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Abstract: With regard to the interval number-based uncertain multi-attribute decision making prob-
lem, in which the attribute weights are unknown and there is no preference on decision-making
alternative objects, this paper presents a new decision-making approach. In this method, Hamming
distance firstly is used to define the Hamming similarity degree of normative interval numbers,
and the Hamming similarity degree of decision-making alternative objects, and then the Hamming
similarity superiority relation theory to the comparison of interval numbers is proposed and some
relevant results are obtained. Thus, by drawing on the idea of deviations maximization, an interval
number-based decision-making object Hamming similarity programming model (IN-DMOHSPM)
is established to calculate and solve the weight vector of attributes. Next, all of the selected alter-
native objects set is screened and sorted by using the overall Hamming similarity degree of each
decision-making object compared with the ideal optimal object, and a new algorithm of Hamming
similarity programming model for interval number-based multiple attribute decision-making objects
is presented. Finally, the feasibility and utility of this model used in this paper are demonstrated by a
numerical example.

Keywords: multi-attribute decision making objects; interval number; Hamming similarity programming
model; attribute weight

1. Introduction

Uncertain multi-attribute decision making (UMADM) is also known as uncertain
multi-objective decision making with a finite scheme [1,2]. It is a significant component of
the study of modern decision-making science theories and methods, and widely exists in
many practical problems, such as urban industrial planning, logistics network economy,
organizational and environmental performance, quality and benefits estimation, public
transport network design, centralized distribution network optimization, pattern match-
ing and intelligent control. Its theories and methods have been widely explored and
applied, such as the best matching evaluation of manufacturing technology and product
specifications [3], the multidimensional evaluation of organizational performance [4], the
environmental performance evaluation of the cross-efficiency DEA (data envelopment anal-
ysis, DEA) model [5], the environmental biased technical progress measurement evaluation
considering energy conservation and emission reduction [6], the evaluation of China’s
industrial green technology and its effect on energy conservation and emission reduc-
tion [7], the optimization of urban emission reduction and energy conservation efficiency
calculation [8], airport centralized distribution network optimization [9], agent simulation
bus line network design [10], dynamic multi-attribute group emergency decision making
considering experts’ hesitation [11], gray correlation analysis of weapon system modu-
larization priority [12] and other application practice fields. It should be noted that in
the process of understanding some fuzzy things, especially things in development and
under change, people are often affected by the subjectivity, limitations, preferences and
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other uncertain information of thinking judgment, and will not only focus on or stay
on any exact or fixed numerical information. In real life, because of the complexity and
objectivity of decision-making problems, the fuzziness of human thinking and the incom-
pleteness and nondeterminacy of decision-making information, expressing the objective
information and their preferences with accurate numerical values is tough for people. They
often use interval number values, triangular fuzzy number values or linguistic values that
are more consistent with the objective reality to quantify the information of things and
the information processing process. This can effectively overcome the uncertainty of the
decision-making value caused by the fuzziness of information. Therefore, the similarity
measure [13] provides an important basic tool and approach for people to conduct analogi-
cal logic reasoning on two or more things with uncertain fuzzy concepts. Research on many
uncertain decision-making problems relies on the application of the similarity measure,
such as prediction [14], expectation [15], optimization [16], evaluation [17], random simula-
tion [18], matrix game [19] and spatial representation [20]. So, it is vital to find a scientific,
simple and reasonable ranking algorithm to improve the decision-making efficiency. At
present, common ranking methods for UMADM problems with unknown attribute weights
and no preference for decision-making objects include the following in Table 1.

Table 1. Common ranking method.

Author Year Method Application

Zhang, L.Y. et al. [13] 2013 Similarity measurement TFNs information and MCGDM
Xu, Z.S. and Da, Q.L. [21] 2005 Minimum deviation method Priorities of fuzzy preference matrix
Saaty T.L. [22] 1980 Feature vector method Analytic hierarchy process

Gou, G.L. and Wang, G.Y. [23] 2016 Incremental updating
approximations

Confidential dominance relation based
rough set

Ju, Y.B. and Wang, A.H. [24] 2013 Extension of VIKOR MCGDM problem with
linguistic information

Sevastianov P. [25] 2007 Probabilistic approach and
Dempster–Shafer theory Interval and fuzzy number comparison

Huang, Z.L. and Luo, J. [26] 2019 Relative similarity
relation method

UMCDM with criteria values as
interval number

Huang, Z.L. and Luo, J. [27] 2017 Possibility degree
programming model

UMADM with attribute values as
interval number

Huang, Z.L et al. [28] 2012 Prospect theory model MCDM with alternative values as
interval number

Liu, Y. et al. [29] 2013 Grey target based on
prospect theory

Multi-objective grey target
decision-making

Sun, Y. et al. [30] 2017 Relative dominance
relation method MADM based on weights aggregation

Zhang, X.X. and Wang, Y.M. [31] 2019 Interval belief structure Hybrid Multi-attribute decision making

Ding, Q.Y. et al. [32] 2021 Interval-value hesitation
fuzzy TODIM

TODIM for dynamic
emergency responses

Lai, L.B. et al. [33] 2019 Graph cooperative game method Game Theory and Graph cooperative
game with interval-valued payoffs

The determination of attribute weight occupies an important position in UMADM-
related research. It is not difficult to point out that many experts and scholars are used to
using traditional methods such as the maximizing deviation method [34], the improved
maximizing deviation method [35], the information entropy method [36], the relative
similarity programming model algorithm [37] and the quadratic programming-based
relative superiority method [38] to determine the attribute weight, and then collect relevant
decision-making information in combination with their own characteristics and then select
and rank the best. These methods have achieved obvious results in the measurement
and ranking of the advantages and disadvantages of the decision objects. It is often
encountered that the indicator attribute values are similar to the measurement values, the
large similarity and small difference of the evaluation results of the scheme objects are
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evident and the low overall discrimination of the final decision level is evident, which
easily leads to the distortion of the decision results in the application process of dealing
with the UMADM problem. Although the traditional classical deviation maximization
weighting algorithm can effectively amplify the difference between the measured values of
the indicator attributes among the selected decision-making objects, and is more convenient
for the measurement, screening and ranking of the pros and cons of the scheme objects, it
simply contains the impact of the difference information between the measured values of
the initial indicator attributes on the decision-making results. However, it fails to take into
account the impact of the similarity measurement [13] information between the measured
values of the indicator attributes on the indicator attributes themselves in the evaluation
process of incomplete information systems such as UMADM [39,40], which is easy to cause
the judgment and ranking of the quality of the selected decision-making object set to be
inconsistent with the actual situation.

Therefore, in order to overcome the problems encountered above, for the interval
number-based uncertain multiple attribute decision-making (IN-UMADM) problem where
attribute weights are unknown with no preference for decision-making objects, this paper
give new formulas for the definition of Hamming similarity degree of the normalized
interval number and Hamming similarity degree of the decision-making objects by using
the Hamming distance [41,42], and the related property results of the dominance relation
theory to comparative Hamming similarity degree for interval numbers (i.e., there is
an equivalent relationship between the Hamming similarity degree size of each offered
alternative object with the ideal alternative object and the dominance size of each offered
decision-making alternative object). Taking into account the role of Hamming similarity
degree between the measurement data of attributes in the UMADM problem, a new
Hamming similarity programming model is designed and constructed to obtain a more
realistic weighting assignment equation for attributes based on the Hamming similarity
relationship between interval number-based attribute values. After the aggregation and
fusion of alternative decision information, the differences of similarity degree among
all the selected alternative objects will be reduced, that is, the differences among the
selected alternative objects will be expanded, which is conducive to the identification of
the advantages and disadvantages of the selected alternative objects and the screening
and sorting. At last, the overall Hamming similarity degree of each alternative decision
object compared with the ideal alternative decision object is used to screen and rank all
of the selected alternative object set, and a new algorithm of the Hamming similarity
programming model for interval number-based multiple attribute decision-making objects
is presented.

2. Superiority Relation Theories to Compare Hamming Similarity Degree for
Interval Numbers
2.1. Hamming Similarity Degree for Interval Numbers

Definition 1. If x̃ =
[
xL, xU] = {

x
∣∣xL ≤ x ≤ xU , xL, xU ∈ R

}
, x̃ is called an interval num-

ber [1,2,26–28] (IN), where xL and xUare the lower and upper bounds supported by interval number
x̃, which are generally called small elements and large elements. In particular, if the interval number
x̃ =

[
xL, xU] also satisfies 0 < xL ≤ xU < 1, then x̃ is called to be a normalized interval number.

If xL = xU ,x̃ degenerates into a real number, that is, x̃ = xL = xU , we denote lx̃ = xU − xL as
the width of the interval number x̃, when lx̃ = 0, and x̃ is also a real number.

For the convenience of the following analysis, the operation rules about interval
numbers are first given as follows: Let x̃ =

[
xL, xU], ỹ =

[
yL, yU], and then we have

Rule 1 x̃ + ỹ =
[
xL + yL, xU + yU];

Rule 2 x̃− ỹ =
[
xL − yU , xU − yL];

Rule 3 1
x̃ =

[
1

xU , 1
xL

]
, xL, xU > 0 or xL, xU < 0;

Rule 4 kx̃ =
[
kxL, kxU], where k > 0, in particular, if k = 0, then kx̃ = 0;

kx̃ =
[
kxU , kxL], where k < 0;
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Rule 5 If and only if xL = yL, xU = yU , then x̃ = ỹ.
To introduce the definition of Hamming similarity, we first define the concept of

Hamming divergence of interval numbers using the Hamming distance [41,42] (Ham-
ming distance).

Definition 2. Let two arbitrary normalized interval numbers x̃ =
[
xL, xU] and ỹ =

[
yL, yU],

if norm
‖ x̃− ỹ ‖IN =

∣∣∣xL − yL
∣∣∣+ ∣∣∣xU − yU

∣∣∣. (1)

Then, dIN(x̃, ỹ) = x̃− ỹIN is called the Hamming deviation degree [27,28] between normal-
ized interval numbers x̃ and ỹ. Obviously, the larger the dIN(x̃, ỹ) value is, the greater the degree
of separation between x̃ and ỹ from each other. In particular, when dIN(x̃, ỹ) = 0, then x̃ = ỹ,
i.e., x̃ and ỹ are equal.

Definition 3. Let two arbitrary normalized interval numbers x̃ =
[
xL, xU] and ỹ =

[
yL, yU], then

sIN(x̃, ỹ) = 1−
∣∣xL − yL

∣∣+ ∣∣xU − yU
∣∣

2
= 1− 1

2
dIN(x̃, ỹ), (2)

where sIN(x̃, ỹ) is called the Hamming similarity degree between normalized interval numbers
x̃ and ỹ [2,39,40]. It is easy to know that the larger the sIN(x̃, ỹ) value, the greater the degree of
similarity between x̃ and ỹ. In particular, when sIN(x̃, ỹ) = 1, there is x̃ = ỹ, i.e., the interval
number x̃ is completely similar to ỹ.

From the definition of Hamming similarity degree for normalized interval numbers
given in Definition 3 above, the following properties are easily obtained.

Theorem 1. Let any given three normalized interval numbers be set as x̃ =
[
xL, xU], ỹ =

[
yL, yU]

and z̃ =
[
zL, zU], then, we have the following:

(1) Boundedness, 0 ≤ sIN(x̃, ỹ) ≤ 1;
(2) Self-reflexivity, sIN(x̃, x̃) = 1;
(3) Symmetry, sIN(x̃, ỹ) = sIN(ỹ, x̃);
(4) Transitivity, if sIN(x̃, ỹ) = 1, sIN(ỹ, z̃) = 1 then sIN(x̃, z̃) = 1, that is, if x̃ is exactly

similar to ỹ and ỹ is exactly similar to z̃, then x̃ is exactly similar to z̃.
(5) Proximity, if sIN(x̃, ỹ) ≤ sIN(x̃, z̃)., then z̃ is said to be closer to x̃ than ỹ; if

sIN(x̃, ỹ) ≤ sIN(z̃, ỹ), then z̃ is said to be closer to ỹ than x̃.

According to the definition of interval number Hamming similarity, it is easy to prove
that the conclusion of Theorem 1 is valid. The proof process is omitted.

Definition 4. Let the alternative decision-making objects composed of the sequence of normal
interval numbers be set as X = {x̃1, x̃2, · · · , x̃m} and Y = {ỹ1, ỹ2, · · · , ỹm}. Then,

SIN(X, Y) =
1
m ∑m

i=1 sIN(x̃i, ỹi) = 1− 1
2m ∑m

i=1 dIN(x̃i, ỹi), (3)

where SIN(X, Y) is called the Hamming similarity degree between decision-making objects X and Y.

Suppose the weighted normalized interval number-based decision-making matrix is
Z̃ = (z̃ij)n×m, where z̃ij = [zL

ij, zU
ij ], i ∈ N, j ∈ M. Then, we have the following definition.

Definition 5. Z+∗ = {z̃+∗1 , z̃+∗2 , · · · , z̃+∗m } is called an interval number-based positive ideal
decision-making object composed by a positive ideal points sequence, where

z̃+∗j = [z+∗L
j , z+∗Uj ] = [max

i
(zL

ij), max
i

(zU
ij )], j = 1, 2, · · · , m, (4)
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is a positive ideal point [2,26–28] and the larger the value, the better it is. Z−∗ = {z̃−∗1 , z̃−∗2 , · · · , z̃−∗m }
is called an interval number-based negative ideal decision-making object composed by a negative
ideal points sequence, where

z̃−∗j = [z−∗L
j , z−∗Uj ] = [min

i
(zL

ij), min
i
(zU

ij )], j = 1, 2, · · · , m, (5)

is a negative ideal point [2,26–28], and the smaller the value, the worse it is.

2.2. Superiority Relation to Comparing Hamming Similarity Degree for Interval Numbers

According to the concept of Hamming similarity degree already given above, we
define the relevant definitions and main results concerning the superiority relation to
comparing Hamming similarity degree for normalized interval numbers and interval
number sequences as follows:

Definition 6. Let any two normalized interval numbers be x̃ =
[
xL, xU] and ỹ =

[
yL, yU] and in-

terval number-based positive and negative ideal points be z̃+∗ =
[
z+∗L, z+∗U

]
and

z̃−∗ =
[
z−∗L, z−∗U

]
, if

sIN(x̃, z̃+∗) > sIN(ỹ, z̃+∗) ∨ sIN(x̃, z̃−∗) < sIN(ỹ, z̃−∗), (6)

then the normalized interval number x̃ is superior compared to ỹ [2], which is denoted as: x̃ � ỹ.
Obviously, the larger the Hamming similarity degree with the interval number-based positive ideal
point, or the smaller the Hamming similarity degree with the interval number-based negative ideal
point, the larger the dominance of the corresponding interval number.

Theorem 2. If and only if the positive and negative ideal points are the optimal decision points for
decision making, then

x̃ � ỹ⇔ dIN(x̃, z̃+∗)< dIN(ỹ, z̃+∗) ∨ dIN(x̃, z̃−∗) >dIN(ỹ, z̃−∗)⇔ xL + xU > yL + yU . (7)

Proof. Obviously, from Definition 6, it follows that �

x̃ � ỹ⇔ sIN(x̃, z̃+∗) > sIN(ỹ, z̃+∗) ∨ sIN(x̃, z̃−∗) < sIN(ỹ, z̃−∗).

According to Equation (2), we obtain

sIN(x̃, z̃+∗) > sIN(ỹ, z̃+∗) ∨ sIN(x̃, z̃−∗) < sIN(ỹ, z̃−∗)⇔

dIN(x̃, z̃+∗)< dIN(ỹ, z̃+∗) ∨ dIN(x̃, z̃−∗) >dIN(ỹ, z̃−∗),

Therefore,

x̃ � ỹ⇔ dIN(x̃, z̃+∗)< dIN(ỹ, z̃+∗) ∨ dIN(x̃, z̃−∗) >dIN(ỹ, z̃−∗).

Additionally, according to Equation (1), we have

dIN(x̃, z̃+∗) =
∣∣∣xL − z+∗L

∣∣∣+ ∣∣∣xU − z+∗U
∣∣∣, dIN(ỹ, z̃+∗) =

∣∣∣yL − z+∗L
∣∣∣+ ∣∣∣yU − z+∗U

∣∣∣,
dIN(x̃, z̃−∗) =

∣∣∣xL − z−∗L
∣∣∣+ ∣∣∣xU − z−∗U

∣∣∣, dIN(ỹ, z̃−∗) =
∣∣∣yL − z−∗L

∣∣∣+ ∣∣∣yU − z−∗U
∣∣∣;

When the positive and negative ideal points are the optimal decision-making points,
i.e., z̃+∗ =

[
z+∗L, z+∗U

]
, z̃−∗ =

[
z−∗L, z−∗U

]
is the interval number-based ideal point,

hence, we have

z+∗L ≥ max
{

xL, yL
}

, z+∗U ≥ max
{

xU , yU
}

, z−∗L ≤ min
{

xL, yL
}

, z−∗U ≤ min
{

xU , yU
}

.
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Then, we can obtain

dIN
(

x̃, z̃+∗
)
=
(

z+∗L + z+∗U
)
−
(

xL + xU
)

, dIN
(
ỹ, z̃+∗

)
=
(

z+∗L + z+∗U
)
−
(

yL + yU
)

,

dIN
(

x̃, z̃−∗
)
=
(

xL + xU
)
−
(

z−∗L + z−∗U
)

, dIN
(
ỹ, z̃−∗

)
=
(

yL + yU
)
−
(

z−∗L + z−∗U
)

;

As
dIN
(

x̃, z̃+∗
)
< dIN

(
ỹ, z̃+∗

)
∨ dIN

(
x̃, z̃−∗

)
>dIN

(
ỹ, z̃−∗

)
,

Therefore,
x̃ � ỹ⇔ xL + xU > yL + yU ,

Thus, the formula (7) holds. Proof is completed.
In the process of judging the dominance relationship between interval numbers, it

can be judged directly by using Theorem 2, that is, through computing the Hamming
similarity degree value and Hamming deviation degree value between interval numbers
with ideal points, or through computing the sum sizes of small and large elements of
interval numbers-based attribute values.

Definition 7. Let alternative decision-making objects composed of the normalized interval number
sequence be X = {x̃1, x̃2, · · · , x̃m} and Y = {ỹ1, ỹ2, · · · , ỹm}, and the interval number-based
positive and negative ideal decision-making objects composed of positive and negative ideal point se-
quences be Z+∗ =

{
z̃+∗1 , z̃+∗2 , · · · , z̃+∗m

}
and Z−∗ =

{
z̃−∗1 , z̃−∗2 , · · · , z̃−∗m }, where x̃j = [xL

j , xU
j ],

ỹj = [yL
j , yU

j ], z̃+∗j = [z+∗L
j , z+∗Uj ], z̃−∗j = [z−∗L

j , z−∗Uj ], j = 1, 2, · · · , m, if

SIN
(
X, Z+∗) > SIN

(
Y, Z+∗) ∨ SIN

(
X, Z−∗

)
< SIN

(
Y, Z−∗

)
, (8)

then the alternative decision-making object X is superior to Y [2], which is denoted as X � Y.
Obviously, the greater the Hamming similarity degree with the interval number-based
positive ideal decision-making object or the smaller the Hamming similarity degree with
interval number-based negative ideal decision-making object, the greater the superiority of
the corresponding decision-making object.

Theorem 3. If and only if the interval number-based positive and negative ideal decision-making
objects are the optimal object for decision making, then

X � Y ⇔ ∑m
j=1 dIN

(
x̃j, z̃+∗j

)
< ∑m

j=1 dIN

(
ỹj, z̃+∗j

)
∨∑m

j=1 dIN

(
x̃j, z̃−∗j

)
>∑m

j=1 dIN

(
ỹj, z̃−∗j

)
⇔

dIN

(
∑m

j=1 x̃j, ∑m
j=1 z̃+∗j

)
< dIN

(
∑m

j=1 ỹj, ∑m
j=1 z̃+∗j

)
∨ dIN

(
∑m

j=1 x̃j, ∑m
j=1 z̃−∗j

)
>dIN

(
∑m

j=1 ỹj, ∑m
j=1 z̃−∗j

)
⇔

∑m
j=1

(
xL

j + xU
j

)
> ∑m

j=1

(
yL

j + yU
j

)
.

(9)

Proof. Obviously, from definition 7, it can be known that �

X � Y ⇔ SIN
(
X, Z+∗) > SIN

(
Y, Z+∗) ∨ SIN

(
X, Z−∗

)
< SIN

(
Y, Z−∗

)
.

According to formula (3), it can be obtained that

SIN
(
X, Z+∗) > SIN

(
Y, Z+∗) ∨ SIN

(
X, Z−∗

)
< SIN

(
Y, Z−∗

)
⇔

∑m
j=1 dIN

(
x̃j, z̃+∗j

)
< ∑m

j=1 dIN

(
ỹj, z̃+∗j

)
∨∑m

j=1 dIN

(
x̃j, z̃−∗j

)
>∑m

j=1 dIN

(
ỹj, z̃−∗j

)
.

Therefore,

X � Y ⇔∑m
j=1 dIN

(
x̃j, z̃+∗j

)
< ∑m

j=1 dIN

(
ỹj, z̃+∗j

)
∨∑m

j=1 dIN

(
x̃j, z̃−∗j

)
>∑m

j=1 dIN

(
ỹj, z̃−∗j

)
.



Symmetry 2022, 14, 2203 7 of 20

According to formula (1), we can obtain

∑m
j=1 dIN

(
x̃j, z̃+∗j

)
= ∑m

j=1

(∣∣∣xL
j − z+∗L

j

∣∣∣+ ∣∣∣xU
j − z+∗Uj

∣∣∣),

∑m
j=1 dIN

(
ỹj, z̃+∗j

)
= ∑m

j=1

(∣∣∣yL
j − z+∗L

j

∣∣∣+ ∣∣∣yU
j − z+∗Uj

∣∣∣),

∑m
j=1 dIN

(
x̃j, z̃−∗j

)
= ∑m

j=1

(∣∣∣xL
j − z−∗L

j

∣∣∣+ ∣∣∣xU
j − z−∗Uj

∣∣∣),

∑m
j=1 dIN

(
ỹj, z̃−∗j

)
= ∑m

j=1

(∣∣∣yL
j − z−∗L

j

∣∣∣+ ∣∣∣yU
j − z−∗Uj

∣∣∣),

dIN

(
∑m

j=1 x̃j, ∑m
j=1 z̃+∗j

)
=
∣∣∣∑m

j=1 xL
j −∑m

j=1 z+∗L
j

∣∣∣+ ∣∣∣∑m
j=1 xU

j −∑m
j=1 z+∗Uj

∣∣∣,
dIN

(
∑m

j=1 ỹj, ∑m
j=1 z̃+∗j

)
=
∣∣∣∑m

j=1 yL
j −∑m

j=1 z+∗L
j

∣∣∣+ ∣∣∣∑m
j=1 yU

j −∑m
j=1 z+∗Uj

∣∣∣,
dIN

(
∑m

j=1 x̃j, ∑m
j=1 z̃−∗j

)
=
∣∣∣∑m

j=1 xL
j −∑m

j=1 z−∗L
j

∣∣∣+ ∣∣∣∑m
j=1 xU

j −∑m
j=1 z−∗Uj

∣∣∣,
dIN

(
∑m

j=1 ỹj, ∑m
j=1 z̃−∗j

)
=
∣∣∣∑m

j=1 yL
j −∑m

j=1 z−∗L
j

∣∣∣+ ∣∣∣∑m
j=1 yU

j −∑m
j=1 z−∗Uj

∣∣∣.
When the interval number-based positive and negative ideal decision-making objects

are the optimal object, that is, Z+∗ =
{

z̃+∗1 , z̃+∗2 , · · · , z̃+∗m
}

, Z−∗ =
{

z̃−∗1 , z̃−∗2 , · · · , z̃−∗m
}

is
the interval number-based positive and negative ideal sequence composed of positive and
negative ideal points, hence, we have

z+∗L
j ≥ max

{
xL

j , yL
j

}
, z+∗Uj ≥ max

{
xU

j , yU
j

}
,

z−∗L
j ≤ min

{
xL

j , yL
j

}
, z−∗Uj ≤ min

{
xU

j , yU
j

}
, j = 1, 2, · · · , m.

So, we can obtain

∑m
j=1 dIN

(
x̃j, z̃+∗j

)
= ∑m

j=1

((
z+∗L

j + z+∗Uj

)
−
(

xL
j − xU

j

))
= ∑m

j=1 (z
+∗L
j + z+∗Uj )−∑m

j=1 (xL
j + xU

j ),

for the same reason

∑m
j=1 dIN

(
ỹj, z̃+∗j

)
= ∑m

j=1 (z
+∗L
j + z+∗Uj )−∑m

j=1 (y
L
j + yU

j ),

∑m
j=1 dIN(x̃j, z̃−∗j ) = ∑m

j=1 (xL
j + xU

j )−∑m
j=1 (z

−∗L
j + z−∗Uj ),

∑m
j=1 dIN(ỹj, z̃−∗j ) = ∑m

j=1 (y
L
j + yU

j )−∑m
j=1 (z

−∗L
j + z−∗Uj ).

dIN(∑m
j=1 x̃j, ∑m

j=1 z̃+∗j ) = (∑m
j=1 z+∗L

j + ∑m
j=1 z+∗Uj )− (∑m

j=1 xL
j + ∑m

j=1 xU
j ) =

∑m
j=1 (z

+∗L
j + z+∗Uj )−∑m

j=1 (xL
j + xU

j ) = ∑m
j=1 dIN(x̃j, z̃+∗j ),

Similarly,

dIN(∑m
j=1 ỹj, ∑m

j=1 z̃+∗j ) = ∑m
j=1 dIN(ỹj, z̃+∗j ),

dIN(∑m
j=1 x̃j, ∑m

j=1 z̃−∗j ) = ∑m
j=1 dIN(x̃j, z̃−∗j ),

dIN(∑m
j=1 ỹj, ∑m

j=1 z̃−∗j ) = ∑m
j=1 dIN(ỹj, z̃−∗j ).

As ∑m
j=1 dIN(x̃j, z̃+∗j )< ∑m

j=1 dIN(ỹj, z̃+∗j ) ∨∑m
j=1 dIN(x̃j, z̃−∗j ) >∑m

j=1 dIN(ỹj, z̃−∗j ), we can get
dIN(∑m

j=1 x̃j, ∑m
j=1 z̃+∗j )< dIN(∑m

j=1 ỹj, ∑m
j=1 z̃+∗j ) ∨ dIN(∑m

j=1 x̃j, ∑m
j=1 z̃−∗j ) >

dIN(∑m
j=1 ỹj, ∑m

j=1 z̃−∗j ),

and
∑m

j=1 (xL
j + xU

j ) > ∑m
j=1 (y

L
j + yU

j ),

Therefore,
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X � Y ⇔ ∑m
j=1 dIN

(
x̃j, z̃+∗j

)
< ∑m

j=1 dIN

(
ỹj, z̃+∗j

)
∨∑m

j=1 dIN

(
x̃j, z̃−∗j

)
>∑m

j=1 dIN

(
ỹj, z̃−∗j

)
⇔ dIN

(
∑m

j=1 x̃j, ∑m
j=1 z̃+∗j

)
< dIN

(
∑m

j=1 ỹj, ∑m
j=1 z̃+∗j

)
∨ dIN

(
∑m

j=1 x̃j, ∑m
j=1 z̃−∗j

)
>

dIN

(
∑m

j=1 ỹj, ∑m
j=1 z̃−∗j

)
⇔ ∑m

j=1

(
xL

j + xU
j

)
> ∑m

j=1

(
yL

j + yU
j

)
.

Thus, the formula (9) holds. Proof is completed.
In the process of determining the relationship between the advantages of alternative

decision objects, it can be directly judged by using Theorem 3, that is, through computing
the Hamming similarity degree value of each selected alternative decision object with
the ideal alternative decision object, the Hamming deviation degree sequence sum of
the attribute value of the alternative decision object with the ideal point value of the
ideal decision-making object, the Hamming deviation degree value of the attribute value
sequence sum of the selected decision-making object with the ideal point value sequence
sum of the ideal decision-making object, or by comparing the sequence sum size of small
elements and large elements of interval number-based attribute values of the selected
alternative decision object.

For the IN-UMADM problem with unknown attribute weights and without any pref-
erence for decision objects, the set of selected objects in its decision space is assumed to be
{Xi|i = 1, 2, · · · , n}. From the perspective of facilitating the judgement of the advantages
and disadvantages among the alternative objects, people generally think that the larger the
Hamming similarity between the decision object Xi and the positive ideal optimal object,
the better it will be, and the smaller the Hamming similarity between the decision object
Xi and the negative ideal optimal object, the better it will be, so that it is convenient to
implement the advantages and disadvantages screening and ranking for the set of selected
objects. However, the literature [26] raised such a problem from the special case of sat-
isfying the closeness formula of the positive and negative ideal optimal objects, that is,
the selected object may not approach the positive ideal optimal object while staying away
from the negative ideal optimal object. In order to obtain the optimal approach point to
the positive and negative ideal objects, this paper proposes a new sequencing method: by
introducing a concept of overall Hamming similarity degree OHSIN(Xi) (see definition 8),
the approach close to the optimal ideal point is expressed, that is, the degree of difference
that the alternative objects are close to the positive ideal object and far away from the
negative ideal object at the same time.

Definition 8. Let the alternative decision-making object composed of interval number sequences be
Xi = {x̃i1, x̃i2, · · · , x̃im}, and the interval number-based positive and negative ideal decision-making
objects composed of positive and negative ideal point sequences be Z+∗ =

{
z̃+∗1 , z̃+∗2 , · · · , z̃+∗m

}
and

Z−∗ =
{

z̃−∗1 , z̃−∗2 , · · · , z̃−∗m
}

, where x̃ij =
[

xL
ij, xU

ij

]
, z̃+∗j =

[
z+∗L

j , z+∗Uj

]
, z̃−∗j =

[
z−∗L

j , z−∗Uj

]
,

i = 1, 2, · · · , n, j = 1, 2, · · · , m, then

OHSIN(Xi) =
SIN(Xi, Z+∗)

max
1≤i≤n

{SIN(Xi, Z+∗)} −
SIN(Xi, Z−∗)

min
1≤i≤n

{SIN(Xi, Z−∗)} , (10)

where OHSIN(Xi) is called the overall Hamming similarity degree of the compared Hamming
similarity degree between the decision-making object Xi and the positive or negative ideal decision-
making object Z+∗ or Z−∗ in the alternative object set.

Theorem 4. OHSIN(Xi) ≤ 0, i = 1, 2, · · · , n.

Proof. According to Equation (10), it can be known that �
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SIN(Xi, Z+∗)

max
1≤i≤n

{SIN(Xi, Z+∗)} ≤ 1 ≤ SIN(Xi, Z−∗)
min

1≤i≤n
{SIN(Xi, Z−∗)} ,

we can obtain
SIN(Xi, Z+∗)

max
1≤i≤n

{SIN(Xi, Z+∗)} −
SIN(Xi, Z−∗)

min
1≤i≤n

{SIN(Xi, Z−∗)} ≤ 0,

which completes the proof.
If the alternative decision-making object X∗i ∈ {Xi|i = 1, 2, · · · , n} also satisfies

SIN
(
X∗i , Z+∗) = max

1≤i≤n

{
SIN

(
Xi, Z+∗)} ∧ SIN

(
X∗i , Z−∗

)
= min

1≤i≤n

{
SIN

(
Xi, Z−∗

)}
,

Then OHSIN
(
X∗i
)
= 0, i.e., the maximum value is reached. At this time, the selected

decision-making object X∗i is the optimal alternative closest to the positive ideal decision-
making object and farthest from the negative ideal decision-making object. Thus, if the
value of OHSIN(Xi) gradually decreases, the decision-making object Xi is farther from the
positive ideal optimal object point and closer to the negative ideal optimal object point,
making it difficult to meet the requirements of the decision maker. Therefore, the overall
Hamming similarity degree OHSIN(Xi) given in this paper excels in picking and sorting
the alternative object set {Xi|i = 1, 2, · · · , n}. If the alternative decision object Xi1 is better
than Xi2 , then it is marked as Xi1 � Xi2 ( i1, i2 = 1, 2, · · · , n).

3. Hamming Similarity Programming Model for Multi-Attribute Decision
Making Objects

Considering that the overall change trend of the attribute measure value data among
the selected decision-making objects is generally stable, the difference is small and the
fluctuation is small, so the alternative similarity is high; on the contrary, if the alternative
similarity is low, the overall fluctuation of the attribute measurement value data will be
severe, and the difference will be large. Therefore, we should focus on considering such
indicator attributes and fully apply their weights to expand the impact on the decision-
making results.

Now, for the IN-UMADM problem with unknown attribute weight and no preference
information on the alternative object, a new attribute weighting rule based on the decision-
making object Hamming similarity programming model is proposed from the perspective
of determining the advantages and disadvantages of the alternative objects, by referring
to the idea of maximum deviation weighting [34,35] and the superiority relation theories
to comparing Hamming similarity degree for interval numbers, as follows: under the
same indicator attribute, if the Hamming similarity degree value [39,40] of the attribute
measurement value data among the alternative objects is too large (i.e., the difference
between the attribute observation value data is small), this indicates that the attribute
has a small influence on the judgment of the advantages and disadvantages and order
arrangement of the alternative objects, and, accordingly, the weighting value of attributes
should be given as small. In particular, if the Hamming similarity degree value of the
attribute measurement value data among the alternative objects reaches the maximum
value, that is, it is equal to 1 (i.e., there is no difference in the attribute observation value
data), the attribute does not play any role in determining the quality and order of the
selected objects, and the corresponding zero attribute weight will be given. On the contrary,
under the same indicator attribute, if the Hamming similarity degree value of the attribute
measurement value data between the alternative objects is too small (i.e., the difference
between the attribute observation value data is large), it indicates that the attribute has
a great influence on the judgment of the advantages and disadvantages and the order
arrangement of the alternative objects, which should be considered emphatically and given
a large weighting value of attributes accordingly.
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From the perspective of the similarity measurement principle, the large difference
of attribute measurement value data is the main basis and key factor for judging the
advantages and disadvantages of the alternative decision-making objects [26,28].

Next, this paper uses the attribute measured value information of the selected alterna-
tive objects to establish a Hamming similarity programming model to solve the attribute
weight vector, which is convenient for reducing the similarity between the selected alter-
native objects after the aggregation and fusion of the decision-making information under
the optimal weighting, so as to expand the differences between the selected alternative
objects. It is more capable of comparatively judging the advantages and disadvantages of
the alternative objects, and screening and ranking the alternative decision object set.

Suppose that in the process of analyzing the advantages and disadvantages of a
scheme for an IN-UMADM problem, all the optional decision-making objects Xi under the
measurement of each attribute uj will obtain a matrix X̃ = (x̃ij)n×m (where x̃ij =

[
xL

ij, xU
ij

]
)

composed of the measured values x̃ij of the attributes of the initial decision-making object
Xi about uj, which is called the initial interval number-based decision matrix. Let Ij(j = 1, 2)
denote the subscript sets of the most common and easy to see benefit type and cost type
indicator attributes, and let M = {1, 2, · · · , m} and N = {1, 2, · · · , n}. It is easy to know
M = I1 ∪ I2. In order to fuse the incommensurability and contradiction between the
utility measure value data of different attributes and eliminate the influence of different
physical dimensions on the judgment selection of the advantages and disadvantages and
order arrangement of the alternative objects, the following formulas (11) and (12) are used
to convert the initial interval number-based decision matrix X̃ into the standard interval
number-based decision matrix R̃ = (r̃ij)n×m [2,26–28]:

r̃ij =
x̃ij

‖ x̃j ‖
, i ∈ N, j ∈ I1, (11)

r̃ij =

(
1/x̃ij

)
‖
(
1/x̃j

)
‖

, i ∈ N, j ∈ I2, (12)

where r̃ij =
[
rL

ij, rU
ij

]
is a normalized interval number and ‖·‖ is the norm of a vector,

x̃j =
√

∑n
i=1 x̃2

ij,
(
1/x̃j

)
=
√

∑n
i=1 (1/x̃ij)

2. According to the operation rule of interval
numbers, the above formulas (11) and (12) can be rewritten as

rL
ij =

xL
ij√

∑n
i=1 (xU

ij )
2
,

rU
ij =

xU
ij√

∑n
i=1 (xL

ij)
2
,

i ∈ N, j ∈ I1; (13)


rL

ij =

(
1/xU

ij

)
√

∑n
i=1 (1/xL

ij)
2
,

rU
ij =

(
1/xL

ij

)
√

∑n
i=1 (1/xU

ij )
2
,

i ∈ N, j ∈ I2. (14)

Therefore, we apply the superiority relation theories to compare Hamming similarity
degree for interval numbers and investigate the jth attribute uj in the standard interval
number-based decision matrix R̃. The Hamming similarity degree between the alternative
decision object Xi and other alternative decision objects is

si
(
uj
)
= ∑n

k=1 sIN(X
uj
i , X

uj
k ) = ∑n

k=1,k 6=i sIN(r̃ij, r̃kj),i, k ∈ N, j ∈ M. (15)
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Therefore, for the jth attribute uj, the total Hamming similarity degree between all
alternative decision objects and other alternative decision objects is

s
(
uj
)
= ∑n

i=1 si
(
uj
)
= ∑n

i=1 ∑n
k=1,k 6=i sIN(r̃ij, r̃kj),i, k ∈ N, j ∈ M. (16)

For the IN-UMADM problem where the attribute weight information is completely
unknown, it is better to assume that the attribute weight vector is W = (w1, w2, · · · , wm),
0 ≤ wj ≤ 1, j ∈ M and satisfies the unitization constraint condition ∑m

j=1 w2
j = 1.

According to the attribute weighting rule based on the Hamming similarity program-
ming model proposed in this paper, the optimal solution of the weight vector W should be
obtained so that the weighted sum of the total Hamming similarity of all scheme attributes
to all decision objects under the action of the weighted vector W is the minimum, taking
full account of the decision maker’s unknown attribute weights and no preference for
the decision objects; in other words, the optimal solution of the weight vector W shall
be obtained so that the weighted sum of the reciprocal of the total Hamming similarity
of all scheme attributes to all decision objects under the action of the weight vector W is
necessarily maximum [2].

In order to obtain the optimal weighting vector W, we construct the interval number-
based decision-making object Hamming similarity programming model (IN-DMOHSPM)
of UMADM as follows:

maxϕ(W) = ∑m
j=1

1
s
(
uj
) · wj = ∑m

j=1

(
1

∑n
i=1 ∑n

k=1,k 6=i sIN(r̃ij, r̃kj)

)
· wj,

s.t. ∑m
j=1 w2

j = 1, wj ≥ 0, i, k ∈ N, j ∈ M. (17)

The optimal solution obtained by solving this optimization model is

w∗j =

1
∑n

i=1 ∑n
k=1,k 6=i sIN(r̃ij ,̃rkj)√

∑m
j=1

[
1

∑n
i=1 ∑n

k=1,k 6=i sIN(r̃ij ,̃rkj)

]2
, i, k ∈ N, j ∈ M. (18)

In order to remain consistent with the traditional normalization usage, the unitization

weighting vector w∗j can be normalized, i.e., letting wj =
w∗j

∑m
j=1 w∗j

, j ∈ M., to obtain

wj =

1
∑n

i=1 ∑n
k=1,k 6=i sIN(r̃ij ,̃rkj)

∑m
j=1

(
1

∑n
i=1 ∑n

k=1,k 6=i sIN(r̃ij ,̃rkj)

) , i, k ∈ N, j ∈ M. (19)

It is easy to know from Equation (19) that the sum of Hamming similarity degree
values among all the candidate decision-making objects under the same attribute measure
is inversely proportional to the size of the attribute weight value.

4. Model Algorithm Implementation Steps and Examples

In this paper, the implementation steps of the algorithm for interval number-based
decision-making object Hamming similarity programming model (IN-DMOHSPM) are
as follows:

Step 1 In order to unify the incommensurability and contradiction between attribute
measured data and eliminate the influence of different physical dimensions on alternative
decision making, the initial interval number-based decision-making matrix X̃ is converted
into the normalized interval number-based decision-making matrix R̃ = (r̃ij)n×m according
to Formulas (13) and (14), where r̃ij = [rL

ij, rU
ij ] is a normalized interval number [2].
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Step 2 Use Formula (2) to analyze the normalized interval number-based decision-
making matrix R̃, which can reflect the attribute eigenvalue information of all the selected
objects, and calculate the Hamming similarity degree between the attribute values of each
decision-making object. According to the constructed IN-DMOHSPM, the attribute weight
measurement value W is obtained by using Formulas (15)~(19) to aggregate and calculate.

Step 3 The matrix is constructed by applying the attribute weight measurement value
W to the normalized interval number-based decision-making matrix R̃ is as follows:

R̃(W) = (wj · r̃ij)n×m, (20)

which is called the weighted normalized interval number-based decision-making matrix [2].
Step 4 According to the weighted normalized interval number-based decision-making

matrix R̃(W) obtained in step 3, the interval number-based positive and negative ideal
decision-making objects Z+∗ =

{
z̃+∗1 , z̃+∗2 , · · · , z̃+∗m

}
and Z−∗ =

{
z̃−∗1 , z̃−∗2 , · · · , z̃−∗m

}
composed of positive and negative ideal point sequences can be obtained by using the
Equations (4) and (5) of definition 5.

Step 5 Calculate all the Hamming similarity degrees Sw
IN(Xi, Z+∗) and Sw

IN(Xi, Z−∗)
(i = 1, 2, · · · , n) of all decision-making objects Xi (i = 1, 2, · · · , n) with interval number-
based positive or negative ideal decision-making objects Z+∗ or Z−∗, respectively, by using
Equation (3).

Step 6 Using Equation (10) of definition 8, it is easy to calculate the overall Hamming
similarity degree OHSIN(Xi) (i = 1, 2, · · · , n) of the compared Hamming similarity degree
between all the selected decision-making objects Xi and the positive or negative ideal
decision-making objects Z+∗ or Z−∗ in the alternative object set.

Step 7 According to the overall Hamming similarity degree OHSIN(Xi) value, the
candidate object set {Xi|i = 1, 2, · · · , n} is screened and sorted in descending order.

Example 1 In order to illustrate the practicability and effectiveness of IN-DMOHSPM,
the case of supplier selection in the literature [26,40] is used for analysis. In the bidding
selection of an international supplier for a key component of a commercial large aircraft,
it is assumed that X = {X1, X2, X3} represents the three international suppliers that have
been shortlisted, and U = {u1, u2, u3, u4} represents the four attributes that need to be
considered, namely, quality u1, competitiveness u2, price u3 and design scheme u4. We
try to determine the best supplier from an objective perspective (assuming that the initial
visual measurement quantitative information of each attribute is shown in Table 2 after
statistical processing).

Table 2. Initial visual measurement quantitative information table [26,40].

Candidate Suppliers Set X u1 u2 u3 u4

X1 [6,8] [7,9] [18,20] [7,10]

X2 [7,9] [8,10] [12,15] [6,8]

X3 [8,10] [6,7] [25,30] [5,7]

Step 1 Since quality u1, competitiveness u2 and design scheme u4 are benefit-type
attributes, price u3 is a cost-type attribute. In order to unify the incommensurability and
contradiction between different attribute measure value data and eliminate the influence
of different physical dimensions on decision making, the initial interval number-based
decision-making matrix X̃ composed of attribute measure value data in Table 1 “initial
visual measurement quantitative information table” is converted into the normalized
interval number-based decision-making matrix R̃ = (r̃ij)n×m according to Formula (13)
and Formula (14). The obtained standard decision information is shown in Table 3.
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Table 3. Normalized decision-making information table.

X u1 u2 u3 u4

X1 [0.383,0.655] [0.462,0.737] [0.464,0.619] [0.480,0.953]

X2 [0.447,0.737] [0.528,0.819] [0.618,0.928] [0.411,0.763]

X3 [0.511,0.819] [0.396,0.573] [0.309,0.446] [0.343,0.667]

Step 2 For the normalized interval number-based decision-making matrix R̃ composed
of attribute measure value data in Table 2 “Normalized decision-making information
table”, the Hamming similarity degree between attribute measurement value data of each
decision-making object is calculated by using Equation (2), and then, according to the
constructed IN-DMOHSPM, the attribute weight measurement value vector W is obtained
by aggregating according to Equations (15)–(19) as follows:

W = (0.232, 0.240, 0.285, 0.244)T

Step 3 The weighted normalized interval number-based decision-making matrix
R̃(W) is constructed by using Equation (20), and the weighted normalized decision-making
information is shown in Table 4.

Table 4. Weighted normalized decision-making information table.

X u1 u2 u3 u4

X1 [0.089,0.152] [0.111,0.177] [0.132,0.176] [0.117,0.232]

X2 [0.104,0.171] [0.126,0.196] [0.176,0.264] [0.100,0.186]

X3 [0.119,0.190] [0.095,0.137] [0.088,0.127] [0.084,0.163]

Step 4 According to the attribute measurement value data R̃(W) in Table 3 “weighted
normalized decision-making information table”, the interval number-based positive and
negative ideal decision-making objects Z+∗ and Z−∗ composed of positive and negative
ideal point sequences are obtained according to Equations (4) and (5) of definition 5
as follows:

Z+∗ = {[0.119, 0.190], [0.126, 0.196], [0.176, 0.264], [0.117, 0.232]};

Z−∗ = {[0.089, 0.152], [0.095, 0.137], [0.088, 0.127], [0.084, 0.163]}.

Step 5 The Hamming similarity degree Sw
IN(Xi, Z+∗) and Sw

IN(Xi, Z−∗) of all the se-
lected decision-making objects Xi (i = 1, 2, 3) with the interval number-based positive
or negative ideal decision-making objects Z+∗ or Z−∗ are respectively obtained by using
Equation (3) as follows:

Sw
IN
(
X1, Z+∗) = 0.971, Sw

IN
(
X2, Z+∗) = 0.988, Sw

IN
(
X3, Z+∗) = 0.948,

Sw
IN
(
X1, Z−∗

)
= 0.969, Sw

IN
(
X2, Z−∗

)
= 0.951, Sw

IN
(
X3, Z−∗

)
= 0.992.

Step 6 Using Equation (10) of definition 8, the overall Hamming similarity degrees
OHSIN(Xi) (i = 1, 2, 3) of the compared Hamming similarity degree between all the
selected decision-making objects Xi and the positive or negative ideal optimal objects Z+∗

or Z−∗ in the alternative object set are obtained as follows:

OHSIN(X1) = −0.036, OHSIN(X2) = 0, OHSIN(X3) = −0.084.

Step 7 The selected decision-making object set {Xi|i = 1, 2, 3} is screened and sorted
in descending order according to the OHSIN(Xi) value, and we obtain

X2 � X1 � X3.
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This means X2 is the optimal decision object.
According to the results obtained in steps 5 and 6, it is easy to draw a geometric

comparison diagram of Hamming similarity Sw
IN(Xi, Z+∗) with a positive ideal decision

object, Hamming similarity Sw
IN(Xi, Z−∗) with a negative ideal decision object and overall

Hamming similarity OHSIN(Xi), as shown in Figure 1. Although the three Hamming
similarity values are not the same, the results of screening and ranking of the decision
object set {Xi|i = 1, 2, 3} are consistent; all of them are X2 � X1 � X3.
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Figure 1. Geometrical comparison of Hamming similarity degree with positive ideal decision-
making objects, Hamming similarity degree with negative ideal decision-making objects and overall
Hamming similarity degree.

From Figure 1, it can be seen that the Hamming similarity degree curve with the
positive ideal decision-making objects and the Hamming similarity degree curve with
the negative ideal decision-making objects show opposite trends of change (this is due to
the fact that the positive and negative ideal point series constitute different ideal decision
objects), while the Hamming similarity degree curve with the positive ideal decision-
making objects and the overall Hamming similarity degree curve show the same change
trend. Moreover, the overall Hamming similarity degree curve appears steeper (this is
caused by the aggregation of Hamming similarity degree information with positive ideal
decision-making objects and Hamming similarity degree information with negative ideal
decision-making objects), which can increase the decision-making discrimination.

In addition to the above-mentioned screening and ranking of the alternative set by
using the overall Hamming similarity superiority relation method for comparison among
the decision-making objects, the conclusion of Theorem 3 in this paper can also be used,
for example, to judge whether a decision object is good or bad by comparing its weighted
attribute value with the Hamming distance sequence and size of the ideal point of the
ideal decision object, or by comparing its weighted attribute value sequence and Hamming
distance value of the ideal point sequence and the ideal point sequence of the ideal decision
object, or by comparing the weighted attribute value sequence and size of the small element
and the large element of the interval number of the optional decision object. We can easily
obtain the following results by using Formula (9):
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According to the above calculation results, it is easy to draw the geometric comparison
diagram of Hamming distance sequence and ∑4

j=1 dIN(x̃w
iuj

, z̃+∗uj
) and ∑4

j=1 dIN(x̃w
iuj

, z̃−∗uj
) of

the weighted attribute value of the decision object and the ideal point of the positive and
negative ideal decision objects, Hamming distance sequence and dIN(∑4

j=1 x̃w
iuj

, ∑4
j=1 z̃+∗uj

)

and dIN(∑4
j=1 x̃w

iuj
, ∑4

j=1 z̃−∗uj
) of the weighted attribute value sequence of the decision object

and the ideal point sequence of the positive and negative ideal decision objects, weighted
attribute value sequence and ∑4

j=1

(
xwL

iuj
+ xwU

iuj

)
of the interval number small element and

large element of the decision object and the overall Hamming similarity OHSIN(Xi), as
shown in Figure 2.
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Figure 2. Geometrical comparison of the Hamming deviation degree sequence sum of positive and
negative ideal points, Hamming deviation degree of positive and negative ideal points sequence sum,
sequence sum of weighted attribute values and overall Hamming similarity degree.

Although the Hamming deviation degree sequence sum of positive ideal points and
Hamming deviation degree of positive ideal points sequence sum, Hamming deviation
degree sequence sum of negative ideal points and Hamming deviation degree of negative
ideal points sequence sum, sequence sum of weighted attribute values are not the same
as the overall Hamming similarity value, the results of their screening and ranking of the
decision object set {Xi|i = 1, 2, 3} are still consistent, both of which are X2 � X1 � X3.
From Figure 2, it can be seen that the Hamming degree of separation sequence and curve
of positive and negative ideal points coincide with the Hamming degree of separation
curve of positive and negative ideal point sequences, respectively (this is caused by the
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conclusion of Theorem 3 that the Hamming deviation degree sequence sum with ideal
points of the ideal decision-making object and the Hamming deviation degree with ideal
points sequence sum of the ideal decision-making object are equivalent). The Hamming
degree of separation sequence and curve of positive ideal points, the Hamming degree
of separation curve of positive ideal point sequence and the other four curves show the
opposite change trend (this is because the selected target reference object is caused by
the positive ideal decision object composed of the positive ideal point series), while the
other four curves show the same change trend. Among them, the overall Hamming degree
of similarity curve is compared with the weighted attribute value series and the sum of
Hamming’s phase separation degree sequences of negative ideal points. The three curves of
Hamming distance between the negative ideal point sequence and the negative ideal point
sequence are more gentle (this is because the overall Hamming similarity curve integrates
the Hamming similarity information of the weighted attribute value series and the positive
and negative ideal point series, while the three curves of the weighted attribute value series
and the Hamming distance between the negative ideal point sequence and the Hamming
distance between the negative ideal point sequence and the negative ideal point sequence
only fuse the small and large information of the interval number). Obviously, in the process
of judging the advantages and disadvantages of the alternative decision-making objects, it
can be judged by using the Hamming similarity between the alternative decision-making
objects and the ideal optimal objects, which is reflected in the overall Hamming similarity
OHSIN(Xi) in the whole object set, and the relevant conclusions of Theorem 3. This model
is simple to implement and calculate and is easy to realize on the computer.

To facilitate comparative analysis, we use the multi-attribute decision-making al-
gorithm weighted by the Interval Number-Based Decision-Making Object Maximizing
Deviation Programming Model (IN-DMOMDPM) in [34,35] and the Interval Number-
Based Decision-Making Object Probability Degree Relation Model (IN-DMOPDRM) in [27]
to check the above cases, assuming that different physical dimension information among
attribute measurement value data of the decision object has been unified; the attribute
weight measurement formulas based on IN-DMOMDPM [34,35] and IN-DMOPDRM [27]
algorithms are, respectively:

IN-DMOMDPM:

wj =
∑n

i=1 ∑n
k=1 dIN

(
r̃ij, r̃kj

)
∑m

j=1 ∑n
i=1 ∑n

k=1 dIN

(
r̃ij, r̃kj

) , i ∈ N, j ∈ M. (21)

IN-DMOPDRM:

wj =
∑m

k=1,k 6=j ∑n
i=1 p

(
r̃ij ≥ r̃ik

)
∑m

j=1 ∑m
k=1,k 6=j ∑n

i=1 p
(
r̃ij ≥ r̃ik

) , i ∈ N, j, k ∈ M. (22)

According to the implementation steps of the multi-attribute decision algorithm of
IN-DMOMDPM and IN-DMOPDRM proposed in references [34,35] and [27] in dealing
with the IN-UMADM problem, the above cases were checked and solved, and the following
results were obtained:

IN-DMOMDPM:
X2 �

0.635
X1 �

0.675
X3;

IN-DMOPDRM:
X2 �

0.593
X1 �

0.656
X3.

Therefore, X2 is the best supplier. The conclusion is consistent with the result of
the IN-DMOHSPM algorithm. According to the above calculation results, there is no
difficulty to draw the geometric comparison diagram of IN-DMOMDPM, IN-DMOPDRM
and IN-DMOHSPM given in this paper, as shown in Figure 3.
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It can be seen from Figure 3 that the three curves all show the same change trend,
while the IN-DMOMDPM curve almost coincides with the IN-DMOPDRM curve, which
is steeper than the IN-DMOHSPM gentle curve. Although it is convenient to increase the
decision discrimination, it also increases the error of decision information in the process of
aggregation. Although the three models and methods for determining the attribute weight
measurement formula are different, the results of their screening and sequencing of the
decision object set {Xi|i = 1, 2, 3} are consistent, and they are all X2 � X1 � X3.

Through the comparative analysis of the above case of supplier selection, it is shown
that the attribute weighting algorithm based on IN-DMOHSPM given in this paper is
different from the attribute weighting algorithm based on IN-DMOMDPM given in the
literature [34,35] and the attribute weighting algorithm based on IN-DMOPDRM given
in the literature [27] in terms of weight measurement, but the three model algorithms are
consistent in judging the advantages and disadvantages of the selection object set and
screening and sorting, and can obtain the same optimal solution. Moreover, the attribute
weighting algorithm based on IN-DMOHSPM proposed in this paper also integrates the
similarity value information of attribute measure values. Compared with other existing
methods, it can better reflect the similarity between the comprehensive attribute measure
values of decision-making objects, which is more practical for the solution of the UMADM
problem and convenient for data aggregation calculation and accurate fusion.

5. Conclusions

The attribute weight measurement based on the interval number-based decision-
making object Hamming similar programming model (IN-DMOHSPM) is a new weighting
idea proposed from the perspective of easy determination of the advantages and disadvan-
tages of the selected objects and is also one of the important contents of UMADM problem
research in this paper. The main idea is: after unifying the attribute measurement data with
the different physical dimension information in the UMADM problem, the Hamming simi-
larity degree value between the attribute measurement data of the decision-making object
is too large, which indicates that the attribute plays a small role in the alternative decision
making and should be given a small attribute weight value. Otherwise, the Hamming simi-
larity degree value between the attribute measurement data of the decision-making object
is too small, which indicates that the attribute plays an important role in the alternative
decision making and should be given a large attribute weight value. In this paper, accord-
ing to the attribute optimization and weighting thought based on IN-DMOHSPM and the
comparative Hamming similarity superiority theory of interval numbers, the following
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three aspects are mainly studied for the UMADM problem where attribute weights are
unknown with no preference for decision-making objects:

(1) In order to investigate the degree of similarity of interval numbers, new definition
formulas of Hamming similarity degree between normative interval numbers and
Hamming similarity degree between decision-making objects are given, and the
method of the single-objective optimization problem established by the interval
number-based comparison Hamming similarity programming model is used to solve
the optimal measurement formula of attribute weight.

(2) Some relevant results of Hamming similarity superiority relation theory for interval
numbers comparison are given, and it is deduced that the superiority between interval
numbers, the comparison sizes of Hamming similarity degree value and the Hamming
deviation degree value between interval numbers with the ideal point, as well as the
sum sizes of small and large elements of attribute values of interval numbers, have
been equivalent. However, the dominance among the selected alternative decision-
making objects is equivalent to the comparison sizes of the Hamming similarity
degree value of each selected decision-making object with the ideal optimal object, the
Hamming deviation degree sequence sum sizes of the attribute value of the selected
decision-making object with the ideal point value of the ideal optimal object, the
Hamming deviation degree value of the attribute value sequence sum sizes of the
selected decision-making object with the ideal point value sequence sum of the ideal
decision-making object, and the attribute value sequence sum sizes of the interval
number’s small element and large element of the selected decision-making object.

(3) By using the overall Hamming similarity degree of each decision-making object
compared with the ideal optimal object to screen and sort all of the selected alternative
objects set, a new algorithm of the Hamming similarity programming model for
interval number-based multiple attribute decision-making objects is presented.

In a word, there are some areas to be improved in the research work of this paper, and
some deeper problem areas have not been touched. In terms of future research, two aspects
needed to be further studied as follows: (1) How to carry out the research on consistency
inspection, judgment and the consistency correction algorithm for interval number-based
overall Hamming similarity degree function. How to build a single-objective programming
optimization model containing a similar to comparative relative similarity degree between
interval numbers, and extend various uncertain multi-attribute decision-making algorithms
derived from the judgment of the merits on the selected decision-making objects to the
UMADM problem, characterized by other types of fuzzy numbers (such as triangular fuzzy
numbers, trapezoidal fuzzy numbers, intuitionistic fuzzy numbers, etc.), described and
represented by other forms of judgment matrices (for example triangular fuzzy number
judgment matrix, trapezoidal fuzzy number judgment matrix, intuitionistic fuzzy number
judgment matrix, linguistic judgment matrix, etc.). (2) Due to the influence of objective
factors, environmental restrictions and people’s subjective thinking judgment, people often
encounter the situation that the utility value information of attribute measure is fuzzy,
uncertain or imperfect (incomplete information), or even the utility value of attribute
measure is represented by a mixture of interval numbers, triangular fuzzy numbers, trape-
zoidal fuzzy numbers, etc. How to aggregate and integrate the utility value information of
attribute measure characterized by these different forms and how to construct a decision-
making model and method to solve this kind of complex and mixed UMADM problem
needs to be further explored.
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