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Abstract: Noether symmetries and first integrals of a class of two-dimensional systems of second
order ordinary differential equations (ODEs) are investigated using real and complex methods.
We show that first integrals of systems of two second order ODEs derived by the complex Noether
approach cannot be obtained by the real methods. Furthermore, it is proved that a complex method
can be extended to larger systems and higher order.
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1. Introduction

Lie developed a symmetry method for solving differential equations (DEs) [1–4]. Noether [5]
used these methods to prove that, for DEs obtained from a variational principle, for each symmetry
generator there is a corresponding invariant, first integral. These symmetries are called Noether and,
if they exist, then Noether’s theorem readily provides the associated first integrals. Since they provide
a double reduction of the order of the equation, and a sufficient number can actually be used to
solve the equation, it is worthwhile to obtain them. Furthermore, they are useful for studying the
physical aspects of the dynamical systems, like time translational symmetry gives energy conservation,
spatial translation provides momentum conservation and rotational symmetry implies conservation of
angular momentum. For a scalar ODE, the corresponding Lagrangian has a five-dimensional maximal
Noether symmetry algebra, as guaranteed by a theorem [6], and all the lower dimensions (obviously
except 4).

Though Lie methods involved complex functions of complex variables, they did not make explicit
use of the Cauchy–Riemann (CR) equations. These conditions provide an auxiliary system of DEs
satisfied by the corresponding system of DEs obtained by splitting the complex functions of the scalar
or systems of DEs into the two real ones. One obtains either a system of partial differential equations
(PDEs), if the independent variable is complex or a system of ODEs if it is real. The explicit use of
complex functions of complex or real variables is demonstrated in [7–10] where solvability of systems
of DEs is achieved through Noether symmetries and corresponding first integrals. Furthermore,
by employing complex symmetry procedures: the energy stored in the field of a coupled harmonic
oscillator was studied in [11] and linearizability of systems of two second order ODEs was addressed
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in [12,13]. The complex procedure, indeed, has been extended to higher dimensional systems of second
order ODEs [14] and two-dimensional, systems of third order ODEs [15].

In this paper, we extend the use of complex symmetry methods further to obtain invariants of
systems of ODEs and demonstrate that we can obtain new invariants not obtainable by the usual,
non-complex, methods. The new invariants for systems arise due to complex Lagrangians and first
integrals of the base ODEs involving complex dependent functions of the real independent variables.
Complex symmetries have already been used to construct first integrals through Noether symmetries
and derive invariants for two-dimensional, systems of second order ODEs [8–10]. We first compare the
usual (real) and complex Noether approaches developed to derive first integrals for systems of two
second order ODEs. We find that the latter yields more first integrals than the former for these systems.
The first integrals derived using a complex procedure also satisfy the conditions of the real Noether’s
theorem that exists for systems of ODEs. Next, we prove that Lagrangians and corresponding first
integrals of the complex scalar ODEs will always split into two real Lagrangians and first integrals
for the corresponding system of two equations. For this purpose, we use the CR-equations, which are
satisfied by the Lagrangians and first integrals provided by the complex procedure. Furthermore,
we show that the complex Noether symmetries do not, in general, split into two Noether symmetries
of the corresponding systems. The thrust is not to find directly applicable invariants, which could
turn up but to demonstrate how a complex method can provide new invariants and insights into
Noether symmetries and first integrals. This work also suggests that the class of systems presented
here should, indeed, be singled out when classifying systems of ODEs on the basis of their Noether
symmetries and first integrals as it may not follow the classifications presented by employing real
symmetry methods. Theorems and their proofs in the later part of this paper show that the method
adopted here can trivially be extended to higher dimensions and order of ODEs.

The plan of the paper is as follows: the next section gives the procedures to derive Noether
symmetries, operators and corresponding first integrals for systems of two second order ODEs. In the
third section, we obtain Noether symmetries and first integrals for two-dimensional, systems of second
order ODEs using a real symmetry method. In the subsequent section, first integrals for these systems
are derived by employing complex procedures. We end with a concluding section, which also gives
the proofs of the claims given in the previous section.

2. Preliminaries

For a system of two coupled (in general) nonlinear ODEs

y′′ = S1(x, y, z, y′, z′), z′′ = S2(x, y, z, y′, z′), (1)

where prime denotes derivative with respect to x, and the point symmetry generator is

X = ξ(x, y, z)∂x + η1(x, y, z)∂y + η2(x, y, z)∂z, (2)

where ξ, η1, and η2, are the functions that appear in the infinitesimal coordinate transformations of the
dependent and independent variables, ∂x = ∂/∂x, etc. The first extension of X is

X[1] = X +

(
d

dx
η1 − y′

d
dx

ξ

)
∂y′ +

(
d

dx
η2 − z′

d
dx

ξ

)
∂z′ , (3)

where d/dx = ∂x + y′∂y + z′∂z + · · · . If system (1) admits a Lagrangian L(x, y, z, y′, z′), then it is
equivalent to the Euler–Lagrange equations

d
dx

(
∂L
∂y′

)
− ∂L

∂y
= 0,

d
dx

(
∂L
∂z′

)
− ∂L

∂z
= 0. (4)
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The vector field (2) is called a Noether symmetry generator corresponding to the Lagrangian
L(x, y, z, y′, z′) for system (1) if there exists a gauge function B(x, y, z), such that

X[1](L) + D(ξ)L = D(B), (5)

where D is the total differentiation operator defined by

D = ∂x + y′∂y + z′∂z + y′′∂y′ + z′′∂z′ + · · · . (6)

Theorem 1. If X is a Noether point symmetry generator corresponding to a Lagrangian L(x, y, z, y′, z′) of (1),
then the corresponding first integral is:

I = ξL + (η1 − ξy′)
∂L
∂y′

+ (η2 − ξz′)
∂L
∂z′
− B. (7)

For a first integral I, of system (1), the following equations

X[1] I = 0, (8)

DI = 0, (9)

where X[1], and D, given in (3) and (6), are satisfied identically. Though the construction of the
variational form of (1) along with Noether symmetries to determine the conserved quantities is
nontrivial, the complex method converts a class of systems (1) into variational form trivially [8,10,11],
which is obtainable from a single (base) scalar complex equation u′′ = S(x, u, u′). This class is derived
by considering u(x) = y(x) + ιz(x), and S(x, u, u′) = S1(x, y, z, y′, z′) + ιS2(x, y, z, y′, z′). Such system
admits a pair of Lagrangians L1(x, y, z, y′, z′) and L2(x, y, z, y′, z′) as the Lagrangian L(x, u, u′), of the
complex base equation also involves the complex function u(x) and its derivative, hence L = L1 + ιL2.
With these assumptions, (1) can be obtained from

∂L1

∂y
+

∂L2

∂z
− d

dx

(
∂L1

∂y′
+

∂L2

∂z′

)
= 0,

∂L2

∂y
− ∂L1

∂z
− d

dx

(
∂L2

∂y′
− ∂L1

∂z′

)
= 0. (10)

These are obtained by splitting the complex Euler–Lagrange equation of the scalar complex
second order ODEs. They are different from (4); however, in the later part of this work, their reduction
to (4) is done. The operators

X[1] = ξ1∂x +
1
2 (η1∂y + η2∂z + η′1∂y′ + η′2∂z′),

Y[1] = ξ2∂x +
1
2 (η2∂y − η1∂z + η′2∂y′ − η′1∂z′)

(11)

are said to be Noether operators corresponding to L1(x, y, z, y′, z′) and L2(x, y, z, y′, z′) of (1), if there
exist gauge functions B1(x, y, z), and B2(x, y, z), such that

X[1]L1 − Y[1]L2 + (Dξ1)L1 − (Dξ2)L2 = DB1,
X[1]L2 + Y[1]L1 + (Dξ1)L2 + (Dξ2)L1 = DB2.

(12)

Theorem 2. If X[1] and Y[1] are Noether operators corresponding to the Lagrangians L1(x, y, z, y′, z′) and
L2(x, y, z, y′, z′) of (1), then the first integrals for (1) are

I1 = ξ1L1 − ξ2L2 +
1
2 (η1 − y′ξ1 + z′ξ2)(

∂L1
∂y′ +

∂L2
∂z′ )

− 1
2 (η2 − y′ξ2 − z′ξ1)(

∂L2
∂y′ −

∂L1
∂z′ )− B1,

(13)
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I2 = ξ1L2 + ξ2L1 +
1
2 (η1 − y′ξ1 + z′ξ2)(

∂L2
∂y′ −

∂L1
∂z′ )

+ 1
2 (η2 − y′ξ2 − z′ξ1)(

∂L1
∂y′ +

∂L2
∂z′ )− B2.

(14)

Theorem 3. The first integrals I1 and I2, associated with the Noether operators X[1] and Y[1], satisfy

X[1] I1 − Y[1] I2 = 0, X[1] I2 + Y[1] I1 = 0, (15)

and

D1 I1 − D2 I2 = 0, D1 I2 + D2 I1 = 0, (16)

where D1 = ∂x +
1
2 (y
′∂y + z′∂z + y′′∂y′ + z′′∂z′ + · · · ), D2 = ∂x +

1
2 (z
′∂y − y′∂z + z′′∂y′ − y′′∂z′ + · · · ).

3. Noether Symmetries and Corresponding First Integrals

In this section, we reconsider a class of two-dimensional, systems of second order ODEs that is
solved using complex methods [13]. There it was shown that, for this class of systems, dimensions
of the Lie point symmetry algebra remain less than 5, while the base complex equations in most of
the cases possess an eight-dimensional Lie and a five-dimensional Noether algebra. This will help us
here in showing that the number of first integrals for such systems using the real Noether approach
remains less than that generated through the complex procedures. This class of systems of two second
order cubically semi-linear ODEs reads as:

y′′ = A10y′3 − 3A20y′2z′ − 3A10y′z′2 + A20z′3 + B10y′2 − 2B20y′z′ − B10z′2 + C10y′ − C20z′ + D10,
z′′ = A20y′3 + 3A10y′2z′ − 3A20y′z′2 − A10z′3 + B20y′2 + 2B10y′z′ − B20z′2 + C20y′ + C10z′ + D20,

(17)

where Aj0, Bj0, Cj0, Dj0, (j = 1, 2), are analytic functions of x, y, and z. In order to apply the complex
Noether approach, we establish correspondence of the above system with the complex scalar second
order ODE

u′′ = A0(x, u)u′3 + B0(x, u)u′2 + C0(x, u)u′ + D0(x, u), (18)

by considering y(x) + ιz(x) = u(x), A10 + ιA20 = A0, B10 + ιB20 = B0, C10 + ιC20 = C0, and D10 + ιD20 = D0.

Example 1. The system of two second order quadratically semi-linear ODEs

y′′ = x(y′2 − z′2), z′′ = 2xy′z′ (19)

admits a three-dimensional Lie algebra spanned by the following symmetry generators

X1 = ∂y, X2 = ∂z, X3 = −x∂x + y∂y + z∂z, (20)

and the Lagrangians

L1 = x +
x2y′

2
+

1
2

ln (y′2 − z′2), L2 =
x2z′

2
+ arctan(z′, y′). (21)

These Lagrangians yield the first integrals

Ir
1 =

1
2

x2 +
y′

y′2 + z′2
, Ir

2 = − z′

y′2 + z′2
, (22)

corresponding to X1, and X2.
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Example 2. For the system of two second order semi-linear ODEs,

y′′ = −3yy′ + 3zz′ − y3 + 3yz2, z′′ = −3yz′ − 3zy′ − 3y2z + z3, (23)

there are two Lagrangians

L1 =
3y′ + 3y2 − 3z2

(3y′ + 3y2 − 3z2)2 + (3z′ + 6yz)2 , L2 =
3z′ + 6yz

(3y′ + 3y2 − 3z2)2 + (3z′ + 6yz)2 , (24)

coming from the base complex equation

u′′ = −3uu′ − u3, (25)

and its Lagrangian L = 1
3(u′+u2)

. System (23) has three Lie point symmetries

X1 = ∂x, X2 = x∂x − y∂y − z∂z, X3 =
x2

2
∂x + (1− xy)∂y − xz∂z. (26)

Only one first integral for (23), corresponding to X1, exists

Ir
1 = 1

3δ1
{y6 + (z2 + 4y′)y4 + 8y3zz′ + (5y′2 − 8y′z2 − z4 + 3z′2)y2 − 8z(z2 − 1

2 y′)yz′

−z6 + 4z4y′ − (5y′2 + 3z′2)z2 + 2y′z′2 + 2y′3},
(27)

where

δ1 = (y4 + (2z2 + 2y′)y2 + 4yzz′ + y′2 + z4 − 2y′z2 + z′2)2. (28)

Example 3. For the system of two second order cubically semi-linear ODEs

y′′ = y′3 − 3y′z′2, z′′ = 3y′2z′ − z′3, (29)

the Lagrangians are

L1 = 2y +
y′

y′2 + z′2
, L2 = 2z− z′

y′2 + z′2
. (30)

The above system possesses four Lie point symmetries

X1 = ∂x, X2 = ∂y, X3 = ∂z, X4 = 2x∂x + y∂y + z∂z. (31)

There are three gauge functions, B1 = C1, B2 = 2x, B3 = C2, for X1, X2, and X3, respectively, for L1. Similarly,
L2 generates B1 = C3, B2 = C4, B3 = 2x, with the same point symmetries as mentioned above. Thus, there is a
three-dimensional Noether algebra for (29) associated with L1,

Ir
1 = 2y +

2y′

y′2+z′2 − C1, Ir
2 = 1

y′2+z′2 −
2y′2

(y′2+z′2)2 − 2x,

Ir
3 =

−2y′z′

(y′2+z′2)2 − C2.
(32)

Similarly, for L2, the first integrals are

Ir
1 = 2z− 2z′

y′2+z′2 − C3, Ir
2 =

2y′z′

(y′2+z′2)2 − C4,

Ir
3 = −1

y′2+z′2 +
2z′2

(y′2+z′2)2 − 2x.
(33)

Example 4. A nonlinear system of two second order cubically semi-linear ODEs

y′′ = α2xy′3 − 3α2xy′z′2, z′′ = 3α2xy′2z′ − α2xz′3, (34)
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where α is a constant and possesses the Lagrangians

L1 = 2α2xy +
y′

y′2 + z′2
, L2 = 2α2xy− z′

y′2 + z′2
. (35)

The above system (34) has three Lie point symmetries

X1 = ∂y, X2 = ∂z, X3 = x∂x. (36)

For X1, and X2, we obtain gauge functions with L1, and L2 that are B1 = C1x2, B2 = C2, and B1 = C2, B2 = C1x2,
respectively. Thus, two-dimensional Noether algebra is found to exist for (34) and the first integrals corresponding to L1,
and L2, are

Ir
1 =

1
y′2 + z′2

− 2y′2

(y′2 + z′2)2 − C1x2, Ir
2 =

−2y′z′

(y′2 + z′2)2 − C2, (37)

and

Ir
1 =

2y′z′

(y′2 + z′2)2 − C2, Ir
2 =

−1
y′2 + z′2

+
2z′2

(y′2 + z′2)2 − C1x2, (38)

respectively.

Example 5. The system of two second order cubically semi-linear ODEs

y′′ = αyy′3 − 3αzy′2z′ − 3αyy′z′2 + αzz′3,
z′′ = αzy′3 + 3αyy′2z′ − 3αzy′z′2 − αyz′3

(39)

has the Lagrangians

L1 = αy2 − αz2 +
y′

y′2 + z′2
, L2 = 2αyz− z′

y′2 + z′2
, (40)

where α is a constant. This system admits a two-dimensional Lie point symmetry algebra

X1 = ∂x, X2 = 3x∂x + y∂y + z∂z. (41)

The gauge term for X1, with both L1, L2, is B = C1. Thus, there is a one-dimensional Noether algebra that provides
the following first integrals

Ir
1 = α(y2 − z2) +

2y′

y′2+z′2 − C1,

Ir
2 = 2αyz− 2z′

y′2+z′2 − C2.
(42)

Example 6. The system of two second order cubically semi-linear ODEs

y′′ = xyy′3 − 3xzy′2z′ − 3xyy′z′2 + xzz′3,
z′′ = xzy′3 + 3xyy′2z′ − 3xzy′z′2 − xyz′3

(43)

has two Lagrangians

L1 = xy2 − xz2 +
y′

y′2 + z′2
, L2 = 2xyz− z′

y′2 + z′2
, (44)

and one Lie point symmetry

X1 = x∂x. (45)
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There is no gauge function corresponding to X1, for L1, or L2, which implies that there is a 0-dimensional Noether
algebra. Hence, no first integral exists by a real method.

4. Noether Operators and Corresponding First Integrals

In this section, we obtain first integrals for all systems considered in the previous section,
by employing complex Noether procedure.

Example 7. By considering y(x) + ιz(x) = u(x), system (19) corresponds to a scalar ODE

u′′ = xu′2, (46)

which has only one symmetry Z1 = ∂u. A complex Lagrangian, L = x + x2u′
2 + ln u′, is admitted by (46), yielding the

first integral

I1 =
x2

2
+

1
u′

. (47)

This complex first integral splits into the following real first integrals

Ic
1 =

1
2

x2 +
y′

y′2 + z′2
, Ic

2 = − z′

y′2 + z′2
(48)

of system (19). Notice that both these first integrals are the same as those obtained earlier in (22) by the real method. It shows
an agreement between the complex and real Noether approaches.

Example 8. The base scalar ODE (25) has a five-dimensional Noether symmetry algebra spanned by

Z1 = ∂x, Z2 = u∂x − u3∂u, Z3 = xu∂x + (u2 − xu3)∂u,
Z4 = (x− 3x2u

2 )∂x + (2u− 3xu2 + 3x2u3

2 )∂u,
Z5 = ( x3u

2 −
x2

2 )∂x + (1− 2xu + 3x2u2

2 − x3u3

2 )∂u.

(49)

The first integrals corresponding to the above Noether symmetries are

I1 = 2u′+u2

3(u2+u′)2 , I2 = x− u
u2+u′ , I3 = (−u+xu2+xu′)2

(u2+u′)2 ,

I4 = 1
3
((u′+u2)x−u)(2+(u′+u2)x2−2xu)

(u2+u′)2 ,

I5 = 3(2−2xu+x2u2+x2u′)
u2+u′ .

(50)

Putting u(x) = y(x) + ιz(x), these complex first integrals split to provide the first integrals for the system (23)

Ic
1 = 1

3
(2y′+y2−z2)J1+(2z′+2yz)J2

J2
1+J2

2
, Ic

2 = 1
3
(2z′+2yz)J1−(2y′+y2−z2)J2

J2
1+J2

2
,

Ic
3 = x− yJ3−zJ4

J2
3+J2

4
, Ic

4 =
yJ4−zJ3

J2
3+J2

4
, Ic

5 = J5 J6+J7 J8
J2
6+J2

8
, Ic

6 = J6 J7−J5 J8
J2
6+J2

8
,

Ic
7 = 1

3
(J9 J10−J11 J12)J13+(J10 J11+J9 J12)J14

J2
13+J2

14
,

Ic
8 = 1

3
(J10 J11+J9 J12)J13−(J9 J10−J11 J12)J14

J2
13+J2

14
,

Ic
9 = 3 J3 J15+J4 J16

J2
3+J2

4
, Ic

10 = 3 J3 J16−J4 J15
J2
3+J2

4
,

(51)
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where
J1 = −4yzz′ − 6y2z2 + z4 + y4 + 2y2y′ − 2z2y′ + y′2 − z′2,
J2 = 4yzy′ − 4yz3 + 2y′z′ + 4y3z + 2y2z′ − 2z2z′,
J3 = y′ + y2 − z2,
J4 = z′ + 2yz,
J5 = −4x2yzz′ + 2xzz′ + y2 − z2 + 6xyz2 − 2xyy′ − 6x2y2z2 + 2x2y2y′

− 2x2z2y′ − 2xy3 + x2y4 + x2z4 + x2y′2 − x2z′2,
J6 = y4 + z4 + y′2 − 6y2z2 − 2z2y′ + 2y2y′ − 4yzz′ − z′2,
J7 = 2x2y′z′ + 4x2y3z + 2x2y2z′ − 2x2z2z′ − 4x2yz3 − 2xzy′ − 6xy2z
− 2xyz′ + 2yz + 2xz3 + 4x2yzy′,

J8 = 4y3z + 2y2z′ − 4yz3 − 2z2z′ + 2y′z′ + 4yzy′,
J9 = (y2 − z2 + y′)x− y,
J10 = 2 + (y2 − z2 + y′)x2 − 2xy,
J11 = (2yz + z′)x− z,
J12 = (2yz + z′)x2 − 2xz,
J13 = −6y2z2 − 4yzz′ + 2y2y′ − 2z2y′ + y′2 − z′2 + y4 + z4,
J14 = −2z2z′ − 4yz3 + 2y2z′ + 4y3z + 4yzy′ + 2y′z′,
J15 = 2− 2xy + x2(y2 − z2) + x2y′,
J16 = −2xz + 2x2yz + x2z′.

(52)

In the following examples, we show that a complex symmetry approach provides 10 first integrals
for systems of two second order ODEs. In particular, there is a system (43) that has a 0-dimensional
Noether symmetry algebra, but 10 first integrals are generated by Noether operators obtained by
complex methods.

Example 9. The base complex scalar ODE

u′′ = u′3, (53)

for system (29) has the Lagrangian L = 2u + 1
u′ . For the five Lie point symmetries

Z1 = ∂x, Z2 = ∂u, Z3 = u∂x, Z4 = (u3 − 2xu)∂x − 2u2∂u,
Z5 = (3u2 − 2x)∂x − 4u∂u

(54)

of the ODE (53), the gauge terms found are B1 = C, B2 = 2x, B3 = 2x + u2, B4 = 3u4

2 − 2xu2 − 2x2, B5 = 4u3,
respectively. The corresponding first integrals are

I1 = 2u + 2
u′ − C, I2 = −1

u′2 − 2x, I3 = u2 − 2x + 2u
u′ ,

I4 = 1
2u′2 ((u

2 − 2x)u′ + 2u)2, I5 = 2u3 − 4xu + (6u2−4x)
u′ + 4u

u′2 .
(55)

Splitting (54) into real and imaginary parts yields the 10 Noether operators that provide the following first integrals:

Ic
1 = 2y +

2y′

y′2+z′2 − C1, Ic
2 = 2z− 2z′

y′2+z′2 − C2,

Ic
3 = −2x− y′2−z′2

(y′2+z′2)2 , Ic
4 =

2y′z′

(y′2+z′2)2 ,

Ic
5 = y2 − z2 − 2x + 2 yy′+zz′

y′2+z′2 , Ic
6 = 2

(
yz + y′z−yz′

y′2+z′2

)
,

Ic
7 = y4 + z4 − 6y2z2 + 4x2 − 4x(y2 − z2) + 4 (y3−3yz2−2xy)y′+(3y2z−z3−2xz)z′

y′2+z′2

+ 4 (y2−z2)(y′2−z′2)+4yzy′z′

(y′2+z′2)2 ,

(56)
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Ic
8 = 4yz(y2 − z2)− 8xyz + 4 (3y2z−z3−2xz)y′−(y3−3yz2−2xy)z′

y′2+z′2

+ 4 2yz(y′2−z′2)−2(y2−z2)y′z′

(y′2+z′2)2 ,

Ic
9 = y3 − 3yz2 − 2xy +

(3y2−3z2−2x)y′+6yzz′

y′2+z′2 + 2 y(y′2−z′2)+2zy′z′

(y′2+z′2)2 ,

Ic
10 = 3y2z− z3 − 2xz + 6yzy′+(3z2−3y2+2x)z′

y′2+z′2 + 2 z(y′2−z′2)−2yy′z′

(y′2+z′2)2 .

(57)

Example 10. System (34) is obtainable from a scalar second order complex ODE

u′′ = α2xu′3. (58)

The Lagrangian associated with this equation is L = 2α2xu + 1
u′ . The following gauge functions

B1 = α2x2, B2 = 2α2xu sin(αu) + 2αx cos(αu), B3 = 2α2xu cos(αu)− 2αx sin(αu),
B4 = α2x2(2αu cos(2αu)− sin(2αu)), B5 = α2x2(2αu sin(2αu) + cos(2αu)),

(59)

correspond to the respective Lie point symmetries

Z1 = ∂u, Z2 = sin(αu)∂x, Z3 = cos(αu)∂x,
Z4 = αx cos(2αu)∂x + sin(2αu)∂u, Z5 = αx sin(2αu)∂x − cos(2αu)∂u.

(60)

Hence, there are five Noether symmetries and corresponding first integrals

I1 = −1
u′2 − α2x2,

I2 = 2
(

sin(αu)
u′ − αx cos(αu)

)
,

I3 = 2
(

cos(αu)
u′ + αx sin(αu)

)
,

I4 = α2x2 sin(2αu)− sin(2αu)
u′2 + 2 αx cos(2αu)

u′ ,

I5 = −α2x2 cos(2αu) + cos(2αu)
u′2 + 2 αx sin(2αu)

u′ .

(61)

The real and imaginary parts of (61) yield 10, first integrals for (34).

Example 11. The system (39) and Lagrangian (40) correspond to the complex scalar linearizable ODE

u′′ = αuu′3, (62)

and Lagrangian L = αu2 + 1
u′ , which have the following gauge functions B1 = C, B2 = 2x + αu3

3 , B3 = α2u4

2 , B4 =
2
3 α2u6 − αxu3 − 3x2,B5 = −3α2u5, for the following Lie point symmetries

Z1 = ∂x, Z2 = u∂x, Z3 = αu2∂x − 2∂u,
Z4 = (αu4 − 3xu)∂x − 3u2∂u, Z5 = (−5αu3 + 6x)∂x + 12u∂u.

(63)

Thus, there are five complex first integrals

I1 = αu2 + 2/u′ − C, I2 = 1
3 (2αu3 − 6x) + 2u

u′ ,

I3 = (2+αu2u′)2

2u′2 , I4 = 1
3

(
(αu3−3x)u′+3u

u′

)2
,

I5 = −2α2u5 + 6αxu2 − 2 (5αu3−6x)
u′ − 12 u

u′2 ,

(64)

which split into 10 real first integrals for system (39).
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Example 12. System (43) is obtainable from the complex linearizable ODE

u′′ = xuu′3, (65)

with the Lagrangian L = xu2 + 1
u′ . It admits a five-dimensional Noether symmetry algebra, which yields 10 first integrals

for system (43). In the previous section, we showed that there is no Noether symmetry for system (43) by real methods,
but the complex method yields 10 first integrals.

5. Conclusions

In this paper, we demonstrated, by considering explicit examples that the complex methods
provide Noether invariants that do not appear by real methods. While the examples, in themselves,
do prove the point, one would like to understand why this should be the case. For this purpose,
we state and prove the following theorems that summarize our results and provide insight into how
the complex methods work and go beyond the real methods.

Theorem 4. The Lagrangian and associated first integrals of complex nth (n ≥ 2) order ODEs with complex dependent and
real independent variable provide Lagrangians and first integrals, respectively, for corresponding two-dimensional systems of
nth order ODEs.

Proof. We prove the result for n = 2, as its extension to higher orders is trivial. In this case, i.e., for a scalar second
order ODE, the Euler–Lagrange equation reads as d

dx

(
∂L
∂u′

)
− ∂L

∂u = 0, which expands to

Lxu′ + u′Luu′ + u′′Lu′u′ − Lu = 0.

By considering u(x) = y(x) + ιz(x), L(x, u, u′) = L1(x, y, z, y′, z′) + ιL2(x, y, z, y′, z′), in the above equation
and splitting it into the real and imaginary parts, one obtains

1
2
(L1,xy′ + L2,xz′ ) +

y′

4
(L1,yy′ + L2,y′z + L2,yz′ − L1,zz′ )−

z′

4
(L2,yy′ − L1,y′z − L1,yz′ − L2,zz′ )

+
y′′

4
(L1,y′y′ + L2,y′z′ + L2,y′z′ − L1,z′z′ )−

z′′

4
(L2,y′y′ − L1,y′z′ − L1,y′z′ − L2,z′z′ )−

1
2
(L1,y + L2,z) = 0,

1
2
(L2,xy′ − L1,xz′ ) +

y′

4
(L2,yy′ − L1,y′z − L1,yz′ − L2,zz′ ) +

z′

4
(L1,yy′ + L2,y′z + L2,yz′ − L1,zz′ )

+
y′′

4
(L2,y′y′ − L1,y′z′ − L1,y′z′ − L2,z′z′ ) +

z′′

4
(L1,y′y′ + L2,y′z′ + L2,y′z′ − L1,z′z′ )−

1
2
(L2,y − L1,z) = 0.

Both of the above equations reduce to

Li,xy′ + y′Li,yy′ + z′Li,y′z + y′′Li,y′y′ + z′′Li,y′z′ − Li,y = 0,

Li,xz′ + y′Li,yz′ + z′Li,zz′ + y′′Li,y′z′ + z′′Li,z′z′ − Li,z = 0,

for i = 1, 2, by employing the CR-equations L1,y = L2,z, L1,z = −L2,y, L1,y′ = L2,z′ , and L1,z′ = −L2,y′ . Notice
that these are Euler–Lagrange Equations (4) for two-dimensional systems of second order ODEs. Hence, the real
and imaginary parts Li, for i = 1, 2, of a complex Lagrangian L(x, u, u′) satisfy the Euler–Lagrange equations for
systems obtainable from complex scalar equations. In other words, the Euler–Lagrange Equations (10) become the
Euler–Lagrange Equations (4). A similar argument applies to first integrals Ii, for i = 1, 2, obtained for a system of
two second order ODEs from complex first integral I(x, u, u′), of a scalar second order complex equation which
satisfy DI = 0, i.e.,

Ix + u′ Iu + u′′ Iu′ = 0.
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Considering u(x) = y(x) + ι(x), I(x, u, u′) = I1(x, y, z, y′, z′) + ιI2(x, y, z, y′, z′), D = D1 + ιD2, and splitting
into the real and imaginary parts and employing CR-equations I1,y = I2,z, I1,z = −I2,y, I1,y′ = I2,z′ ,
I1,z′ = −I2,y′ , yields

Ii,x + y′ Ii,y + z′ Ii,z + y′′ Ii,y′ + z′′ Ii,z′ = 0, i = 1, 2.

This is exactly the criterion whose first integrals of a system of two second order ODEs satisfy DI1 = DI2 = 0,
where D is the derivative operator for such systems given in (6).

The above result is extendable to higher dimensional systems of ODEs of order more than two as
the CR-equations and their derivatives establish a connection between Lagrangians and first integrals
of the complex base equations and the corresponding systems. Therefore, for those systems (of nth
order ODEs) that correspond to complex DEs (of the same order), their Lagrangians and first integrals
are obtainable from the complex Lagrangian and first integrals of the base equations.

The base complex equations in Examples (2)–(6) and (8)–(12) admit an eight-dimensional Lie and
five-dimensional Noether symmetry algebras. It implies that there exist five first integrals for these
scalar equations, which, when considered complex, convert into ten first integrals (as guaranteed by
above theorem) of the corresponding two-dimensional systems of second order ODEs. Based on these
observations, we can state the following result.

Corollary 1. For two-dimensional systems of second order ODEs with symmetry algebras of dimension d, (d < 5) that are
obtainable from complex linearizable scalar ODEs, a complex Noether approach provides more first integrals than the real
symmetry method.

Theorem 5. The real and imaginary parts of the complex Noether symmetries of the complex scalar second order ODEs are
not necessarily the Noether symmetries of the corresponding two-dimensional systems of second order ODEs.

Proof. A complex first integral I(x, u, u′) satisfies the invariance criterion Z[1] I = 0, where

Z[1] = ξ∂x + η′∂u′ + η′′∂u′′

is the first extension of the Noether symmetry of a second order complex ODE. Splitting it into the real and
imaginary parts leads to two invariance conditions (15) that expand to

ξ1 I1,x − ξ2 I2,x +
1
2
{η1(I1,y + I2,z)− η2(I2,y − I1,z) + η′1(I1,y′ + I2,z′ )− η′2(I2,y′ − I1,z′ )} = 0,

ξ1 I2,x + ξ2 I1,x +
1
2
{η1(I2,y − I1,z) + η2(I1,y + I2,z) + η′1(I2,y′ − I1,z′ ) + η′2(I1,y′ + I2,z′ )} = 0,

respectively, where X[1], and Y[1], are the operators given in (11). Applying the CR-equations on I1, and I2,
the above equations become

ξ1 I1,x − ξ2 I2,x + η1 I1,y + η2 I1,z + η′1 I1,y′ + η′2 I1,z′ = 0,

ξ1 I2,x + ξ2 I1,x + η1 I2,y + η2 I2,z + η′1 I2,y′ + η′2 I2,z′ = 0,

while the real invariance criterion for systems reads as X[1] Ii = 0, for i = 1, 2, which yields two equations

ξ I1,x + η1 I1,y + η2 I1,z + η′1 I1,y′ + η′2 I1,z′ = 0,

ξ I2,x + η1 I2,y + η2 I2,z + η′1 I2,y′ + η′2 I2,z′ = 0.

A comparison of these equations with the previous two implies that the real and imaginary parts of a complex
Noether symmetry of the base scalar equation split into two Noether symmetries for the corresponding system of
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ODEs only if ξ2 = 0, which implies that, if the infinitesimal coordinate ξ, of a complex Noether symmetry is a
function of both the real independent variable x, and the complex dependent variable u(x), then it does not split
into Noether symmetries for the corresponding system.
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