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Abstract: We discuss a model consisting of four single-mode cavities with gain and loss energy in the
first and last modes. The cavities are coupled to each other by linear interaction and form a chain.
Such a system is described by a non-Hermitian Hamiltonian which, under some conditions, becomes
PT -symmetric. We identify the phase-transition point and study the possibility of generation
bipartite entanglement (entanglement between all pairs of cavities) in the system.
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1. Introduction

One of the main principles of quantum mechanics is the assumption that the Hamiltonian
describing a quantum system must be Hermitian. In consequence, all of Hamiltonian’s eigenvalues
are real. In 1998, Bender and Boettcher [1] showed that the Hermiticity of a Hamiltonian (Ĥ = Ĥ†)

is not the only condition to obtain its real eigenvalues. When non-Hermitian Hamiltonian has PT
symmetry, its eigenvalues are real. PT symmetry means that the Hamiltonian satisfies commutation
relations

[
Ĥ, P̂T̂

]
= 0, where P̂ is a linear parity operator which changes the sign of the momentum

operator and the position operator; whereas T̂ is the antilinear time reversal operator.
The first of the studied PT -symmetric Hamiltonians with a real spectrum was that described by

the equation Ĥ = p̂2 + ix̂3 [1–3]. The most commonly discussed quantum mechanical systems withPT
symmetry are those described by Hamiltonians including a complex potential. When the imaginary
part has a plus sign, the system obtains energy from the environment; whereas the minus sign means
that the system gives energy into the environment. When the system satisfies PT symmetry, the loss
and gain must be balanced. For optical PT -symmetric systems, the refractive index n can play a role
of the potential energy V [4]. Quantum optical systems should also exhibit such balance between the
gain and loss of energy to satisfy PT symmetry condition. For such a case, the refractive index obeys
the symmetry relation n(x) = n∗(−x).

In recent years, the different kinds of PT -symmetric systems have been considered. For instance,
there has been the pair of coupled LC circuits [5], optical lattice [6,7], optomechanical system [8],
optical waveguides [9], quantum-dot [10], and others. The PT -symmetric systems can exhibit
numerous interesting phenomena such as invisibility [11], chaos induced by the PT symmetry
breaking [12], and many others.

For the PT -symmetric system, we can observe a phase-transition point which is the point
where the system loses its PT -symmetric properties. If the system is in the PT -symmetric phase,
all eigenvalues of Hamiltonian are real. When the system is in PT symmetry broken phase, it has
complex eigenvalue spectra. Such a transition point from the unbroken PT -symmetric phase to
the PT symmetry broken phase is called exceptional point [13–15]. In general, this singular point
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occurs when eigenvalues and corresponding eigenvectors of the system depend on some parameters.
When those parameters reach a critical value, then eigenvalues of the system coalesce and the
spectrum becomes complex. If two eigenvalues coalescence, we have second-order exceptional points.
During recent years, various type of singularities and their features have been studied [16–22].
The PT -symmetric systems exhibit many interesting phenomena related to the presence of an
exceptional point. For instance, enhancing spontaneous emission [23], unidirectional invisibility
in fiber networks [24], and loss-induced lasing [25].

In this paper, we concentrate on the entangled states generation in the PT -symmetric quadrimer
system. In particular, we are interested in producing bipartite entangled states, and the influence of gain
and loss rate on producing such states. The generation of entanglement in various quantum systems is
one of the fundamental areas of interest in quantum information theory. Entanglement can be observed
in various physical systems such as Bose–Einstein condensates [26,27], cavity QED [28], quantum
dots [29,30], trapped ions [31], and many others [32–37]. The research related to the production
of entanglement in open systems is of particular importance. For such a system, a crucial role is
played by the decoherence processes, which are the consequence of the interaction of the system with
the environment. One should realize that the entanglement is very sensitive to the noise processes.
The interaction with the environment leads to losses of coherence, and, in consequence, destroys
entanglement. Very interesting is sudden death and the rebirth of entanglement observed in various
systems interacting with the environment [38–41].

The paper is organized as follows. In Section 2, we describe the PT -symmetric system.
In particular, we derive the formulas determining the location of the exceptional point, the point
where the system loses its PT symmetry, then, the eigenvalues of Hamiltonian become complex. For
the different values of gain/loss rate, we analyze the possibility of generation entanglement state in
Section 3. We show how the gain/loss rate influences the entanglement production process.

2. The Model

The considered system is composed of four identical single-mode cavities of the resonance
frequency ω. The first cavity is passive (it loses the energy), the second and third ones are neutral
(no losses and no gain of the energy), and the last one is active (it gains the energy). All cavities are
coupled mutually by linear interaction and form a chain (see Figure 1). Such a system can be described
by the following Hamiltonian:

Ĥ = (ω− iγ) â†
1 â1 + ωâ†

2 â2 + ωâ†
3 â3 + (ω + iγ) â†

4 â4

+β
(
â†

1 â2 + â†
2 â1 + â†

2 â3 + â†
3 â2 + â†

3 â4 + â†
4 â3
)

,
(1)

where âi and â†
i are bosonic annihilation and creation operators, respectively, whereas the indices

1, 2, 3, 4 label four subsystems. The parameter β describes the strength of linear interaction between
two nearest cavities and γ denotes the strength of decay or the gain of cavities. We assume here that
h̄ = 1 and the parameters ω, γ, and β are real.

β β β

ωωωω

Loss
es Gain
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cavity 1
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cavity 4
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Figure 1. Scheme of the model.
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The Hamiltonian defined in Equation (1) is non-Hermitian, but for some situations it becomes
PT -symmetric and its eigenvalues are real. To find the PT phase transition point, we write the
Hamiltonian Ĥ in this form:

Ĥ =
[

â†
1 â†

2 â†
3 â†

4

]
H


â1

â2

â3

â4

 , (2)

where

H =


ω− iγ β 0 0

β ω β 0
0 β ω β

0 0 β ω + iγ

 . (3)

Next, we can calculate the eigenvalues of the HamiltonianH, and they are

E1 = 1
2

(
2ω−

√
2
√

3β2 −
√

5β4 − 2β2γ2 + γ4 − γ2
)

,

E2 = 1
2

(
2ω +

√
2
√

3β2 −
√

5β4 − 2β2γ2 + γ4 − γ2
)

,

E3 = 1
2

(
2ω−

√
2
√

3β2 +
√

5β4 − 2β2γ2 + γ4 − γ2
)

,

E4 = 1
2

(
2ω +

√
2
√

3β2 +
√

5β4 − 2β2γ2 + γ4 − γ2
)

.

(4)

We see that all eigenvalues depend on the frequency ω, the strength of coupling β, and the
gain and loss rate γ. The eigenvalues are real when two relations are satisfied simultaneously:(

3β2 −
√

5β4 − 2β2γ2 + γ4 − γ2
)
≥ 0 and

(
3β2 +

√
5β4 − 2β2γ2 + γ4 − γ2

)
≥ 0.

In Figure 2a,b the real and imaginary parts of Ei are presented, respectively. We see there
that the phase-transition point is localized when γ = β. If the gain/loss rate γ is smaller than the
coupling parameter β, the spectrum is real and the system is in the PT -symmetric phase. As the
parameter γ exceeds β, the system passes into the broken PT -symmetric phase, and the eigenvalues
become complex. Observed here, the phase-transition point is the second-order exceptional point at
which the two eigenvalues coalesce.
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Figure 2. The values of (a) the real part of Ei and (b) the imaginary part of Ei, as a function of ratio
γ/β. All parameters are scaled in ω units and β = ω/2.
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To study the system’s dynamics, we analyze the time evolution of the density matrix ρ̂. We can
note that PT -symmetric system is an open system which exchanges energy with the environment.
The energy is gained and lost by the system. The evolution of such a system is determined by a master
equation for the operator ρ̂

d
dt

ρ̂ = −i
[
Ĥ0, ρ̂

]
+ Lρ̂, (5)

where

Ĥ0 = ω
(

â†
1 â1 + â†

2 â2 + â†
3 â3 + â†

4 â4

)
+ β

(
â†

1 â2 + â†
2 â1 + â†

2 â3 + â†
3 â2 + â†

3 â4 + â†
4 â3

)
, (6)

and L is the Liouvillian superoperator, which in our case it takes the form:

Lρ̂ = γ
(

2â1ρ̂â†
1 − â†

1 â1ρ̂− ρ̂â†
1 â1

)
+ γ

(
2â†

4 ρ̂â4 − â4 â†
4 ρ̂− ρ̂â4 â†

4

)
. (7)

In Equation (7), the first term describes the loss and the second term is related to the gain of energy.
In further considerations, we assume that initially only one of the four cavities is in the one-photon

state |1〉, and the other three are in vacuum state |0〉. Therefore, we will discuss here four cases:

• ρ̂(t = 0) = |1000〉〈1000|;
• ρ̂(t = 0) = |0010〉〈0010|;
• ρ̂(t = 0) = |0100〉〈0100|;
• ρ̂(t = 0) = |0001〉〈0001|,

where |ijkl〉 = |i〉1 ⊗ |j〉2 ⊗ |k〉3 ⊗ |l〉4 are the four-mode states. For the first of them, only the passive
cavity is in the one-photon state at the initial time, then, the density matrix describing the system can
be written as |1000〉〈1000|. The next two cases analyzed correspond to the situation when one of the
neutral cavities is in the one-photon state. Finally, for the last situation discussed here, the system
starts evolution from the state |0001〉〈0001|. For such a case, only the active cavity is in the one-photon
state at the initial time.

3. The Entanglement Generation

In further considerations, we discuss the generation of two-mode entangled states. For the
analysis of the degree of bipartite entanglement between two cavities, we apply the entanglement
measure which is based on the positive partial transposition criterion, the bipartite negativity. It was
defined in [42,43] as

Nij(ρij) =
1
2 ∑

i
|λn| − λn, (8)

where ρij = Trk,l

(
ρijkl

)
is the two-mode density matrix, λn is n-th eigenvalue of the matrix ρ

Ti
ij , and ρ

Ti
ij

describes the partial transposition (with respect to the i-th mode) of the two-mode density matrix ρij.
In our consideration, we analyze only maximal values of the bipartite negativity N0110 defined in

the space of four two-mode states: |0〉|0〉; |0〉|1〉; |1〉|0〉; and |1〉|1〉. Therefore, to quantify the bipartite
entanglement, we chose the negativity because this quantity can clearly differentiate between entangled
and unentangled states when it is applied to two-qubit or qubit—qutrit systems. The negativity takes
values between 0 for separable states and 1 for maximally entangled ones. To find values of N0110,
we generate the time evolution of the density matrix for the whole system, next, we find the reduced
density matrix ρij and calculate negativities for the subsystems spanned in the four states. We note
that for the system described by PT -symmetric Hamiltonian, its evolution is nonunitary. Therefore,
we should normalize the density matrix during the all evolution-time, and then, calculate the negativity
with the application of such normalized density matrix ρijkl .

As it was mentioned before, we study the possibility of generation of the two-mode entangled
state for four cases related to the four initial states (see Figure 3).
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First, we consider the situation when the first cavity (passive cavity) is excited, and the initial state
is ρ̂(t = 0) = |1000〉〈1000|. In Figure 3a, we show the dependence of the maximal values of negativities
N0110 on γ/β. One can see that only entanglement between modes 1-2 can be produced for all situations
considered here. What is relevant is that the degree of entanglement appearing in the system strongly
depends on the value of the gain/loss parameter. With the increased value of parameter γ, we can
observe decreasing entanglement in all pairs modes. For example, when γ = 0.99β, the maximal value
of N12 becomes closed to 0.14. For small values of γ/β, the entanglement between all pairs of cavities
is generated. Whereas for large values of γ/β, the entanglement corresponding to pairs of cavities 1-3,
1-4, 2-3, 2-4, 3-4 is not produced.

Next, we check the system’s ability to produce entanglement when the evolution of our system
starts from the state ρ̂(t = 0) = |0100〉〈0100|. For such a case, the excitation initially appears in
the second cavity (the cavity without loss and gain). In Figure 3b, we see that analogously as in
the previous case, the entanglement between all cavities is generated only for small values of γ/β

and the strength of maximal possible bipartite entanglement depends on the gain/loss rate again.
For weak losses/gains (γ < 0.03β), the entanglement between the cavities 1-2, 2-3, 1-3 is significant,
but the strongest entanglement can be observed between subsystems 2 and 3. For strong losses/gain,
the entanglement between the cavities 1-2, 2-3 plays the main role, whereas the entanglement between
modes 3-4, 2-4, 1-4 is not produced.

In the next analyzed case, for t = 0, the third cavity is in the one-photon state and the evolution
of the system starts from the state ρ̂(t = 0) = |0010〉〈0010|. Figure 3c shows that with increasing
parameter γ, all bipartite entanglements become weaker and entanglement between subsystems
1-4 and 2-4 disappears. For small values of γ/β, when the strength of the loss/gain rate increases,
the maximal values of all negativities significantly decrease. Whereas, for greater values of γ, the
values of negativities describing entanglement between modes 1-2, 2-3, 1-3 practically remain constant.
For γ > 0.2β, the strongest entanglement we observe is between two neutral cavities.

In the last case, the system’s evolution starts from state ρ̂(t = 0) = |0001〉〈0001|, and the excitation
initially appears in the active cavity. In Figure 3d, we see that analogously as in the previous case,
with increasing γ the maximal values of all negativities decrease. What is interesting is that in such
a case, all negativities reach nonzero values. The entanglement between cavities 3 and 4 plays the
main role. For subsystems 1-2, 2-3, 1-3, 2-4, the entanglement is weaker, and the weakest correlation we
observe is between passive and active cavities 1-4. For small values of γ, the negativity N14 significantly
decreases; and for γ > 0.2β reaches values close to zero (N14 < 0.01).
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Figure 3. Maximal values of the negativity versus γ/β for ω = 2β and for various initial states:
(a) |1000〉〈1000|, (b) |0100〉〈0100|, (c) |0010〉〈0010|, (d) |0001〉〈0001|.

4. Conclusions

Obtaining an entanglement quantum state plays a crucial role in the quantum information theory.
The entangled states have many possible applications, such as teleportation and dense coding.
Quantum correlations, including entanglement, play a significant role in the development of quantum
computation and quantum information processing. Therefore, it is important to understand the
entanglement nature of quantum systems. In recent years, a lot of papers have been presented on
characterizing entanglement in bipartite systems. The entanglement in such systems can be analyzed
relatively easily. The quantum correlations in systems consisting of more than two subsystems have
not been understood well, so they are extensively studied. Therefore, we were interested in studying
the ability of a PT -symmetric system to generate the entangled states, which are especially interesting
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from the point of view of quantum information theory. The purpose of this article was to contribute to
studies by addressing the entanglement generation.

In this paper, the optical quadrimer system containing four cavities characterized by frequency ω

was discussed. The cavities were coupled with each other in such a way that the system formed a chain.
Additionally, the first and the last cavity were a subject of losses and gains of energy, respectively,
and the rate of losses and gain was balanced.

For such a system, we have found a phase-transition point, and we have shown that when the
gain/loss rate is equal or smaller than coupling parameter, all eigenvalues of the system’s Hamiltonian
are real. In other words, the system is PT -symmetric, contrary to the situation when the gain/loss
rate reaches values greater than that of coupling strength and the optical quadrimer is in the broken
PT -symmetric phase. For such a case, the system has complex eigenvalue spectra.

We have analyzed four situations corresponding to the four various initial states of the system.
We were interested in the possibility of generation of entangled states and the influence of the gain/loss
rate strength on the effectiveness of production of such states. We have shown that the degree of
entanglement strongly depends on the value of the parameter γ. We have estimated the range of such
values for which the strongest bipartite entanglement can be created. For all analyzed cases, when
the values of loss/gain rate are small, with increasing γ, the entanglements significantly decrease.
For the greater values of loss/gain rate, if the initially active or passive cavity is excited, the strongest
entanglement appears between the cavity which, for t = 0, is in one-photon state and its nearest
neighbor. For the initial time, when one of the neutral cavities is excited, we can observe the strongest
entanglement between subsystems 2 and 3.
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