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Abstract: A Cosserat theory for fiber-reinforced elastic solids developed in Steigmann (2012) is
generalized to accommodate initial curvature and twist of the fibers. The basic variables of the theory
are a conventional deformation field and a rotation field that describes the local fiber orientation.
Constraints on these fields are introduced to model the materiality of the fibers with respect to
the underlying matrix deformation. A variational argument delivers the relevant equilibrium
equations and boundary conditions and furnishes the interpretation of the Lagrange multipliers
associated with the constraints as shear tractions acting on the fiber cross sections. Finally, the theory
of material symmetry for such solids is developed and applied to the classification of some explicit
constitutive functions.
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1. Introduction

In the present, work we generalize a theory for fiber-reinforced elastic solids proposed in [1,2]
that accounts for the intrinsic flexural and torsional elasticities of the fibers, regarded as continuously
distributed spatial rods of the Kirchhoff type in which the kinematics are based on a position field
and an orthonormal triad field [3–5]. This model is a special case of the Cosserat theory of nonlinear
elasticity [6–12]. We extend this theory to accommodate initially curved and twisted fibers and develop
an associated framework for the characterization of material symmetry.

Industrial applications of the mechanics of composite materials reinforced by curvilinear fibers are
thoroughly treated in [13]. Further applications to bioelasticity are described in [14]. In this literature,
the fibers confer anisotropy to the composite but their instrinsic flexural and torsional elasticities are
not taken into account. However, the latter can be expected to play a significant role in local fiber
buckling and kink-band failure due to the length scale inherent in the flexural and torsional stiffnesses
of the fibers [15]. These stiffnesses are also significant at larger length scales if the fibers are sufficiently
stiff relative to the underlying matrix material.

To aid in the interpretation of the theory to be developed, in Section 2 we review the basic
elements of Kirchhoff’s theory for single rods. This is followed, in Section 3, by a brief outline of
nonlinear Cosserat elasticity, specialized to model the effects of a single family of embedded fibers
interacting with an elastic matrix. The resulting model is similar in structure to the Kirchhoff theory,
with the effects of fiber-matrix interaction manifesting themselves as distributed forces and couples
transmitted to the fibers by the matrix material in which they are embedded. Section 4 is devoted
to a development of the associated theory of material symmetry, based on an extension to Cosserat
elasticity [16] of Noll’s concept [17] for simple materials. This is used in Section 5 to discuss some
particular constitutive functions for fiber-reinforced solids.
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We use standard notation such as At, A−1, SkwA, det A and trA. These are respectively
the transpose, the inverse, the skew part, the deteminant and the trace of a tensor A, regarded
as a linear transformation from a three-dimensional vector space to itself. The axial vector ax(SkwA)

of SkwA is defined by ax(SkwA)× v = (SkwA)v for any vector v. The tensor product of three-vectors
is indicated by interposing the symbol ⊗, and the Euclidean inner product of tensors A, B is denoted
and defined by A · B = tr(ABt); the induced norm is |A| =

√
A · A. The symbol |·| is also used to

denote the usual Euclidean norm of three-vectors. Latin and Greek indices take values in {1, 2, 3}
and {2, 3} respectively, and, when repeated, are summed over their ranges. Finally, bold subscripts are
used to denote derivatives of scalar functions with respect to their vector or tensor arguments.

2. Kirchhoff Rods

Kirchhoff rods are modelled as spatial curves endowed with an elastic energy density that
responds to flexure and twist. According to the derivation from conventional three-dimensional
nonlinear elasticity given in [4], this theory also accommodates a small axial strain along the rod.
We forego any discussion of the connection between Kirchhoff theory and three-dimensional elasticity
and simply regard the rod as a directed curve [5] in which certain a priori constraints are imposed.
An accessible discussion of Kirchhoff’s theory may be found in [3].

2.1. Kinematics

The basic kinematical variables in the theory are a deformation field r(s), where s ∈ [0, l] and l is
the length of the rod in a reference configuration, and a right-handed, orthonormal triad {di(s)} in
which d1 = d, where d is the unit vector defined by

r′(s) = λd, and λ =
∣∣r′(s)∣∣ , (1)

where λ is the stretch of the rod. Thus d is the unit tangent to the rod in a deformed configuration
and dα (α = 2, 3) span its cross-sectional plane at arclength station s.

The central assumption in Kirchhoff’s theory is that each cross section deforms as a rigid disc.
Thus there is a rotation field R(s) given by

R = di ⊗ Di, (2)

such that di = RDi, where Di(s) are the values of di(s) in the reference configuration.
The curvature and twist of the rod are computed from the derivatives d′i(s), where

d′i = R′Di + RD′i . (3)

Let {Ei} be a fixed right-handed background frame. Then Di(s) = A(s)Ei for some rotation field
A, yielding

d′i = Wdi = w× di, (4)

where
W = R′Rt + RA′AtRt (5)

is a skew tensor and
w = axW = κidi, (6)

with
κi =

1
2

eijkdk · d′j. (7)

Here, eijk is the permutation symbol (e123 = +1, etc.), κ1 is the twist of the rod and κα are
the curvatures.
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2.2. Strain-Energy Function

The strain energy S stored in a rod of length l is assumed to be expressible as

S =
∫ l

0
Uds, (8)

where U, the energy per unit initial length, is a function of the list {R, R′, r′}, possibly depending
explicitly on s.

We assume U to be Galilean invariant and hence that its values are invariant under
{R, R′, r′} → {QR, QR′, Qr′}, where Q is an arbitrary uniform rotation. Because U is defined pointwise,
to derive a necessary condition we select Q = Rt

|s and conclude that U is determined by the list

{RtR′, Rtr′} = {RtWR− A′At, λD}, where D = D1 and

RtW R− A′At = RtR′ = (RDi · R′Dj)Di ⊗ Dj, (9)

is a Galilean-invariant measure of the relative flexure and twist of the rod due to deformation.
This stands in one-to-one relation to its axial vector

γ = γiDi = ax(RtR′), (10)

with components

γi =
1
2

eijkRDk · R′Dj. (11)

Accordingly, because D(s) is independent of the deformation, the list {RtR′, Rtr′} is equivalent
to the list {γ, λ}, and the strain energy may therefore be written in the form

U = w(λ, γ; s). (12)

Using (7) and (11) with R′Dj = d′j − RD′j yields

γi = κi − κ0
i , (13)

where
κ0

i =
1
2

eijkDk · D′j (14)

are the components of the initial curvature-twist vector

κ0 = κ0
i Di = ax(A′At). (15)

Thus,
γ = κ− κ0, (16)

where
κ = Rtw = κiDi = ax(RtW R). (17)

For example, in the classical theory [4,18] of initially straight and untwisted rods (κ0 = 0),
the strain-energy function for an isotropic rod of circular cross section is

w(λ, κ; s) =
1
2

A(s)ε2 +
1
2

T(s)τ2 +
1
2

F(s)κακα, (18)

where ε = λ− 1 is the extensional strain, τ = κ1 is the twist, A is the extensional stiffness (Young’s
modulus E times the cross-sectional area); F is the flexural stiffness (Young’s modulus times the 2nd
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moment of area I of the cross section); and T is the torsional stiffness (the shear modulus G times
the polar moment J of the cross section).

The homogeneous quadratic dependence of the energy on the bending-twist strain may
be understood in terms of the local length scale furnished by the diameter of a cross section.
The curvature-twist vector, when non-dimensionalized by this local scale, is typically small in
applications. For example, the minimum radius of curvature of a bent rod is typically much larger
than its diameter. If the bending and twisting moments vanish when the rod is straight and untwisted,
then the leading-order contribution of the curvature-twist vector to the strain energy is quadratic.
In general the flexural and torsional stiffnesses in this expression may depend on fiber stretch, but in
the small-extensional-strain regime they are approximated at leading order by functions of s alone.

2.3. Equilibrium Theory

We recall the variational derivation of the equilibrium equations of the Kirchhoff theory here to
provide context for the discussion of Cosserat elasticity in Section 3 [18]. Equilibria are assumed to
satisfy the virtual-power statement

Ṡ = P, (19)

where P is the virtual power of the loads—the explicit form of which is deduced
below—and the superposed dot is used to identify a variational derivative. These are induced
by the derivatives, with respect to ε, of the one-parameter deformation and rotation fields r(s; ε)

and R(s; ε) respectively, where r(s) = r(s; 0) and R(s) = R(s; 0) are equilibrium fields. Thus,

U̇ = ẇ = wλλ̇ + miγ̇i, (20)

where
wλ = ∂w/∂λ and mi = ∂w/∂γi (21)

are evaluated at ε = 0.
From (1) we have that

λ̇d + ω× r′ = u′, (22)

where u(s) = ṙ is the virtual translational velocity and ω(s) = ax(ṘRt) is the virtual rotational velocity.
That is, ḋi = ṘRtdi, which is equivalent to

ḋi = ω× di. (23)

From (9) and (16) it follows that

κ̇i =
1
2

eijk(ḋk · d′j + dk · ḋ′j)

=
1
2

eijk[ω× dk · d′j + dk · (ω′ × dj + ω× d′j)], (24)

in which the terms involving ω cancel; the e− δ identity 1
2 eijkemjk = δim (the Kronecker delta), combined

with dj × dk = emjkdm, results in
γ̇i = κ̇i = di ·ω′. (25)

Thus,

Ṡ =
∫ l

0
(wλd · u′ + m ·ω′)ds, (26)

with
m = midi. (27)
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Further, (1) implies that
r′ · dα = 0; α = 2, 3. (28)

To accommodate these constraints in the virtual-power statement, we relax them and introduce
the extended energy

E = S +
∫ l

0
fαr′ · dαds, (29)

where fα(s) are Lagrange multipliers. The extended variational problem is

Ė = P, (30)

where

Ė =
∫ l

0
[(wλd + fαdα) · u′ + m ·ω′ + fαdα × r′ ·ω + ḟαr′ · dα]ds (31)

The variations ḟα simply return the constraints (28), and an integration by parts gives

Ė = ( f · u + m ·ω) |l0 −
∫ l

0
[u · f ′ + ω · (m′ − f × r′)]ds, (32)

where
f = wλd + fαdα. (33)

This implies that the virtual power is expressible in the form

P = (t · u + c ·ω) |l0 +
∫ l

0
(u · g + ω ·π)ds, (34)

in which t and c represent forces and couples acting at the ends of the segment and g and π are force
and couple distributions acting in the interior.

By the Fundamental Lemma, the Euler equations holding at points in the interior of the rod are

f ′ + g = 0 and m′ + π = f × r′, (35)

and the endpoint conditions are
f = t and m = c, (36)

provided that neither position nor orientation is assigned at the endpoints. These are the equilibrium
conditions of classical rod theory in which f and m respectively are the cross-sectional force
and moment transmitted by the segment (s, l] on the part [0, s]. We observe, from (33) and (36)1,
that the Lagrange multipliers fα play the role of constitutively indeterminate transverse shear forces
acting on a fiber cross section.

For the strain-energy function (18) we have m1d1 = Tτd and mαdα = Fκαdα. To reduce the second
expression we use (7), together with d · d′µ = −dµ · d′, to derive κα = eα1µdµ · d′. From d · d′ = 0
it follows that d′ = (dα · d′)dα and d× d′ = (dα · d′)d× dα = (eβ1αdα · d′)dβ; thus κβdβ = d× d′

and (21) yields [3]
m = Tτd + Fd× d′. (37)

3. Cosserat Elasticity of Fiber-Reinforced Materials

Cosserat elasticity theory emerges as the natural setting for elastic solids with embedded
fibers—modelled as continuously distributed Kirchhoff rods—that support bending and twisting
moments. To motivate our kinematical hypotheses, we suppose the fibers and matrix to be perfectly
bonded and assume that both may be modelled at the microscale as conventional elastic solids.
The interface between the matrix and fiber is then convected by the deformation as a material surface,
and Hadamard’s compatibility condition requires that F+− F− = a⊗N for some vector a, where N is
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a unit normal to the interface and F± are the values of the deformation gradients in the fiber and matrix
at the interface. In particular, if D(= D1) is the unit tangent to the centerline of an untapered fiber,
then N ∈ Span{Dα}, where Dα; α = 2, 3, are orthonormal unit vectors in the fiber cross section.
It follows that

F+D = F−D, but F+Dα 6= F−Dα, (38)

and hence that the deformation gradients in the fiber and matrix may be unequal. This stands in
contrast to a model proposed in [19] on the basis of a single deformation field.

If a fiber is sufficiently stiff relative to the matrix, then its deformation gradient is approximated
by a rotation field R. In Dill’s interpretation of the Kirchhoff theory [4] this is accompanied by a small
axial strain. Thus we interpret (38)1 in the form

FD = λd, where d = RD and λ = |FD| , (39)

where λ(= |FD|) is the fiber stretch and F is the matrix deformation gradient. The fields F and R
are otherwise independent in accordance with (38)2. These in turn furnish RtFD = λD and hence
two constraints

Dα · RtFD = 0; α = 2, 3, (40)

analogous to (28), involving the fiber rotation and matrix deformation.
Equation (39) implies that the fibers are convected as material curves relative to the matrix.

The cross-sectional vectors Dα are embedded in the fiber but not in the matrix, and so their images
dα in the current configuration are free to shear relative to the matrix while remaining mutually
orthogonal and perpendicular to d.

3.1. Kinematical and Constitutive Variables in Cosserat Elasticity

The basic kinematical variables of a Cosserat continuum are a rotation field R(X) and a
deformation field χ(X). Naturally these may depend on time, but such dependence is not relevant to
our development and is not made explicit.

The constitutive response of an elastic Cosserat continuum is embodied in a strain-energy density
U(F, R,∇R; X), per unit reference volume, where F = ∇χ is the usual deformation gradient and ∇R
is the rotation gradient. In Cartesian index notation, these are

F = FiAei ⊗ EA, R = RiAei ⊗ EA and ∇R = RiA,Bei ⊗ EA ⊗ EB (41)

with
FiA = χi,A, (42)

where (·),A = ∂(·)/∂XA and where {ei} and {EA} are fixed orthonormal bases associated with
the Cartesian coordinates xi and XA, with xi = χi(XA).

We again suppose the strain energy to be Galilean-invariant and thus require

U(F, R,∇R; X) = U(QF, QR, Q∇R; X), (43)

where Q is an arbitrary spatially uniform rotation with (Q∇R)iAB = (QijRjA),B = QijRjA,B.
The restriction

U(F, R,∇R; X) = W(E, Γ; X), (44)

with [11,16]
E = RtF = EABEA ⊗ EB; EAB = RiAFiB, (45)

Γ = ΓDCED ⊗ EC; ΓDC =
1
2

eBADRiARiB,C, (46)
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where W is the reduced strain-energy function and eABC is the permutation symbol, is both necessary
and sufficient for Galilean invariance. Sufficiency is obvious, whereas necessity follows by choosing
Q = Rt

|X, where X is the material point in question, and making use of the fact that, for each fixed
C ∈ {1, 2, 3}, the matrix RiARiB,C is skew. This follows by differentiating RiARiB = δAB (the Kronecker
delta). The axial vectors ΓC associated with this skew matrix have components

ΓD(C) =
1
2

eBADRiARiB,C, (47)

yielding [11]
Γ = ΓC ⊗ EC, (48)

and so Γ—the second order wryness tensor—stands in one-to-one relation to the third order Cosserat
strain measure Rt∇R.

3.2. Virtual Power and Equilibrium

As in Section 2, we define equilibria to be states that satisfy the virtual-power statement

Ė = P, (49)

where P is the virtual power of the loads acting on the body,

E = S +
∫

κ
ΛαDα · EDdv, (50)

is the extended energy, Λα are Lagrange multipliers accompanying the constraints (40),

S =
∫

κ
Udv (51)

is the total strain energy, and, as before, superposed dots identify variational derivatives. Thus,

U̇ = Ẇ = σ · Ė + µ · Γ̇, (52)

where
σ = WE and µ = WΓ (53)

are evaluated at equilibrium. Further,

(Dα · ED)· = Dα ⊗ D · Ė (54)

so that
Ė =

∫
κ
[(σ + Λ⊗ D) · Ė + µ · Γ̇ + Λ̇αDα · ED]dv, (55)

where
Λ = ΛαDα. (56)

It follows from (45) that

Ė = Rt(∇u−ΩF), where u = χ̇ and Ω = ṘRt. (57)

Then,
(σ + Λ⊗ D) · Ė = R(σ + Λ⊗ D) · ∇u−Ω · Skw[R(σ + Λ⊗ D)Ft]. (58)
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If α is a skew tensor, then Ω · α = 2ω · a, where ω = axΩ and a = axα. Further, for any tensor A
we have RAFt = RAEtRt and Skw(RAEtRt) = RSkw(AEt)Rt, and therefore

(σ + Λ⊗ D) · Ė = R(σ + Λ⊗ D) · ∇u− 2ax{RSkw[(σ + Λ⊗ D)Et]Rt} ·ω. (59)

The reduction
Γ̇ = Rt∇ω, (60)

which is somewhat more involved, is detailed in Appendix A. Accordingly,

µ · Γ̇ = Rµ · ∇ω, (61)

and application of the divergence theorem to (55), with (59) and (61), gives

Ė =
∫

∂κ
[(Rσ + λ⊗ D)ν · u + (Rµ)ν ·ω]da +

∫
κ

Λ̇αDα · EDdv

−
∫

κ
{u · Div(Rσ + λ⊗ D) + ω · [Div(Rµ) + 2ax(RSkw[(σ + Λ⊗ D)Et]Rt)]}dv, (62)

where ν is the exterior unit normal to the (piecewise smooth) surface ∂κ, and

λ = RΛ = Λαdα. (63)

The virtual power is thus of the form

P =
∫

∂κ
(t · u + c ·ω)da +

∫
κ
(g · u + π ·ω)dv, (64)

where t and c are densities of force and couple acting on ∂κ, and g and π are densities of force
and couple acting in κ.

The fundamental lemma delivers the constraints (40) together with the differential equations

g = −Div(Rσ + λ⊗ D) and π = −Div(Rµ)− 2ax{RSkw[(σ + Λ⊗ D)Et]Rt} in κ, (65)

and the natural boundary conditions

t = (Rσ + λ⊗ D)ν on ∂κt and c = (Rµ)ν on ∂κc, (66)

where ∂κt is a part of ∂κ where position is not assigned and ∂κc is a part where rotation is not assigned.
We assume position to be assigned on ∂κ \ ∂κt (u = 0), and rotation to be assigned on ∂κ \ ∂κc (ω = 0).

3.3. Fiber-Matrix Interaction

Pursuant to the discussion at the start of this section, we assume that Cosserat elasticity is
conferred by the mechanical interaction between an elastomeric matrix and a single family of embedded
fibers. The relative curvature-twist vector γ = ax(RtR′) of a fiber initially oriented along a unit-vector
field D(X), where (·)′ is the directional derivative along D, is (cf. (11))

γ = γiDi with γi =
1
2

eijkDk · RtR′Dj. (67)

Thus, with R′iA = RiA,BDB we derive (cf. (46))

RtR′ = RiCRiA,BDBEC ⊗ EA = eACDΓDBDBEC ⊗ EA, (68)
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and conclude that γ is determined by Γ via ΓD. Here the director fields Di(X) form a positively
oriented orthonormal triad with D1 = D, and the Cosserat rotation field is given simply by

R = di ⊗ Di, (69)

as in (2), where di = RDi are the images of directors in the deformed body, with d = d1 the field
of unit tangents to the deformed fibers. Then, as in Section 2, we may express the strain energy in
the form

W(E, Γ; X) = w(E, γ; X), (70)

where w is now the strain energy per unit reference volume. Thus,

σ = wE. (71)

To obtain the couple stress µ we use (25) in the form

γ̇i = RDi · (∇ω)D = Di · (Rt∇ω)D = Di ⊗ D · Γ̇. (72)

Variation of the energy at fixed E then gives

µ · Γ̇ = Ẇ = ẇ = wγ · γ̇ = M ⊗ D · Γ̇, (73)

where
M = wγ = miDi with mi = ∂w/∂γi, (74)

yielding
µ = M ⊗ D. (75)

The equilibrium equations for this model follow simply from (65) and (66). To facilitate comparison
with Kirchhoff’s theory we use

Div(λ⊗ D) = λ′ + (DivD)λ, where λ′ = (∇λ)D (76)

is the fiber-derivative of λ, the directional derivative along the fiber passing through the point with
reference position X. Further,

2ax{RSkw[(Λ⊗ D)Et]Rt} = 2ax{Skw[R(Λ⊗ D)EtRt]}
= 2ax[Skw(λ⊗ FD)]

= ax(λ⊗ χ′ − χ′ ⊗ λ)

= χ′ × λ, (77)

where
χ′ = (∇χ)D (78)

is the fiber derivative of the deformation. Lastly,

Div(Rµ) = m′ + (DivD)m, where m = RM = midi, (79)

with fiber derivative m′ = (∇m)D. The equilibrium conditions (65) holding in κ thus specialize to

λ′ + (DivD)λ + Div(Rσ) + g = 0 (80)

and
m′ + χ′ × λ + (DivD)m + 2ax[RSkw(σEt)Rt] + π = 0, (81)
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with
t = (Rσ)ν + (D · ν)λ and c = (D · ν)m (82)

holding on ∂κt and ∂κc, respectively. From (35) and (36) these conditions yield the interpretation of λ

and m respectively as shear force and moment densities acting on fiber ’cross sections’, i.e., on surfaces
that intersect fibers orthogonally (D · ν = ±1). We observe that no solution exists if a non-zero
couple is specified on a part of ∂κc containing D as a tangent vector (D · ν = 0). Additionally,
comparison of (80) with (35) furnishes the interpretation of Div(Rσ) as a distributed density of force
transmitted to a fiber by the matrix in which it is embedded, whereas comparison of (81) and (35)
implies that 2ax[RSkw(σEt)Rt] is a density of distributed couple transmitted by the matrix to the fiber.
The derivation of the system (80)–(82) simplifies and and generalizes that of a similar system for
initially straight fibers presented in [1,2].

The dependence of the strain-energy function on γ (or Γ) introduces a natural length scale,
L say, into the constitutive theory which is on the order of that of the microstructure and hence of
the diameter of a fiber cross section or the spacing between adjacent fibers. Using the larger of these to
define the dimensionless curvature-twist vector Lγ, supposing that |Lγ| � 1 in typical applications
and assuming that the fibers transmit no moments when γ vanishes, we find that w is given to leading
order by

w(E, γ; X) = v(E; X) +
1
2

γ · K(E; X)γ, (83)

where v(E; X) = w(E, 0; X) and K(E; X) = wγγ|γ=0. For small E we have K(E; X) = K(0; X) +O(|E|),
provided that K(·; X) is differentiable. Then the energy is approximated, as in (18), by the decoupled energy

w(E, γ; X) = v(E; X) + ϕ(γ; X), (84)

for some homogeneous quadratic function ϕ(·; X).

4. Material Symmetry

In this section we develop the theory of material symmetry for elastic Cosserat materials subjected
to (40). A comprehensive study of material symmetry in the setting of Cosserat elasticity, extending
Noll’s concept [17] for simple materials, is given in [16]. The concept of material symmetry in rods
is discussed in [20–22]. As a preliminary step we first describe the manner in which the constitutive
function for the strain energy may be computed for any choice of reference configuration when that
pertaining to any particular choice is given.

4.1. Change of Reference Configuration

Let κ and µ be two reference configurations, and let Y = Π(X) be a diffeomorphism mapping
points in κ to points in µ. The deformation gradients relative to κ and µ, denoted by Fκ and Fµ

respectively, are related by
Fκ = FµH, where H = ∇Π. (85)

We restrict attention to transformations Π with det H = 1, for reasons that are well known
in conventional elasticity [8,16], and also impose Π(X0) = X0. The specification of this pivot
point removes an inessential translational degree of freedom. Henceforth, we are concerned with
the properties of the map Π(X) in a neighborhood Nκ(X0) ⊂ κ of the pivot point. This neighborhood
is mapped by Π to the neighborhood Nµ(X0) of the pivot.

The Cosserat rotation Rκ relative to κ is such that di = Rκ Di. In the same way there is a rotation
Rµ such that di = RµGi, where {Gi(Y)} is the positively-oriented orthonormal director field defined
in µ. Thus,

Rκ = RµL, (86)
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where
L = Gi ⊗ Di (87)

is the rotation field that maps the directors in κ to their images in µ. We have d = Rκ D = RµG,
where G(= G1) is the unit-tangent field to fibers in µ, so that G = LD. To ensure that D remains a
material vector relative to the matrix (cf. (39)) under the change of reference, it is necessary to impose

HD = |HD| LD. (88)

Following the characterization of solids in [8], we assume the existence of an undistorted reference
and suppose κ to be one of these. Thus we confine attention to proper-orthogonal H. Further,
we remove an inessential orientational degree of freedom in the local change of reference by requiring
that it preserve the pivotal axis D at the point X0; thus, |HD| = 1 and

D = HD = LD. (89)

With Gα = LDα and G = HD, this in turn implies that

Gα ·G = LDα · HD = LDα · LD = Dα · D, (90)

and hence that the constraints Gα · G = 0 are automatically satisfied (cf. (40)). Accordingly,
L, H ∈ S, where

S = {Q | Q is a rotation with axis D}. (91)

For the model discussed in Section 3, the strain energy depends on the Cosserat rotation and its gradient
via γ = γiDi, where γi is given by (67) in which the prime refers to the fiber derivative in the reference
configuration κ. In particular, for any function f we have f ′ = ∇κ f ·D = Ht(∇µ f ) ·D = ∇µ f ·HD, where
the subscripts κ and µ identify gradients with respect to X ∈ κ and Y ∈ µ, respectively. In view of (89)
we have f ′ = ∇µ f ·D at the pivot X0, implying that the fiber derivative is invariant under transformations
of the reference configuration that preserve the fiber axis. Accordingly, it is immediately apparent that the κi,
defined by (7) in which the prime is again a fiber derivative, are also invariant.

Alternatively, we may use (67) to derive

(κi)κ − (κ0
i )κ = (γi)κ

=
1
2

eijkDk · Rt
κ R′κ Dj, (92)

in which
Rt

κ R′κ = Lt(Rt
µR′µ + L′Lt)L. (93)

Thus,
(κi)κ − (κ0

i )κ = (κi)µ − (κ0
i )µ + ∆i, (94)

where

(κi)µ − (κ0
i )µ = (γi)µ

=
1
2

eijkGk · Rt
µR′µGj (95)

and
∆i =

1
2

eijkGk · L′LtGj. (96)
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Noting that

(κ0
i )µ =

1
2

eijkGk ·G′j

=
1
2

eijkLDk · (L′Dj + LD′j)

=
1
2

eijkGk · L′(LtGj) + (κ0
i )κ , (97)

and hence that
(κ0

i )µ = (κ0
i )κ + ∆i, (98)

we conclude, in accordance with (94), that

(κi)κ = (κi)µ, (99)

as claimed.
From (67), the curvature-twist strains γκ and γµ relative to κ and µ are related by

γκ = Lt(γµ + ∆), (100)

where
∆ = ∆iGi = ax(L′Lt), (101)

whereas the Cosserat strains Eκ and Eµ are related by

Eκ = LtEµH. (102)

Because the state of the material is not affected by the choice of reference, we require

wµ(Eµ, γµ; X0) = wκ(Eκ , γκ ; X0) = wκ(LtEµH, Lt(γµ + ∆); X0). (103)

4.2. Material Symmetry Transformations

According to Noll’s theory [17], Nκ(X0) and Nµ(X0) are related by material symmetry if their
responses to a given experiment are identical at the pivot point. In the present context an experiment
consists of a deformation function χ(·) and rotation function R(·). Thus the experiment acts on Nκ(X0)

to produce the fields {χ(X), R(X)} for X ∈ Nκ(X0), and on Nµ(X0) to produce {χ(Y), R(Y)} for
Y ∈ Nµ(X0). Accordingly, Nκ(X0) and Nµ(X0) are both subjected to the same pair {F, R}, and hence
the same strain E, at X, Y = X0. Moreover, ∇µR = (∇κ R)H and with (89) we infer that the fiber
derivatives (R′)κ and (R′)µ, relative to Nκ(X0) and Nµ(X0) respectively, also coincide at X0. This in
turn implies that both neighborhoods experience the same bend-twist strain γ at X0, a fact that is most
easily appreciated by using a single background frame {Ei} to evaluate

γ = γiEi, with γi =
1
2

eijkEk · RtR′Ej, (104)

in both neighborhoods.
Accordingly, material symmetry is tantamount to

wκ(E, γ; X0) = wµ(E, γ; X0), (105)

which, when combined with (100), (102) and (103), yields the restriction

wκ(E, γ; X0) = wκ(LtEH, Lt(γ + ∆); X0) (106)
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on the single response function wκ , where the rotations H and L are connected by (89), but otherwise
independent, and of course ∆ is evaluated at X0.

For the decoupled energy (84) considered hereafter, this is equivalent to

v(E; X0) + ϕ(γ; X0) = v(LtEH; X0) + ϕ(Lt(γ + ∆); X0) (107)

5. Examples

We close with some examples of constitutive functions that conform to (107).

5.1. Matrix Energy

Consider the list [1]
I = {I1, ..., I9}, (108)

of functionally independent scalar-valued functions of E, with

I1 = tr(EtE), I2 = tr[(EtE)2], I3 = det E, I4 = D · ED, I5 = D · (EtE)D,

I6 = D · (EEt)D, I7 = D · E∗D, I8 = D · (EtE)2D, I9 = D · (EEt)2D, (109)

where E∗ = (det E)E−t is the cofactor of E. We note that det E = det F, EtE = C and EEt = RtBR,
where C = FtF and B = FFt, respectively, are the right and left Cauchy–Green deformation tensors.

Straightforward calculations show, remarkably, that each member Ik of this list satisfies

Ik(LtEH) = Ik(E) (110)

for any—hence every—L, H ∈ S. Particular matrix energies may thus be obtained by taking

v(E; X) = M(I1, ..., I9; X), (111)

for some function M. This satisfies

v(E; X) = v(LtEH; X) (112)

for all distinct L, H ∈ S. For example, (111) furnishes energies for transversely hemitropic matrix
materials for which H is an arbitrary element of S, without any restrictions on the independent fiber
rotations L ∈ S. However, we have not shown that I is a function basis for any particular kind of
symmetry.

The stress σ associated with this energy is given by

σ = vE = ∑
j

Mj(Ij)E, where Mj = ∂M/∂Ij (113)

and [1]

(I1)E = 2E, (I2)E = 4EC, (I3)E = E∗, (I4)E = D⊗ D, (I5)E = 2E(D⊗ D),

(I6)E = 2(D⊗ D)E, (I7)E = I7E−t − I3E−t(D⊗ D)E−t, (I8)E = 2E[(D⊗ D)C + C(D⊗ D)], (114)

(I9)E = 2[(D⊗ D)EC + EEt(D⊗ D)E].

We observe that this model yields an asymmetric σEt, and thus makes provision for distributed
couples to be transmitted to the fibers by the matrix (cf. (81)), if the energy involves I4, I6, I7 or I9.
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5.2. Fiber Symmetry

For matrix energies satisfying (112), the restriction (107) reduces to

ϕ(γ; X) = ϕ(Lt(γ + ∆); X) (115)

for some L and ∆ = ax(L′Lt) such that L(X)D(X) = D(X) (cf. (89)). The fiber derivative L′ thus satisfies

L′D + LD′ = D′, (116)

and with D = LtD this may be cast in the form

∆× D + (L− I)D′ = 0. (117)

We then have

∆ = ∆D + D× (∆× D) (118)

in which ∆(= ∆ · D) is unrestricted, whereas

D× (∆× D) = [(L− I)D′]× D. (119)

Consider the particular fiber with arclength parametrization X(s) passing through the point
X0 at s = s0, i.e., X(s0) = X0. If the fiber is curved at X0 then D′ = KN there, where K = |D′| > 0 is
the principal curvature of the fiber and N is the unique principal normal. In this case the local Frenet
triad {D, N, B}, where B = D×N is the binormal, is well defined. The Rodrigues representation formula
for rotations [23] thus yields

L = D⊗ D + cos θ(N⊗ N + B⊗ B) + sin θ(B⊗ N− N⊗ B) (120)

for some angle θ, which may be used with (118) and (119) to construct

∆ = ∆D− K(cos θ − 1)B + K sin θN, (121)

and with some effort we derive
Lt(γ + ∆) = (γ1 + ∆)D + v(θ), (122)

where
v(θ) = cos θ1γ + sin θ1γ× D + K(cos θ − 1)B + K sin θN (123)

in which
1 = I− D⊗ D (124)

is the projection onto the fiber cross section. The symmetry condition (115) thus becomes

ϕ(γ; X) = ϕ((γ1 + ∆)D + v(θ); X). (125)

If the fiber is initially straight, then K vanishes and ∆ = ∆D, again with ∆ arbitrary. The Frenet
triad is not well defined in this case and so we use (120) with {N, B} replaced by {Dα}, finding that
(115) reduces to

ϕ(γ; X) = ϕ((γ1 + ∆)D + γ2i(θ) + γ3 j(θ); X), (126)

where
i(θ) = cos θD2 − sin θD3 and j(θ) = sin θD2 + cos θD3 (127)

in which θ differs from the angle appearing in (120).
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For curved or straight fibers we differentiate (125) or (126) with respect to ∆, concluding that

ϕγ · D = 0, (128)

and hence that the fiber is insensitive to the twist strain. In view of the fact that the energies associated
with twist and bending of a typical fiber are comparable in magnitude (cf. (18)), we regard such a
circumstance as unrealistic and therefore require that ∆ = 0. Then, ∆ = D× (∆× D) and (128) is not
applicable. In the case of initially straight fibers this implies that L′ = 0, i.e., that L cannot vary along
the fibers, although ∇L need not vanish. A similar observation was made in [16] in the context of
conventional Cosserat elasticity.

5.2.1. Transversely Hemitropic Fibers

Transversely hemitropic fibers are defined to be those for which (125) or (126) hold for arbitrary θ.

For curved fibers we differentiate the first of these with respect to θ, obtaining

ϕγ · v′(θ) = 0, (129)

where
v′(θ) = cos θ(KB + 1γ)× D− sin θ(KB + 1γ) (130)

is an arbitrary vector in the fiber cross section. Accordingly 1(ϕγ) vanishes and the bending moments mα

vanish. We conclude that a curved fiber can be transversely hemitropic only if it has no flexural elasticity.
It is therefore effectively a string with a possible twisting elasticity. Exceptionally, (129) imposes no
restrictions on ϕ if 1γ is fixed at the value −KB.

For initially straight fibers, we differentiate (126) with respect to θ and evaluate the result at
θ = 0, obtaining

γ2∂φ/γ3 = γ3∂φ/∂γ2, (131)

where φ(γ1, γ2, γ3) = ϕ(γiDi; X). This implies that φ(γ1, γ2, γ3) = ψ(γ1,
√

γ2
2 + γ2

3) for some function ψ.

Moreover, the referential version of (4), D′i = κ0 × Di, implies, for i = 1, that K2 = (κ0
2)

2 + (κ0
3)

2 and hence
that κ0

α = 0 if the fibers are initially straight. Thus,

ϕ(γ; X) = z(J1, J2; X) (132)

for some function z, where

J1 = γ · D = γ1 and J2 = |1κ| =
√

κ2
2 + κ2

3 . (133)

Conversely, (132) satisfies the operative version of the restriction (115) in the present
circumstances, namely

ϕ(γ; X) = ϕ(Ltγ; X), (134)

for all L(X) ∈ S, and thus furnishes the general representation for initially straight, transversely
hemitropic fibers with bending and twisting resistance.

Homogeneous quadratic energies of this kind are of the form

ϕ(γ; X) =
1
2

A(X)J2
1 +

1
2

B(X)J2
2 , (135)

which may be compared to the classical energy (18) for rods of circular cross section. The product
J1 J2 is excluded because the replacement γ→ tγ transforms J1 J2 to t |t| J1 J2. Accordingly, J1 J2 is not a
homogeneous quadratic function of γ.
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To derive the response function M (cf. (74)) we require the gradients

(J1)γ = D and (J2)γ = J−1
2 1κ. (136)

Equations (74) and (135) then deliver

M = ϕγ = Aγ1D + B(καDα) (137)

and (cf. (79))
m = Aγ1d + Bd× d′, (138)

where d′ = (∇d)D.

5.2.2. Transversely Orthotropic Fibers

Transversely orthotropic fibers are defined to be those for which (125) or (126) are satisfied with
θ = 0 and θ = π. This models fibers having rectangular cross sections on the microscale. The first
alternative corresponds to L(X) ≡ I and ∆ = 0, for which (115) reduces to an identity. For initially
curved fibers, the second alternative, θ = π, reduces (125) to the severe restriction

ϕ(γ1D + 1γ; X) = ϕ(γ1D− 1γ− 2KB; X) (139)

on the bending response. For an arbitrarily shaped fiber this can be satisfied if the energy depends
solely on the twist strain. Thus, as a practical matter, transverse orthotropy is meaningful for initially
straight rods, for which (126) reduces to

ϕ(γ1D + 1κ; X) = ϕ(γ1D− 1κ; X), (140)

or simply φ(γ1, κ2, κ3) = φ(γ1,−κ2,−κ3). Then,

ϕ(γ; X) = ψ(γ1, δ2, δ3; X), where δα =
1
2

κ2
α, (141)

and
m = (∂ψ/∂γ1)d + (∂ψ/∂δ2)κ2d2 + (∂ψ/∂δ3)κ3d3. (142)

The foregoing considerations lead to the conclusion that initially curved fibers exhibiting elastic
resistance to twisting and bending can be expected to have only trivial symmetry, i.e., L(X) ≡ I.
This conclusion, perhaps unexpected, is due to the fact that in the present theory the initial shape of
a fiber contributes to its material properties through the presence of κ0 in the strain-energy function.
To illustrate the point, imagine a fiber in the shape of a circular arc. If the arc is rotated about its
tangent at point X by π, say, then it becomes the mirror image of the original with respect to the plane
containing the tangent and lying perpendicular to that containing the fiber. We would not expect both
local configurations of the fiber—the one before the rotation and the one after—to exhibit identical
response to the same (arbitrary) experiment, unless the fiber is a string with negligible flexural stiffness.

In [2], several boundary value problems are solved explicitly in the context of a simpler version of
the present theory in which the fibers are initially straight, untwisted and parallel. These pertain to
finite torsion of a cylinder and to finite bending and transverse shearing of a block.
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Appendix A

To verify (60) we combine (46) and (57), obtaining

Γ̇DC =
1
2

eBAD(ṘiARiB,C + RiA ṘiB,C)

=
1
2

eBAD [ΩimRmARiB,C + RmA(Ωmj,CRjB + ΩmjRjB,C)]

=
1
2

eBADRmA[Ωmi,CRiB + (Ωmi + Ωim)RiB,C ]

=
1
2

eBADRiBRmAΩmi,C . (A1)

On the other hand, because det R = 1 we have

eBADRiBRmARjD = eimj, (A2)

and hence
eBACRiBRmA = eimjRjC , (A3)

where we have used RjDRjC = δDC .

We obtain

Γ̇DC =
1
2

eBADRiBRmAΩmi,C

= RjDωj,C , (A4)

where
ωj =

1
2

eimjΩmi (A5)

are the components of ω = axΩ, and thus confirm that Γ̇ = Rt∇ω.
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