], we present an application of our results to fractional differential equations.

2. Preliminaries

Now, we start this section by listing various helpful definitions for readers and I = [ 0 ,   1 ] be used in this study.
Definition 1
([1]).A binary operation :   I × I I is called a continuous t-norm (CTN) if:
(a1) 
ν ω = ω ν ,   ν , ω I ;
(b1) 
is continuous.
(c1) 
ν 1 = ν ,     ν I ;
(d1) 
( ν ω ) ϰ = ν ( ω ϰ ) ,     ν , ω , ϰ I ;
(e1) 
If ν ϰ and ω d , with ν , ω , ϰ , d I , then ν ω ϰ d .
Definition 2
([1]).A binary operation :   I × I I is called a continuous t-conorm (CTCN) if:
(i).
ν ω = ω ν ,   f o r   a l l   ν , ω I ;
(ii).
 is continuous.
(iii).
ν 0 = 0 , f o r   a l l   ν I ;
(iv).
( ν ω ) ϰ = ν ( ω ϰ ) ,   f o r   a l l   ν , ω , ϰ I ;
(v).
If ν ϰ and ω d , with ν , ω , ϰ , d I , then ν ω ϰ d .
Definition 3
([23]).Let K . A mapping : K × K [ 1 , ) , fulfilling the following assertions:
a.
( Þ , ā ) = 0   i m p l i e s   Þ = ā ;
b.
( Þ , ā ) = ( ā , Þ ) ;
c.
( Þ , ā ) ( Þ , δ ) + ( δ , Þ ) ;
for all Þ , ā , δ K . Then ( K , ) is called a metric-like space.
Definition 4
([24]).Let K . A function ψ : K × K [ 1 , ) and a mapping : K × K + , fulfilling the following assertions:
I.
( Þ , ā ) = 0   i m p l i e s   Þ = ā ;
II.
  ( Þ , ā ) = ( ā , Þ ) ;
III.
  ( Þ , ā ) ψ ( Þ , δ ) ( Þ , δ ) + ψ ( δ , Þ ) ( δ , Þ ) ;
for all Þ , ā , δ K . Then ( K , ) is named a CMLS.
Definition 5
([21]).Let   K . Suppose be a CTN and b be a FS on   K × K × ( 0 , ) . A three tuple ( K , b , ) is called FMLS, if it is fulfilling the following assertions, for all Þ , ā K   a n d   ϑ , ϖ > 0 :
(F1).
b ( Þ , ā , ϖ ) > 0 ;
(F2).
b ( Þ , ā , ϖ ) = 1   i m p l i e s   Þ = ā ;
(F3).
b ( Þ , ā , ϖ ) = b ( ā , Þ , ϖ ) ;
(F4).
b ( Þ , δ , ( ϖ + ϑ ) ) b ( Þ , ā , ϖ ) b ( ā , δ ,   ϑ ) ;
(F5).
b ( Þ , ā ) : ( 0 , ) [ 0 ,   1 ]  is continuous.
Definition 6
([4]).Let   K . Suppose be a CTN, be a CTCN, b 1   and b , b be FSs on   K × K × ( 0 , ) . If ( K , b , b , ,   ) verifies the following for all Þ , ā K   a n d   ϑ , ϖ > 0 :
(C1).
b ( Þ , ā , ϖ ) + b ( Þ , ā , ϖ ) 1 ;
(C2).
b ( Þ , ā , ϖ ) > 0 ;
(C3).
b ( Þ , ā , ϖ ) = 1   Þ = ā ;
(C4).
b ( Þ , ā , ϖ ) = b ( ā , Þ , ϖ ) ;
(C5).
b ( Þ , δ , b ( ϖ + ϑ ) ) b ( Þ , ā , ϖ ) b ( ā , δ , ϑ ) ;
(C6).
b ( Þ , ā )  is a non decreasing (ND) function of  +   a n d   lim ϖ b ( Þ , ā , ϖ ) = 1 ;
(C7).
b ( Þ , ā , ϖ ) > 0 ;
(C8).
b ( Þ , ā , ϖ ) = 0   Þ = ā ;
(C9).
b ( Þ , ā , ϖ ) = b ( ā , Þ , ϖ ) ;
(C10).
b ( Þ , δ , b ( ϖ + ϑ ) ) b ( Þ , ā , ϖ ) b ( ā , δ , ϑ ) ;
(C11).
b ( Þ , ā )  is a non increasing (NI) function of  +  and  lim ϖ b ( Þ , ā , ϖ ) = 0 .
Then   ( K , b , b , ,   ) is an IFBMS.

3. Main Results

In this section, we present the concept of an IFCMLS and prove several FP results.
Definition 7.
Suppose   K , assume a five tuple ( K , ϕ , ϕ , ,   ) where is a CTN, is a CTCN, ϕ : K × K [ 1 , ) and ϕ , ϕ are FS on   K × K × ( 0 , ) . If ( K , ϕ , ϕ , ,   ) meet the below circumstances for all Þ , ā K   a n d   ϑ , ϖ > 0 :
(CL1).
ϕ ( Þ , ā , ϖ ) + ϕ ( Þ , ā , ϖ ) 1 ,
(CL2).
ϕ ( Þ , ā , ϖ ) > 0 ,
(CL3).
ϕ ( Þ , ā , ϖ ) = 1   i m p l i e s   Þ = ā ,
(CL4).
ϕ ( Þ , ā , ϖ ) = ϕ ( ā , Þ , ϖ ) ,
(CL5).
ϕ ( Þ , δ , ( ϖ + ϑ ) ) ϕ ( Þ , ā , ϖ ϕ ( Þ , ā ) ) ϕ ( ā , δ , ϑ ϕ ( ā , δ ) ) ,
(CL6).
ϕ ( Þ , ā ) is ND function of + and lim ϖ ϕ ( Þ , ā , ϖ ) = 1 ,
(CL7).
ϕ ( Þ , ā , ϖ ) > 0 ,
(CL8).
ϕ ( Þ , ā , ϖ ) = 0   i m p l i e s   Þ = ā ,
(CL9).
ϕ ( Þ , ā , ϖ ) = ϕ ( ā , Þ , ϖ ) ,
(CL10).
ϕ ( Þ , δ , ( ϖ + ϑ ) ) ϕ ( Þ , ā , ϖ ϕ ( Þ , ā ) ) ϕ ( ā , δ , ϑ ϕ ( ā , δ ) ) ,
(CL11).
ϕ ( Þ , ā ) is NI function of + and lim ϖ ϕ ( Þ , ā , ϖ ) = 0 .
Then ( K , ϕ , ϕ , ,   ) is an IFCMLS.
Example 1.
Let K = { 1 , 2 , 3 }   a n d   α : K × K [ 1 , ) be a function given by α ( Þ , ā ) = Þ + ā + 1 . Define ϕ , ϕ : K × K × ( 0 , ) [ 0 , 1 ] as,
ϕ ( Þ , ā , ϖ ) = ϖ ϖ + m a x { Þ , ā }
In addition,
ϕ ( Þ , ā , ϖ ) = m a x { Þ , ā } ϖ + m a x { Þ , ā } .
Then ( K , ϕ , ϕ , , ) is an IFCMLS with CTN a b = a b and CTCN a b = m a x { a , b } .
Proof. 
(CL1)–(CL4), (CL6)–(CL9) and (CL11) are obvious, here we prove (CL5) and (CL10)
Let   Þ = 1 ,   ā = 2   and   δ = 3 .   Then ,
ϕ ( 1 , 3 , ϖ + ϑ ) = ϖ + ϑ ϖ + ϑ + m a x { 1 , 3 }
= ϖ + ϑ ϖ + ϑ + 3 .
On the other hand,
ϕ ( 1 , 2 , ϖ α ( 1 , 2 ) ) = ϖ α ( 1 , 2 ) ϖ α ( 1 , 2 ) + m a x { 1 , 2 }
= ϖ 4 ϖ 4 + 2 = ϖ ϖ + 8
In addition,
ϕ ( 2 , 3 , ϑ α ( 2 , 3 ) ) = ϑ α ( 2 , 3 ) ϑ α ( 2 , 3 ) + m a x { 2 , 3 }
= ϑ 6 ϑ 6 + 3 = ϑ ϑ + 18 .
That is,
ϖ + ϑ ϖ + ϑ + 3 ϖ ϖ + 8 · ϑ ϑ + 18 .
Then it satisfied, for all ϖ , ϑ > 0 . Hence,
ϕ ( Þ , δ , ϖ + ϑ ) ϕ ( Þ , ā , ϖ α ( Þ , ā ) ) ϕ ( ā , δ , ϑ α ( ā , δ ) ) .
Now,
ϕ ( 1 , 3 , ϖ + ϑ ) = m a x { 1 , 3 } ϖ + ϑ + m a x { 1 , 3 } = 3 ϖ + ϑ + 3 .
On the other hand,
ϕ ( 1 , 2 , ϖ α ( 1 , 2 ) ) = m a x { 1 , 2 } ϖ α ( 1 , 2 ) + m a x { 1 , 2 } = 2 ϖ 4 + 2 = 8 ϖ + 8
In addition,
ϕ ( 2 , 3 , ϑ α ( 2 , 3 ) ) = m a x { 2 , 3 } ϑ α ( 2 , 3 ) + m a x { 2 , 3 } = 3 ϑ 6 + 3 = 18 ϑ + 18 .
That is,
3 ϖ + ϑ + 3 m a x { 8 ϖ + 8 , 18 ϑ + 18 } .
Then it satisfied, for all ϖ , ϑ > 0 . Hence,
ϕ ( Þ , δ , ϖ + ϑ ) ϕ ( Þ , ā , ϖ α ( Þ , ā ) )   ϕ ( ā , δ , ϑ α ( ā , δ ) ) .
Similarly, all other cases can be investigated. Hence, ( K , ϕ , ϕ , , ) is an IFCMLS. □
Remark 1.
The preceding example satisfied as well for CTN a b = m i n { a , b } and CTCN a b = m a x { a , b } .
Example 2.
Let K = { 1 , 2 , 3 }   a n d   α : K × K [ 1 , ) be a function given by α ( Þ , ā ) = Þ + ā + 1 . Define ϕ , ϕ : K × K × ( 0 , ) [ 0 , 1 ] as,
ϕ ( Þ , ā , ϖ ) = ϖ + m i n { Þ , ā } ϖ + m a x { Þ , ā }  
In addition,
ϕ ( Þ , ā , ϖ ) = 1 ϖ + m i n { Þ , ā } ϖ + m a x { Þ , ā } .
Then ( K , ϕ , ϕ , , ) is an IFCMLS with CTN a b = a b and CTCN a b = m a x { a , b } .
Proof. 
It is not difficult to check. □
Proposition 1.
Let K = [ 0 , 1 ] and α : K × K [ 0 , 1 ] be a function given by α ( Þ , ā ) = 2 ( Þ + ā + 1 )   Define ,   as,
( Þ , ā , ϖ ) = e m a x { Þ ,   ā } ϖ n ,   ( Þ , ā , ϖ ) = 1 e m a x { Þ ,   ā } ϖ n   f o r   a l l   n ,   Þ , ā K , ϖ > 0 .  
Then ( K , , , , ) is an intuitionistic fuzzy controlled metric-like space with CTN a b = a b and CTCN a b = m a x { a , b } .
Remark 2.
The above proposition also satisfied for CTN a b = m i n { a , b } and CTCN a b = m a x { a , b } .
Proposition 2.
Let K = [ 0 , 1 ] and α : K × K [ 0 , 1 ] be a function given by α ( Þ , ā ) = 2 ( Þ + ā + 1 ) . Define ϕ ,   ϕ as,
ϕ ( Þ , ā , ϖ ) = [ e m a x { Þ ,   ā } ϖ n ] 1 ,   ϕ ( Þ , ā , ϖ ) = 1 [ e m a x { Þ ,   ā } ϖ n ] 1   f o r   a l l   n ,   Þ , ā K , ϖ > 0 .
Then ( K , ϕ , ϕ , , ) is an IFCMLS with CTN a b = a b and CTCN a b = m a x { a , b } .
Example 3.
Let K = ( 0 , ) ,   d e f i n e   ϕ , ϕ : K × K × ( 0 , ) [ 0 , 1 ] by,
ϕ ( Þ , ā , ϖ ) = ϖ ϖ + m a x { Þ ,   ā } ,     ϕ ( Þ , ā , ϖ ) = m a x { Þ ,   ā } ϖ + m a x { Þ ,   ā }
for all Þ , ā K   a n d   ϖ > 0 ,  define CTN by ν ω = ν · ω  and CTCN by ν ω = m a x { ν , ω }  and define ϕ by,
ϕ ( Þ , ā ) = { 1                   if                       Þ = ā , 1 + m a x { Þ , ā } m i n { Þ , ā }     if   Þ ā
Then ( K , ϕ , ϕ , , ) be an IFCMLS.
Proof. 
(CL1)–(CL4), (CL6)–(CL9) and (CL11) are obvious, here we prove (CL5) and (CL10)
m a x { Þ ,   δ } ϕ ( Þ , ā ) m a x { Þ ,   ā } + ϕ ( ā , δ ) m a x { ā ,   δ }
This implies,
ϖ ϑ   m a x { Þ ,   δ } ϕ ( Þ , ā ) ( ϖ ϑ + ϑ 2 ) m a x { Þ ,   ā } + ϕ ( ā , δ ) ( ϖ ϑ + ϖ 2 ) m a x { ā ,   δ }
Then,
ϖ ϑ   m a x { Þ ,   δ } ϕ ( Þ , ā ) ( ϖ + ϑ ) ϑ   m a x { Þ ,   ā } + ϕ ( ā , δ ) ( ϖ + ϑ ) ϖ   m a x { ā ,   δ }
Therefore,
ϖ ϑ ( ϖ + ϑ ) + ϖ ϑ   m a x { Þ ,   δ } ϖ ϑ ( ϖ + ϑ ) + ϕ ( Þ , ā ) ( ϖ + ϑ ) ϑ   m a x { Þ ,   ā } + ϕ ( ā , δ ) ( ϖ + ϑ ) ϖ   m a x { ā ,   δ }
This implies,
ϖ ϑ [ ( ϖ + ϑ ) +   m a x { Þ ,   δ } ] ( ϖ + ϑ ) [ ϖ ϑ + ϕ ( Þ , ā ) ϑ   m a x { Þ ,   ā } + ϕ ( ā , δ ) ϖ   m a x { ā ,   δ } ]
ϖ ϑ [ ( ϖ + ϑ ) +   m a x { Þ ,   δ } ] ( ϖ + ϑ ) [ ϖ ϑ + ϕ ( Þ , ā ) ϑ   m a x { Þ ,   ā } + ϕ ( ā , δ ) ϖ   m a x { ā ,   δ } + ϕ ( Þ , ā ) ϕ ( ā , δ )   m a x { Þ ,   ā }   m a x { ā ,   δ } ]
Then,
ϖ ϑ [ ( ϖ + ϑ ) +   m a x { Þ ,   δ } ] ( ϖ + ϑ ) [ ϖ + ϕ ( Þ , ā )   m a x { Þ ,   ā } ] [ ϑ + ϕ ( ā , δ )   m a x { ā ,   δ } ]
This implies,
( ϖ + ϑ ) ( ϖ + ϑ ) +   m a x { Þ ,   δ } ϖ ϑ [ ϖ + ϕ ( Þ , ā )   m a x { Þ ,   ā } ] [ ϑ + ϕ ( ā , δ )   m a x { ā ,   δ } ]
This implies,
( ϖ + ϑ ) ( ϖ + ϑ ) +   m a x { Þ ,   δ } ϖ ϖ + ϕ ( Þ , ā )   m a x { Þ ,   ā } . ϑ ϑ + ϕ ( ā , δ ) m a x { ā ,   δ }
Then,
( ϖ + ϑ ) ( ϖ + ϑ ) + m a x { Þ ,   δ } ϖ ϕ ( Þ , ā ) ϖ ϕ ( Þ , ā ) + m a x { Þ ,   ā } . ϑ ϕ ( ā , δ ) ϑ ϕ ( ā , δ ) + m a x { ā ,   δ }
Hence,
ϕ ( Þ , δ , ( ϖ + ϑ ) ) ϕ ( Þ , ā , ϖ ϕ ( Þ , ā ) ) ϕ ( ā , δ , ϑ ϕ ( ā , δ ) )
(CL5) is satisfied.
m a x { Þ ,   δ } = m a x { Þ ,   δ } m a x { 1 , 1 }
m a x { Þ ,   δ } = m a x { Þ ,   δ } m a x { m a x { Þ ,   ā } m a x { Þ ,   ā } , m a x { ā ,   δ } m a x { ā ,   δ } }
m a x { Þ ,   δ } [ ( ϖ + ϑ ) + m a x { Þ ,   ā } ] m a x { m a x { Þ ,   ā } m a x { Þ ,   ā } , m a x { ā ,   δ } m a x { ā ,   δ } } .
Therefore,
m a x { Þ ,   δ } [ ( ϖ + ϑ ) + m a x { Þ ,   δ } ] m a x { ϕ ( Þ , ā ) m a x { Þ ,   ā } ϕ ( Þ , ā ) m a x { Þ ,   ā } , ϕ ( ā , δ ) m a x { ā ,   δ } ϕ ( ā , δ ) m a x { ā ,   δ } }
Then,
m a x { Þ ,   δ } ( ϖ + ϑ ) + m a x { Þ ,   δ } m a x { ϕ ( Þ , ā ) m a x { Þ ,   ā } ϖ + ϕ ( Þ , ā ) m a x { Þ ,   ā } , ϕ ( ā , δ ) m a x { ā ,   δ } ϑ + ϕ ( ā , δ ) m a x { ā ,   δ } } .
This implies,
m a x { Þ ,   δ } ( ϖ + ϑ ) + m a x { Þ ,   δ } m a x { m a x { Þ ,   ā } ϖ ϕ ( Þ , ā ) + m a x { Þ ,   ā } , m a x { ā ,   δ } ϑ ϕ ( ā , δ ) + m a x { ā ,   δ } } .
Hence,
ϕ ( Þ , δ , ( ϖ + ϑ ) ) ϕ ( Þ , ā , ϖ ϕ ( Þ , ā ) ) ϕ ( ā , δ , ϑ ϕ ( ā , δ ) )
(CL10) is satisfied. □
Definition 8.
Let ( K , ϕ , ϕ , , ) is an IFCMLS. Then,
(i).
A sequence  { Þ n } in K  is said to be G-Cauchy sequence (GCS) if and only if for all  > 0 ,   lim n ϕ ( Þ n , Þ n + q , ϖ )   a n d   lim n ϕ ( Þ n , Þ n + q , ϖ ) , exists and is finite.
(ii).
A sequence  { Þ n } in   K  is named to be G-convergent(GC) to Þ in K , if and only if for all  ϖ > 0 ,
lim n ϕ ( Þ n , Þ , ϖ ) = ϕ ( Þ , Þ , ϖ )   and   lim n ϕ ( Þ n , Þ , ϖ ) = ϕ ( Þ , Þ , ϖ ) .
(iii).
A IFCMLS is named to be complete iff each GCS is convergent, i.e.,
lim n ϕ ( Þ n , Þ n + q , ϖ ) = lim n ϕ ( Þ n , Þ , ϖ ) = ϕ ( Þ , Þ , ϖ ) ,
lim n ϕ ( Þ n , Þ n + q , ϖ ) = lim n ϕ ( Þ n , Þ , ϖ ) = ϕ ( Þ , Þ , ϖ ) .
Theorem 1.
Suppose ( K , ϕ , ϕ , , ) be a G-complete IFCMLS in the company of ϕ : K × K [ 1 , ) and suppose that,
lim ϖ ϕ ( Þ , ā , ϖ ) = 1   and   lim ϖ ϕ ( Þ , ā , ϖ ) = 0
for all Þ , ā K and ϖ > 0 . Let ξ : K K be a mapping satisfying,
ϕ ( ξ Þ , ξ ā , Ɛ ϖ ) ϕ ( Þ , ā , ϖ )   and   ϕ ( ξ Þ , ξ ā , Ɛ ϖ ) ϕ ( Þ , ā , ϖ )
for all Þ , ā K , and ϖ > 0 , where 0 < Ɛ < 1 . Furthermore, assume that for every ā K ,
lim n ϕ ( Þ n , ā )   & lim n ϕ ( ā , Þ n )
In addition,
lim n , m ϕ ( Þ n , Þ m )   &   lim n , m ϕ ( Þ m , Þ n )
exists and are finite, where   Þ n = ξ n Þ 0 = ξ Þ n 1 , for all n and Þ 0 be arbitrary point of K . Then ξ has a unique FP.
Proof. 
Let Þ 0 be an arbitrary point of K and define a sequence Þ n by Þ n = ξ n Þ 0 = ξ Þ n 1 , n . Using ( 2 ) for all ϖ > 0 , we examine,
ϕ ( Þ n , Þ n + 1 , Ɛ ϖ ) = ϕ ( ξ Þ n 1 , ξ Þ n , Ɛ ϖ ) ϕ ( Þ n 1 , Þ n , ϖ ) ϕ ( Þ n 2 , Þ n 1 , ϖ Ɛ )
ϕ ( Þ n 3 , Þ n 2 , ϖ Ɛ 2 ) ϕ ( Þ 0 , Þ 1 , ϖ Ɛ n 1 )
In addition,
ϕ ( Þ n , Þ n + 1 , Ɛ ϖ ) = ϕ ( ξ Þ n 1 , ξ Þ n , Ɛ ϖ ) ϕ ( Þ n 1 , Þ n , ϖ ) ϕ ( Þ n 2 , Þ n 1 , ϖ Ɛ ) ϕ ( Þ n 3 , Þ n 2 , ϖ Ɛ 2 ) ϕ ( Þ 0 , Þ 1 , ϖ Ɛ n 1 )
We obtain,
ϕ ( Þ n , Þ n + 1 , Ɛ ϖ ) ϕ ( Þ 0 , Þ 1 , ϖ Ɛ n 1 )   and   ϕ ( Þ n , Þ n + 1 , Ɛ ϖ ) ϕ ( Þ 0 , Þ 1 , ϖ Ɛ n 1 )
for any q ,   using (CL5) and (CL10), we deduce,
ϕ ( Þ n , Þ n + q , ϖ ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + q , ϖ 2 ( ϕ ( Þ n + 1 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + q , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + 3 , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) ϕ ( Þ n + 3 , Þ n + q , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + 3 , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) ϕ ( Þ n + 3 , Þ n + 4 , ϖ ( 2 ) 4 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + 4 ) ) ) ϕ ( Þ n + q 2 , Þ n + q 1 , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 2 , Þ n + q 1 ) ) ) ϕ ( Þ n + q 1 , Þ n + q , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 1 , Þ n + q ) ) )
In addition,
ϕ ( Þ n , Þ n + q , ϖ ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) )   ϕ ( Þ n + 1 , Þ n + q , ϖ 2 ( ϕ ( Þ n + 1 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + q , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + 3 , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) ϕ ( Þ n + 3 , Þ n + q , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + 3 , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) ϕ ( Þ n + 3 , Þ n + 4 , ϖ ( 2 ) 4 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + 4 ) ) ) ϕ ( Þ n + q 2 , Þ n + q 1 , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 2 , Þ n + q 1 ) ) ) ϕ ( Þ n + q 1 , Þ n + q , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 1 , Þ n + q ) ) ) Using   ( 4 )   in   the   above   inequalities ,   we   deduce , ϕ ( Þ n , Þ n + q , ϖ ) ϕ ( Þ 0 , Þ 1 , ϖ 2 ( Ɛ ) n 1 ( ϕ ( Þ n , Þ n + 1 ) ) )   ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) 2 ( Ɛ ) n ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) 3 ( Ɛ ) n + 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) 4 ( Ɛ ) n + 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + 4 ) ) ) ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) q 1 ( Ɛ ) n + q 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 2 , Þ n + q 1 ) ) ) ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) q 1 ( Ɛ ) n + q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 1 , Þ n + q ) ) )
In addition,
ϕ ( Þ n , Þ n + q , ϖ ) ϕ ( Þ 0 , Þ 1 , ϖ 2 ( Ɛ ) n 1 ( ϕ ( Þ n , Þ n + 1 ) ) )   ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) 2 ( Ɛ ) n ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) 3 ( Ɛ ) n + 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) 4 ( Ɛ ) n + 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + 4 ) ) ) ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) q 1 ( Ɛ ) n + q 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 2 , Þ n + q 1 ) ) ) ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) q 1 ( Ɛ ) n + q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 1 , Þ n + q ) ) )
Using (1),   for   n , we deduce,
lim n ϕ ( Þ n , Þ n + q , ϖ ) = 1 1 1 = 1  
In addition,
lim n ϕ ( Þ n , Þ n + q , ϖ ) = 0 0 0 = 0
i.e., { Þ n } is a GCS. Therefore, ( K , ϕ , ϕ , , ) is a G-complete IFCMLS, there exists,
lim n Þ n = Þ
Now examine that Þ is a FP of ξ , using (CL5), (CL10) and (1), we deduce,
ϕ ( Þ , ξ Þ , ϖ ) ϕ ( Þ , Þ n + 1 , ϖ 2 ( ϕ ( Þ , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , ξ Þ , ϖ 2 ( ϕ ( Þ n + 1 , ξ Þ ) ) ) ϕ ( Þ , ξ Þ , ϖ ) ϕ ( Þ , Þ n + 1 , ϖ 2 ( ϕ ( Þ , Þ n + 1 ) ) ) ϕ ( ξ Þ n , ξ Þ , ϖ 2 ( ϕ ( Þ n + 1 , ξ Þ ) ) ) ϕ ( Þ , ξ Þ , ϖ ) ϕ ( Þ , Þ n + 1 , ϖ 2 ( ϕ ( Þ , Þ n + 1 ) ) ) ϕ ( Þ n , Þ , ϖ 2 Ɛ ( ϕ ( Þ n + 1 , ξ Þ ) ) ) 1 1 = 1
as   n , and,
ϕ ( Þ , ξ Þ , ϖ ) ϕ ( Þ , Þ n + 1 , ϖ 2 ( ϕ ( Þ , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , ξ Þ , ϖ 2 ( ϕ ( Þ n + 1 , ξ Þ ) ) ) ϕ ( Þ , ξ Þ , ϖ ) ϕ ( Þ , Þ n + 1 , ϖ 2 ( ϕ ( Þ , Þ n + 1 ) ) ) ϕ ( ξ Þ n , ξ Þ , ϖ 2 ( ϕ ( Þ n + 1 , ξ Þ ) ) ) ϕ ( Þ , ξ Þ , ϖ ) ϕ ( Þ , Þ n + 1 , ϖ 2 ( ϕ ( Þ , Þ n + 1 ) ) ) ϕ ( Þ n , Þ , ϖ 2 Ɛ ( ϕ ( Þ n + 1 , ξ Þ ) ) ) 0 0 = 0
as   n . Hence, ξ Þ = Þ , a FP. To examine uniqueness, assume that ξ c = c for some c K , then,
1 ϕ ( c , Þ , ϖ ) = ϕ ( ξ c , ξ Þ , ϖ ) ϕ ( c , Þ , ϖ Ɛ ) = ϕ ( ξ c , ξ Þ , ϖ Ɛ ) ϕ ( c , Þ , ϖ Ɛ 2 ) ϕ ( c , Þ , ϖ Ɛ n ) 1   as   n ,
In addition,
0 ϕ ( c , Þ , ϖ ) = ϕ ( ξ c , ξ Þ , ϖ ) ϕ ( c , Þ , ϖ Ɛ ) = ϕ ( ξ c , ξ Þ , ϖ Ɛ ) ϕ ( c , Þ , ϖ Ɛ 2 ) ϕ ( c , Þ , ϖ Ɛ n ) 0   as   n ,
by using (CL3) and (CL8) ,   Þ = c .
Definition 9.
Let ( K , ϕ , ϕ , , ) be a IFCMLS. A map ξ : K K is intuitionistic fuzzy controlled (IFC) contraction if there exists   0 < Ɛ < 1 , such that,
1 ϕ ( ξ Þ , ξ ā , ϖ ) 1 Ɛ [ 1 ϕ ( Þ , ā , ϖ ) 1 ]
In addition,
ϕ ( ξ Þ , ξ ā , ϖ ) Ɛ ϕ ( Þ , ā , ϖ ) ,
for all  Þ , ā K   a n d   ϖ > 0 .
Now, we prove the theorem for IFCMLS.
Theorem 2.
Let ( K , ϕ , ϕ , , ) be a G-complete IFCMLS with ϕ : K × K [ 1 , ) and suppose that,
lim ϖ ϕ ( Þ , ā , ϖ ) = 1   and   lim ϖ ϕ ( Þ , ā , ϖ ) = 0
for all Þ , ā K and ϖ > 0 . Let ξ : K K be an IFC contraction. Further, suppose that for every   ā K ,
lim n ϕ ( Þ n , ā )   & lim n ϕ ( ā , Þ n )
In addition,
lim n , m ϕ ( Þ n , Þ m )   &   lim n , m ϕ ( Þ m , Þ n )
exist and are finite, where Þ n = ξ n Þ 0 = ξ Þ n 1 , for all n and Þ 0 be arbitrary point of K .
Then ξ has a unique FP.
Proof. 
Let Þ 0 is an arbitrary point of K and define a sequence Þ n by Þ n = ξ n Þ 0 = ξ Þ n 1 , n . Using Equations ( 5 ) and ( 6 ) for all ϖ > 0 ,   n > q , we acquire,
1 ϕ ( Þ n , Þ n + 1 , ϖ ) 1 = 1 ϕ ( ξ Þ n 1 , ξ Þ n , ϖ ) 1 Ɛ [ 1 ϕ ( Þ n 1 , Þ n , ϖ ) 1 ] = Ɛ ϕ ( Þ n 1 , Þ n , ϖ ) Ɛ 1 ϕ ( Þ n , Þ n + 1 , ϖ ) Ɛ ϕ ( Þ n 1 , Þ n , ϖ ) + ( 1 Ɛ ) Ɛ 2 ϕ ( Þ n 2 , Þ n 1 , ϖ ) + Ɛ ( 1 Ɛ ) + ( 1 Ɛ )
Continuing in this way, we acquire,
1 ϕ ( Þ n , Þ n + 1 , ϖ ) Ɛ n ϕ ( Þ 0 , Þ 1 , ϖ ) + Ɛ n 1 ( 1 Ɛ ) + Ɛ n 2 ( 1 Ɛ ) + + Ɛ ( 1 Ɛ ) + ( 1 Ɛ ) Ɛ n ϕ ( Þ 0 , Þ 1 , ϖ ) + ( Ɛ n 1 + Ɛ n 2 + + 1 ) ( 1 Ɛ ) Ɛ n ϕ ( Þ 0 , Þ 1 , ϖ ) + ( 1 Ɛ n )
We obtain,
1 Ɛ n ϕ ( Þ 0 , Þ 1 , ϖ ) + ( 1 Ɛ n ) ϕ ( Þ n , Þ n + 1 , ϖ )
In addition,
ϕ ( Þ n , Þ n + 1 , ϖ ) = ϕ ( ξ Þ n 1 , Þ n , ϖ ) Ɛ ϕ ( Þ n 1 , Þ n , ϖ ) = ϕ ( ξ Þ n 2 , Þ n 1 , ϖ ) Ɛ 2 ϕ ( Þ n 2 , Þ n 1 , ϖ ) Ɛ n ϕ ( Þ 0 , Þ 1 , ϖ )                          
For any q ,   using (CL5) and (CL10), we deduce,
ϕ ( Þ n , Þ n + q , ϖ ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + q , ϖ 2 ( ϕ ( Þ n + 1 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + q , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + 3 , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) ϕ ( Þ n + 3 , Þ n + q , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + 3 , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) ϕ ( Þ n + 3 , Þ n + 4 , ϖ ( 2 ) 4 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + 4 ) ) ) ϕ ( Þ n + q 2 , Þ n + q 1 , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 2 , Þ n + q 1 ) ) ) ϕ ( Þ n + q 1 , Þ n + q , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 1 , Þ n + q ) ) )
In addition,
ϕ ( Þ n , Þ n + q , ϖ ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) )   ϕ ( Þ n + 1 , Þ n + q , ϖ 2 ( ϕ ( Þ n + 1 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + q , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + 3 , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) ϕ ( Þ n + 3 , Þ n + q , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) ϕ ( Þ n + 1 , Þ n + 2 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) ϕ ( Þ n + 2 , Þ n + 3 , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) ϕ ( Þ n + 3 , Þ n + 4 , ϖ ( 2 ) 4 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + 4 ) ) ) ϕ ( Þ n + q 2 , Þ n + q 1 , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 2 , Þ n + q 1 ) ) ) ϕ ( Þ n + q 1 , Þ n + q , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 1 , Þ n + q ) ) ) ϕ ( Þ n , Þ n + q , ϖ ) 1 Ɛ n ϕ ( Þ 0 , Þ 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) ) + ( 1 Ɛ n )   1 Ɛ n + 1 ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) + ( 1 Ɛ n + 1 ) 1 Ɛ n + 2 ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) + ( 1 Ɛ n + 2 ) 1 Ɛ n + q 2 ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 2 , Þ n + q 1 ) ) ) + ( 1 Ɛ n + q 2 ) 1 Ɛ n + q 1 ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 1 , Þ n + q ) ) ) + ( 1 Ɛ n + q 1 )
In addition,
ϕ ( Þ n , Þ n + q , ϖ ) Ɛ n ϕ ( Þ 0 , Þ 1 , ϖ 2 ( ϕ ( Þ n , Þ n + 1 ) ) )   Ɛ n + 1 ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) 2 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 1 , Þ n + 2 ) ) ) Ɛ n + 2 ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) 3 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + 3 ) ) ) Ɛ n + q 2 ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 2 , Þ n + q 1 ) ) ) Ɛ n + q 1 ϕ ( Þ 0 , Þ 1 , ϖ ( 2 ) q 1 ( ϕ ( Þ n + 1 , Þ n + q ) ϕ ( Þ n + 2 , Þ n + q ) ϕ ( Þ n + 3 , Þ n + q ) ϕ ( Þ n + q 1 , Þ n + q ) ) )
Therefore,
lim n ϕ ( Þ n , Þ n + q , ϖ ) = 1 1 1 = 1  
In addition,
lim n ϕ ( Þ n , Þ n + q , ϖ ) = 0 0 0 = 0
i.e., { Þ n } is a GCS. Since ( K , ϕ , ϕ , , ) be a G-complete IFCMLS, there exists,
lim n Þ n = Þ .
Now examine that Þ is a FP of ξ , using (CL5) and (CL10), we deduce,
1 ϕ ( ξ Þ n , ξ Þ , ϖ ) 1 Ɛ [ 1 ϕ ( Þ n , Þ , ϖ ) 1 ] = Ɛ ϕ ( Þ n , Þ , ϖ ) Ɛ 1 Ɛ ϕ ( Þ n , Þ , ϖ ) + ( 1 Ɛ ) ϕ ( ξ Þ n , ξ Þ , ϖ )
Using above inequality, we obtain,
ϕ ( Þ , ξ Þ , ϖ ) ϕ ( Þ , Þ n + 1 , ϖ 2 ϕ ( Þ , Þ n + 1 ) ) ϕ ( Þ n + 1 , ξ Þ , ϖ 2 ϕ ( Þ n + 1 , ξ Þ ) ) ϕ ( Þ , Þ n + 1 , ϖ 2 ϕ ( Þ , Þ n + 1 ) ) ϕ ( ξ Þ n , ξ Þ , ϖ 2 ϕ ( Þ n + 1 , ξ Þ ) ) ϕ ( Þ , Þ n + 1 , ϖ 2 ϕ ( 2 ϕ ( Þ , Þ n + 1 ) ) ) 1 Ɛ ϕ ( Þ n , Þ , ϖ 2 ϕ ( Þ n + 1 , ξ Þ ) ) + ( 1 Ɛ ) 1 1 = 1  
as   n , and,
ϕ ( Þ , ξ Þ , ϖ ) ϕ ( Þ , Þ n + 1 , ϖ 2 ϕ ( Þ , Þ n + 1 ) ) ϕ ( Þ n + 1 , ξ Þ , ϖ 2 ϕ ( Þ n + 1 , ξ Þ ) ) ϕ ( Þ , Þ n + 1 , ϖ 2 ϕ ( Þ , Þ n + 1 ) ) ϕ ( ξ Þ n , ξ Þ , ϖ 2 ϕ ( Þ n + 1 , ξ Þ ) ) ϕ ( Þ n , Þ n + 1 , ϖ 2 ϕ ( Þ , Þ n + 1 ) ) Ɛ ϕ ( Þ n , Þ , ϖ 2 ϕ ( Þ n + 1 , ξ Þ ) ) 0 0 = 0   as   n
This shows that ξ Þ = Þ , a FP. To examine the uniqueness, assume that ξ c = c for some c K , then,
1 ϕ ( Þ , c , ϖ ) 1 = 1 ϕ ( ξ Þ , ξ c , ϖ ) 1 Ɛ [ 1 ϕ ( Þ , c , ϖ ) 1 ] < 1 ϕ ( Þ , c , ϖ ) 1
a contradiction, and,
ϕ ( Þ , c , ϖ ) = ϕ ( ξ Þ , ξ c , ϖ ) Ɛ ϕ ( Þ , c , ϖ ) < ϕ ( Þ , c , ϖ )
a contradiction. Therefore, we must have ϕ ( Þ , c , ϖ ) = 1   and   ϕ ( Þ , c , ϖ ) = 0 , hence Þ = c .
Example 4.
Let   K = [ 0 , 1 ] . Define ϕ by,
ϕ ( Þ , ā ) = { 1                             if                           Þ = ā , 1 + m a x { Þ , ā } m i n { Þ , ā }     if     Þ ā 0
Furthermore, take,
ϕ ( Þ , ā , ϖ ) = e m a x { Þ , ā } ϖ   and   ϕ ( Þ , ā , ϖ ) = 1 e m a x { Þ , ā } ϖ
with  ν ω = ν . ω   a n d   ν ω = m a x { ν , ω } .  Then  ( K , ϕ , ϕ , , )  is a G-complete IFCMLS. Observe that  lim ϖ ϕ ( Þ , ā , ϖ )   a n d   lim ϖ ϕ ( Þ , ā , ϖ )  exists and finite. Define ξ : K K by,
ξ ( Þ ) = { 0       if   Þ [ 0 , 1 2 ] , Þ 4     if   Þ ( 1 2 , 1 ]
Then we have for cases:
  • If Þ , ā [ 0 , 1 2 ] ,   then   ξ Þ = ξ ā = 0 ;
  • If Þ [ 0 , 1 2 ]   and   ā ( 1 2 , 1 ] ,   then   ξ Þ = 0   and   ξ ā = ā 4 ;
  • If ā [ 0 , 1 2 ]   and   Þ ( 1 2 , 1 ] ,   then   ξ ā = 0   and   ξ Þ = ā 4 ;
  • If Þ , ā ( 1 2 , 1 ] ,   then   ξ Þ = ā 4   and   ξ ā = ā 4 ;
In all (I)–(IV) cases,
ϕ ( ξ Þ , ξ ā , Ɛ ϖ ) ϕ ( Þ , ā , ϖ )   and   ϕ ( ξ Þ , ξ ā , Ɛ ϖ ) ϕ ( Þ , ā , ϖ )
are satisfied for Ɛ [ 1 2 , 1 ) , and also,
1 ϕ ( ξ Þ , ξ ā , ϖ ) 1 Ɛ [ 1 ϕ ( Þ , ā , ϖ ) 1 ]   and   ϕ ( ξ Þ , ξ ā , ϖ ) Ɛ ϕ ( Þ , ā , ϖ )
satisfied for Ɛ [ 1 2 , 1 ) .
Observe that lim n ϕ ( Þ n , ā ) and lim n ϕ ( ā , Þ n ) exists and finite. Furthermore, observe that all circumstances of Theorems 1 and 2 are fulfilled, and 0 is a unique FP of ξ .
Open Problem 1.
It is related to dealing with the Kannan contraction, Chatterjee contraction and Suzuki contraction in the sense of IFCMLS.

4. Application to Nonlinear Fractional Differential Equations

In present section, we aim to apply Theorem 3 to obtain the existence and uniqueness of a solution to a nonlinear fractional differential equation (NFDE),
D 0 + p Þ ( t ) = g ( t , Þ ( t ) ) ,     0 < t < 1                                    
with the boundary conditions,
Þ ( 0 ) + Þ ( 0 ) = 0 ,   Þ ( 1 ) + Þ ( 1 ) = 0 ,
where 1 < p 2 is a number, D 0 + p is the Caputo fractional derivative and   g   : [ 0 , 1 ] × [ 0 ,   ) [ 0 , ) is a continuous function. Let K = C ( [ 0 , 1 ] ,   ) denote the space of all continuous functions defined on [ 0 ,   1 ] equipped with the CTN c d = c . d and CTCN c d = m a x { c , d } for all c , d   ϵ [ 0 , 1 ] and define an IFCMLS on K as follows:
ϕ ( Þ , δ , ϖ ) = α ϖ α ϖ + γ   m a x { sup t ϵ [ 0 , 1 ]   Þ ( t ) , sup t ϵ [ 0 , 1 ]   δ ( t ) } 6 ,
ϕ ( Þ , δ , ϖ ) = γ m a x { sup t ϵ [ 0 , 1 ]   Þ ( t ) , sup t ϵ [ 0 , 1 ]   δ ( t ) } 6 α ϖ + γ m a x { sup t ϵ [ 0 , 1 ]   Þ ( t ) , sup t ϵ [ 0 , 1 ]   δ ( t ) } 6 ,
for all ϖ > 0 and Þ , δ   K with the control function,
ϕ ( Þ , δ ) = 1 + m a x { sup t ϵ [ 0 , 1 ]   Þ ( t ) , sup t ϵ [ 0 , 1 ]   δ ( t ) } 6 .
Observe that Þ K solves (10) whenever Þ K solves the below integral equation:
Þ ( t ) = 1 Γ ( p ) 0 1 ( 1 s ) p 1 ( 1 t ) g ( s , Þ ( s ) ) d s + 1 Γ ( p 1 ) 0 1 ( 1 s ) p 2 ( 1 t ) g ( s , Þ ( s ) ) d s + 1 Γ ( p ) 0 t ( t s ) p 1 g ( s , Þ ( s ) ) d s .  
Theorem 3.
The integral operator ξ : K K   is given by,
ξ Þ ( t ) = 1 Γ ( p ) 0 1 ( 1 s ) p 1 ( 1 t ) g ( s , Þ ( s ) ) d s + 1 Γ ( p 1 ) 0 1 ( 1 s ) p 2 ( 1 t ) g ( s , Þ ( s ) ) d s + 1 Γ ( p ) 0 t ( t s ) p 1 g ( s , Þ ( s ) ) d s ,  
where g : [ 0 , 1 ] × [ 0 , ) [ 0 , ) fulfilling the following criteria:
m a x { sup s ϵ [ 0 , 1 ]     g   ( s , Þ ( s ) ) ,   sup s ϵ [ 0 , 1 ]     g ( s , δ ( s ) ) }   1 4 m a x {   sup s ϵ [ 0 , 1 ]     Þ ( s ) ,   sup s ϵ [ 0 , 1 ]     δ ( s ) } , for   all   Þ , δ   K ; sup t ( 0 , 1 )   1 4096   [ 1 t Γ ( p + 1 ) + 1 t Γ ( p ) + t p Γ ( p + 1 ) ] 6 ā < 1 .
Then NFDE has a unique solution in X.
Proof. 
m a x { ξ Þ ( t ) ,   ξ δ ( t ) } 6   =   ( 1 t Γ ( p ) 0 1 ( 1 s ) p 1 m a x { sup s [ 0 , 1 ] g ( s , Þ ( s ) ) ,   sup s [ 0 , 1 ]   g ( s , δ ( s ) ) } d s +   1 t Γ ( p 1 ) 0 1 ( 1 s ) p 2   m a x { sup s [ 0 , 1 ] g ( s , Þ ( s ) ) ,   sup s [ 0 , 1 ]   g ( s , δ ( s ) ) } d s +   1 Γ ( p ) 0 t ( t s ) p 1 m a x { sup s [ 0 , 1 ] g ( s , Þ ( s ) ) , sup s [ 0 , 1 ]   g ( s , δ ( s ) ) } ) 6 ( 1 t Γ ( p ) 0 1 ( 1 s ) p 1 m a x { sup s [ 0 , 1 ]   Þ ( s ) , sup s [ 0 , 1 ]   δ ( s ) } 4 d s +   1 t Γ ( p 1 ) 0 1 ( 1 s ) p 2 m a x { sup s [ 0 , 1 ] Þ ( s ) , sup s [ 0 , 1 ] δ ( s ) } 4 d s + 1 Γ ( p ) 0 t ( t s ) p 1 m a x { sup s [ 0 , 1 ] Þ ( s ) , sup s [ 0 , 1 ] δ ( s ) } 4 d s ) 6 1 4 6 m a x { sup s [ 0 , 1 ]   Þ ( s ) , sup s [ 0 , 1 ]   δ ( s ) } 6   ( 1 t Γ ( p ) 0 1 ( 1 s ) p 1 d s + 1 t Γ ( p 1 ) 0 1 ( 1 s ) p 2 d s + 1 Γ ( p ) 0 t ( t s ) p 1 d s ) 6 1 4 6 m a x { sup s [ 0 , 1 ]   Þ ( s ) , sup s [ 0 , 1 ]   δ ( s ) } 6   sup t [ 0 , 1 ]   [ 1 t Γ ( p + 1 ) + 1 t Γ ( p ) + t p Γ ( p + 1 ) ] 6 =   ā   m a x { sup s [ 0 , 1 ]   Þ ( s ) , sup s [ 0 , 1 ]   δ ( s ) } 6   ,
where,
ā =   sup t ϵ ( 0 , 1 ) 1 4096   [ 1 t Γ ( p + 1 ) + 1 t Γ ( p ) + t p Γ ( p + 1 )   ] 6 .
Therefore, the above inequality,
m a x { sup t [ 0 , 1 ]   ξ Þ ( t ) , sup t [ 0 , 1 ]   ξ δ ( t ) } 6 ā   m a x { sup t ϵ [ 0 , 1 ]   Þ ( t ) ,   sup t ϵ [ 0 , 1 ]   δ ( t ) } 6   α ϖ + γ ā m a x { sup t [ 0 , 1 ]   ξ Þ ( t ) , sup t [ 0 , 1 ]   ξ δ ( t ) } 6 α ϖ + γ m a x { sup t ϵ [ 0 , 1 ]   Þ ( t ) ,   sup t ϵ [ 0 , 1 ]   δ ( t ) }   α ( ā ϖ ) α ( ā ϖ ) + γ m a x { sup t ϵ [ 0 , 1 ]   ξ Þ ( t ) , sup t ϵ [ 0 , 1 ]   ξ δ ( t ) } 6 α ϖ α ϖ + γ m a x { sup t ϵ [ 0 , 1 ]   Þ ( t ) ,   sup t ϵ [ 0 , 1 ]   δ ( t ) } 6 ϕ ( ξ Þ , ξ δ , ā ϖ ) ϕ ( Þ , δ , ϖ ) ,
In addition,
  γ sup t ϵ [ 0 , 1 ] m a x { sup t ϵ [ 0 , 1 ]   ξ Þ ( t ) , sup t ϵ [ 0 , 1 ]   ξ δ ( t ) } 6 α ( ā ϖ ) + γ sup t ϵ [ 0 , 1 ] m a x { sup t ϵ [ 0 , 1 ]   ξ Þ ( t ) , sup t ϵ [ 0 , 1 ]   ξ δ ( t ) } 6 γ sup t ϵ [ 0 , 1 ] m a x { sup t ϵ [ 0 , 1 ]   Þ ( t ) ,   sup t ϵ [ 0 , 1 ]   δ ( t ) } 6 α ϖ + γ sup t ϵ [ 0 , 1 ] m a x { sup t ϵ [ 0 , 1 ]   Þ ( t ) , sup t ϵ [ 0 , 1 ]   δ ( t ) } 6 ϕ ( ξ Þ , ξ δ , ā ϖ ) ϕ ( Þ , δ , ϖ ) ,
for some α , γ > 0 . Observe that the conditions of the Theorem 1 are fulfilled. Resultantly, ξ has a unique fixed point; accordingly, the specified NFDE has a unique solution. □

5. Conclusions

We present intuitionistic fuzzy controlled metric-like spaces in this paper and established several new types of fixed-point theorems in this new context. Moreover, we provided non-trivial examples and an application to non-linear fractional differential equations is given to demonstrate the viability of the proposed method. Our findings and concepts expand and generalize the existing literature. The structures of intuitionistic fuzzy double controlled metric-like spaces, intuitionistic pentagonal fuzzy controlled metric-like spaces, and neutrosophic controlled metric-like spaces etc. can all be extended using this study.

Author Contributions

F.U.: writing—original draft, methodology; U.I.: conceptualization, super-vision, writing—original draft; K.J.: conceptualization, writing—original draft; S.S.A.: methodology, writing—original draft; M.A.: conceptualization, supervision, writing—original draft; N.S.: concep-tualization, supervision, writing—original draft, N.M.: investigation, writing—original draft. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors S. Subhi and N. Mlaiki want to thank Prince Sultan University for paying the publication fees for this work through TAS LAB.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
  2. Harandi, A. Metric-like paces, partial metric spaces and fixed point. Fixed Point Theory Appl. 2012, 2012, 1–10. [Google Scholar]
  3. Alghamdi, M.A.; Hussain, N.; Salimi, P. Fixed point and coupled fixed point theorems in b-metric-liks spaces. J. Inequalities Appl. 2013, 2013, 1–15. [Google Scholar]
  4. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
  5. Mlaiki, N.; Souayah, N.; Abdeljawad, T.; Aydi, H. A new extension to the controlled metric type spaces endowed with a graph. Adv. Differ. Equ. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
  6. Kramosil, I.; Michlek, J. Fuzzy metric and sthatistical metric spaces. Kybernetika 1975, 11, 336–344. [Google Scholar]
  7. George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Set Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
  8. Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Set Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
  9. Dey, D.; Saha, M. An extension of Banach fixed point theorem in fuzzy metric space. Bol. Soc. Paran. Mat. 2014, 32, 299–304. [Google Scholar] [CrossRef] [Green Version]
  10. Nadaban, S. Fuzzy b-metric spaces. Int. J. Comput. Commun. Control. 2016, 11, 273–281. [Google Scholar] [CrossRef] [Green Version]
  11. Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math. 1960, 10, 314–334. [Google Scholar] [CrossRef] [Green Version]
  12. Gregory, V.; Sapena, A. On fixed point theorems in fuzzy metric spaces. Fuzzy Set Syst. 2002, 125, 245–253. [Google Scholar] [CrossRef]
  13. Mehmood, F.; Ali, R.; Ionescu, C.; Kamran, T. Extended fuzzy b-metric spaces. J. Math. Anal. 2017, 8, 124–131. [Google Scholar]
  14. Sezen, M.S. Controlled fuzzy metric spaces and some related fixed-point results. Numer. Methods Partial. Differ. Equ. 2021, 37, 583–593. [Google Scholar] [CrossRef]
  15. Shukla, S.; Abbas, M. Fixed point results in fuzzy metric-like spaces. Iran. J. Fuzzy Syst. 2014, 11, 81–92. [Google Scholar]
  16. Javed, K.; Uddin, F.; Aydi, H.; Arshad, M.; Ishtiaq, U.; Alsamir, H. On Fuzzy b-Metric-Like Spaces. J. Funct. Spaces 2021, 2021, 6615976. [Google Scholar] [CrossRef]
  17. Shukla, S.; Gopal, D.; Roldán-López-deHierro, A.-F. Some fixed point theorems in 1-M-complete fuzzy metric-like spaces. Int. J. Gen. Syst. 2016, 45, 815–829. [Google Scholar] [CrossRef]
  18. Park, J.H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039–1046. [Google Scholar] [CrossRef]
  19. Rafi, M.; Noorani, M.S.M. Fixed theorems on intuitionistic fuzzy metric space. Iran. J. Fuzzy Syst. 2006, 3, 23–29. [Google Scholar]
  20. Sintunavarat, W.; Kumam, P. Fixed Theorems for a Generalized Intuitionistic Fuzzy Contraction in Intuitionistic Fuzzy Metric Spaces. Thai J. Math. 2012, 10, 123–135. [Google Scholar]
  21. Konwar, N. Extension of fixed results in intuitionistic fuzzy b-metric spaces. J. Intell. Fuzzy Syst. 2021, 39, 7831–7841. [Google Scholar] [CrossRef]
  22. Alaca, C.; Turkoglu, D.; Yildiz, C. Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2006, 29, 1073–1078. [Google Scholar] [CrossRef]
  23. Mohamad, A. Fixed-point theorems in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2007, 34, 1689–1695. [Google Scholar] [CrossRef]
  24. Saadati, R.; Park, J.H. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2006, 27, 331–344. [Google Scholar] [CrossRef] [Green Version]
  25. Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  26. Karthikeyan, K.; Panjaiyan, K.; Baskonus, M.H.; Venkatachalam, K.; Chu, Y.M. Almost sectorial operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations. Math. Meth. Appl. Sci. 2021, 10, 1–15. [Google Scholar] [CrossRef]
  27. Chen, S.B.; Soradi-Zeid, S.; Alipour, M.; Chu, Y.M.; Gomez-Aguilar, J.F.; Jahanshahi, H. Optimal control of nonlinear time-delay fractional differential equations with dickson polynomials. Fractals 2021, 29, 2150079. [Google Scholar]
  28. Ahmad, H.; Akgül, A.; Khan, A.T.; Stanimirović, S.P.; Chu, M.Y. New Perspective on the Conventional Solutions of the Nonlinear Time-Fractional Partial Differential Equations. Complexity 2020, 2020, 8829017. [Google Scholar] [CrossRef]
  29. Chu, M.Y.; Hani, B.H.E.; El-Zahar, R.E.; Ebaid, A.; Shah, A.N. Combination of Shehu decomposition and variational iteration transform methods for solving fractional third order dispersive partial differential equations. Numer. Methods Partial. Differ. Equ. 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Uddin, F.; Ishtiaq, U.; Javed, K.; Aiadi, S.S.; Arshad, M.; Souayah, N.; Mlaiki, N. A New Extension to the Intuitionistic Fuzzy Metric-like Spaces. Symmetry 2022, 14, 1400. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14071400

AMA Style

Uddin F, Ishtiaq U, Javed K, Aiadi SS, Arshad M, Souayah N, Mlaiki N. A New Extension to the Intuitionistic Fuzzy Metric-like Spaces. Symmetry. 2022; 14(7):1400. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14071400

Chicago/Turabian Style

Uddin, Fahim, Umar Ishtiaq, Khalil Javed, Suhad Subhi Aiadi, Muhammad Arshad, Nizar Souayah, and Nabil Mlaiki. 2022. "A New Extension to the Intuitionistic Fuzzy Metric-like Spaces" Symmetry 14, no. 7: 1400. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14071400

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop