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Abstract: Thermal energy points towards a disordered, completely uniform state act to counter
gravity’s tendency to generate order and structure through gravitational collapse. It is, therefore,
expected to contribute to the stabilization of a self-gravitating, classical ideal gas over collapse.
However, I identified an instability that always occurs at sufficiently high energies: the high-energy or
relativistic gravothermal instability. I argue here that this instability presents an analogous core–halo
structure as its Newtonian counterpart, the Antonov instability. The main difference is that in the
former case the core is dominated by the gravitation of thermal energy and not rest mass energy.
A relativistic generalization of Antonov’s instability—the low-energy gravothermal instability—also
occurs. The two turning points, which make themselves evident as a double spiral of the caloric
curve, approach each other as relativistic effects become more intense and eventually merge in
a single point. Thus, the high and low-energy cases may be realized as two aspects of a single
phenomenon—the gravothermal instability—which involves a core–halo separation and an intrinsic
heat flow. Finally, I argue that the core formed during a core-collapse supernova is subject to the
relativistic gravothermal instability if it becomes sufficiently hot and compactified at the time of the
bounce. In this case, it will continue to collapse towards the formation of a black hole.

Keywords: gravothermal instability; relativistic thermodynamics; self-gravitating gas; supernova

1. Introduction

In a seminal paper, Tolman [1] discovered that the local temperature of a self-gravitating system
is not constant in equilibrium if general relativity is taken into account. Quoting his words, “heat
has weight”. Thermal energy rearranges itself in order to balance its own gravitational attraction [2].
This results to a local temperature gradient at equilibrium.

Many years later, in another seminal paper, Antonov [3] discovered that in the Newtonian limit,
and for an ideal gas, there exists a minimum energy below which no stable equilibria exist under
conditions of constant energy. Lynden-Bell and Wood [4] described the mechanism underlying this
Antonov instability, which they named gravothermal catastrophe. The system becomes unstable as we
move along the series of equilibria from stable states with negative specific heat, to the unstable branch
with positive specific heat. This instability occurs as the energy of the system is lowered, which causes
the contraction of the central parts in an attempt to generate a sufficient pressure gradient.

In [5] I raised the question of what happens if we follow the opposite direction in the caloric
curve, i.e., we move along higher and higher energies until relativistic effects start to become relevant.
The aim of this paper is to investigate the competition of thermal energy and gravity over the stability
of the system, and therefore I maintain the assumption of ideal gas neglecting the complexities which
a more involved equation of state would introduce. Under this perspective, the statistical aspect of
the ideal gas equation of state is emphasized. It is viewed as the statistical distribution of microstates
unconstrained by interactions, with the particles being entirely independently distributed among
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the various states. How is this distribution affected by the presence of the negative gravitational
potential generated by phase-space as in General Relativity and not solely configuration space as in
the Newtonian limit? Will the weight of heat of Tolman somehow manifest itself?

A Thought Experiment

Imagine a spherical box containing a self-gravitating ideal gas that cannot exchange energy with
the environment outside the box. Assume its total gravitational plus thermal energy to be negative,
so that it is a system bound by self-gravity and not by the external walls; the latter are incorporated
only to prevent the evaporation of the system at all timescales. Suppose the system achieves an
equilibrium state and that we start slowly to increase the radius of the sphere. The expansion cools the
system down. The density profile becomes steeper as more mass tends towards the center due to the
reduced ability of heat to counterbalance gravity.

If we continue to expand the sphere we reach a threshold (point B in Figure 1c), beyond which
the temperature rises during expansion. The system has attained negative heat capacity. It has become
so condensed that the central parts are bound primarily by self-gravitation and not by the outer parts
or the box. In this case, condensation (note that while the box expands the central parts condense)
causes heating because of negative gravitational energy. This is dictated by virial theorem, or may be
understood very simply in the case of a single body moving in a central potential. Equilibria closer
to the center correspond to larger orbital velocities. This negative specific heat branch is stable if the
energy of the box is conserved.

However, as we continue to move along this negative specific heat branch expanding the sphere,
we reach a second threshold (point A in Figure 1c) beyond which the system attains again positive
specific heat, but now becomes unstable. Lynden-Bell and Wood [4] explained this as follows.
The self-gravitating core decouples from the outer parts attaining negative-specific heat. As the
total specific heat of the core and the outer parts—the halo—is positive, a temperature gradient.
Here, and in the following, we assume spherical symmetry and therefore by “gradient” is meant a
radial derivative. from the core to the halo cannot be reversed. A runaway effect of heat transfer
takes place. Both the core and the halo become hotter and a temperature equalization is impossible.
This is the Antonov instability or gravothermal catastrophe. Note that if we continue to expand the
sphere, we will reach another threshold beyond which stable equilibria do exist at sufficiently big radii
such that the dark energy becomes relevant. Entropy maxima will be restored due to the stabilizing,
repulsive nature of dark energy [6–8].

Now, imagine that we compress the sphere back beyond the first threshold (starting from A and
moving towards B in Figure 1c) and enter again the stable, positive specific heat branch of series of
equilibria. As the sphere is compressed, the gas heats up and becomes more uniform. The mass density
profile flattens, tending to a constant density, uniform state, as expected. However, surprisingly,
we reach a point (point Σ in Figure 1c,d) beyond which any compression causes a steepening of the
mass density profile. Relativity has started to become important. The mass density now includes
the thermal mass of random movement of the particles. During compression, this thermal mass
concentrates to the center to generate a density gradient to counterbalance its own gravitational
attraction, similarly to rest mass did during expansion. At some point, we reach another threshold
(point Γ in Figure 1c,d), beyond which the system starts to cool down during compression. The system
has attained again negative heat capacity. However, by “cooling down” we do not refer to the local
temperature, but to the quantity that is conjugate of energy in general relativity and is uniform in
equilibrium. Locally, the temperature of the core continues to rise. The thermal core becomes bound
by its own gravity (likewise the rest mass core did in the previous case of expansion). Finally, we reach
the point (called ∆ in Figure 1c,d) when specific heat becomes positive again and another instability
sets in, the high energy gravothermal instability. The core decouples from the outer regions—the
halo—and collapses due to a runaway heat transfer from the core to the halo, like in the low-energy
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case. However, it is now responsible for the decoupling, and the self-gravitation of the core is thermal
mass and not rest mass. We will further quantify and analyze this thought experiment in Section 3.
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Figure 1. Upper panels: The caloric curves β̃ = β̃(E) for fixed rest compactness ξ = 2GM/Rc2,
M = mN. Both N and R may be regarded as constant in these plots. We denote E = Mc2 −Mc2 the
gravothermal energy of the system. (a) The low-energy gravothermal instability for the values of rest
compactness, ξ = 0.1 and 0.15, together with the Newtonian limit ξ → 0, corresponding to Antonov
instability. The instability occurs at minimum energy (point A for ξ = 0.1). (b) The high-energy or
relativistic gravothermal instability, for the values of rest compactness ξ = 0.1, 0.15. The instability
occurs at maximum energy (point ∆ for ξ = 0.1). In the Newtonian limit, ξ → 0 it is E∆ → ∞. The two
spirals, at low and high energies are connected with a stable series of equilibria, not shown here,
but depicted in Figure 3 for ξ = 0.25. Lower panels: The specific heat w.r.t. the density contrast
for ξ = 0.1. Both panels (c,d) depict the same diagram. In panel (c), the low-energy gravothermal
instability is highlighted. The point Σ denotes the threshold, beyond which thermal energy takes
over and any increase of energy causes an increase and not decrease of density contrast (the system
becoming less homogeneous). Both low- and high-energy instabilities, at points A, ∆, respectively,
occur as we move from the stable negative heat branch to positive specific heat, designating a core–halo
structure.

2. Hydrostatic Equilibrium of Relativistic Self-Gravitating Ideal Gas

2.1. Tolman–Oppenheimer–Volkoff Equation

The equation that describes hydrostatic equilibrium in General Relativity is called the
Tolman–Oppenheimer–Volkoff equation (TOV equation). It may be derived from Einstein’s equations
for a perfect gas [9,10] and expresses a maximum entropy state [11–16].

Let us denote P(r), ρ(r), and T(r) as the pressure, the total mass-energy density at r, and the
temperature measured by a static observer at r, respectively. For an equation of state of the form

P(r) = P(ρ(r), T(r)), (1)
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the hydrostatic equilibrium is expressed by three equations:

dP
dr

= −(ρ +
P
c2 )

(
GM̂(r)

r2 + 4πG
P
c2 r
)(

1− 2GM̂(r)
rc2

)−1

, (2)

dT
dr

=
T

P + ρc2
dP
dr

, (3)

dM̂
dr

= 4πr2ρ(r), (4)

where M̂(r) denotes the total mass-energy, including that of gravitation, enclosed within r. M denotes
the total mass-energy of the system with radius R

M ≡ M̂(R) =
∫ R

0
ρ(r)4πr2dr. (5)

Equation (2) is TOV equation, and Equation (3) is many times referred to as a Tolman relation.
It may also be expressed in the form T(r)

√
ξµξµ = const., where ξµ is the time-like killing vector.

Given the equation of state, the system of Equations (2)–(4) may be integrated to obtain the pressure,
density, and temperature profiles at equilibrium.

Equation (3) encapsulates the so-called Tolman–Ehrenfest effect [2]. This effect accounts for the
fact that, inside a gravitational field, not only rest mass, but also “heat”, in the sense of random
kinetic energy, rearranges itself to counterbalance its own gravitational attraction. As Tolman puts it,
“heat has weight”. On the nature of the Tolman–Ehrenfest effect and the weight of heat, one may also
consult [17–21] and the references therein.

We may gain further insight into this effect if we consider the limits P � ρc2 and GM̂ � rc2,
in Equation (3), which give

1
T

dT
dr

=
g
c2 , (6)

where g = −GM̂/r2 denotes the Newtonian gravitational field. Let us derive it from the maximum
entropy principle. Assume that a quantity of heat |dE1| flows from the subsystem 1 to a subsystem
2 at lower gravitational potential by ∆φ. The energy dE2 received by the second subsystem is not
equal to −dE1, but equal to dE2 = −(dE1 + mh∆φ), where mh = |dE1|/c2 is the gravitational mass
corresponding to the transferred heat. Now, assuming that the two systems achieve equilibrium,
the entropy is dS = dS1 + dS2 = 0, which, after differentiating by dE2 and using 1/T = dS/dE, gives

dS1

dE1
=

dS2

dE2

(
1− ∆φ

c2

)
⇒ ∆T

T
= −∆φ

c2 , (7)

which expresses Equation (6). Evidently, the temperature gradient is a result of the “mass of heat”
mh = |dE1|/c2.

2.2. Equation of State

Let us briefly review the equations that describe the relativistic ideal gas. The interested reader
may further consult the work in [22]. For a quantum ideal gas, the one-particle energy distribution is
given by the Fermi–Dirac or Bose–Einstein distributions for fermions or bosons, respectively:

g(ε) =
1

eβ(ε−µ) ± 1
,

 (+) for fermions

(−) for bosons
(8)

where ε is the energy per particle, including rest mass in the relativistic case; µ the chemical potential;
and β = 1/kT is the inverse temperature. We focus on fermions. Substituting the relativistic definition
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of energy, ε =
√

m2c4 + p2c2, where m is the mass of one particle and p its momentum, and applying
the Juettner transformation, p

mc = sinh θ, distribution (8) may be written in terms of θ:

g(θ) =
1

eb cosh θ−α + 1
, where b =

mc2

kT
, α =

µ

kT
. (9)

Using distribution (9), one may show [22] that the pressure, P; number density, n; and total
mass-energy density, ρ, may be written as

P =
4πgsm4c5

3h3

∫ ∞

0

sinh4 θdθ

eb cosh θ−α + 1
(10)

ρ =
4πgsm4c3

h3

∫ ∞

0

sinh2 θ cosh2 θdθ

eb cosh θ−α + 1
(11)

n =
4πgsm3c3

h3

∫ ∞

0

sinh2 θ cosh θdθ

eb cosh θ−α + 1
, (12)

where h is Planck constant and gs is the degeneracy of the quantum state, for example, gs = 2 for
electrons and neutrons that have spin 1/2. In the classical limit, βε− α� 1, we get

g(ε)→ e−βε+α. (13)

Equations (10)–(12) become

P =
4πgsm4c5

h3 eα K2(b)
b2 (14)

ρ =
4πgsm4c3

h3 eα K2(b)
b

(1 +F (b)) (15)

n =
4πgsm3c3

h3 eα K2(b)
b

. (16)

where

F (b) = K1(b)
K2(b)

+
3
b
− 1 (17)

and Kν(b) are the modified Bessel functions

Kν(b) =
∫ ∞

0
e−b cosh θ cosh(νθ)dθ. (18)

We used the recursive relations

Kν+1(b)− Kν−1(b) =
2ν

b
Kν(b). (19)

Equations (14)–(16) give the equation of state of the relativistic classical ideal gas:

P =
nmc2

b
, or equivalently P =

ρc2

b(1 +F ) . (20)

3. Gravothermal Instability

Let us use the following dimensionless variables to solve the TOV equation

x =
r
r?

, u =
M̂
M?

, r? =
(

4πG
c2 ρ0

)− 1
2

, M? = r?
c2

G
, ψ = ln

b
b0

, ρ̄ =
ρ

ρ0
. (21)
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We denote m as the rest mass of one particle, ρ0 as the total mass-energy density at the origin,
and b0 = b(r = 0). TOV equation (2) and mass equation (4) become, by use of Equations (3), (14),
and (15),

dψ(x)
dx

=

(
u(x)

x2 +
ρ̄(x)

b(x)(1 +F (b(x)))
x
)(

1− 2u(x)
x

)−1

, (22)

du(x)
dx

= ρ̄(x)x2, (23)

where F (b) is given by Equation (17) and

ρ̄ =
K2(b)(1 +F (b))

b
/
(

K2(b0)(1 +F (b0)

b0

)
(24)

This forms the system to be solved with initial conditions ψ(0) = 0, u(0) = 0. To generate the
caloric curves, the boundary radius of integration

z =
R
r?

(25)

is chosen for each b(0) = b0, such that the compactness of rest mass, hereafter known as “rest
compactness”, to distinguish from the usual compactness 2GM/Rc2,

ξ ≡ 2GM
Rc2 =

2
z

∫ z

0

(n(r)/n0)

1 +F (b0)

(
1− 2u

x2

)− 1
2

x2dx (26)

is kept constant. The rest compactness controls the intensity of relativistic effects. We denote the total
rest mass

M = mN (27)

and the rest mass-energy density is given by use of (16):

ρrest(r)
ρrest,0

≡ mn(r)
mn0

=
K2(b(r))

b(r)
/
(

K2(b0)

b0

)
. (28)

The pressure and thermal mass-energy density ρtherm = ρ − ρrest may be calculated from
the expressions

P
P0

=
K2(b)

b2 /

(
K2(b0)

b2
0

)
, (29)

ρtherm
ρtherm,0

=
K2(b)F (b)

b
/
(

K2(b0)F (b0)

b0

)
. (30)

In Figure 1a , the spiral of the caloric curve β̃ = β̃(E) is depicted, corresponding to the low-energy
gravothermal instability. The exact Antonov spiral is recovered for zero rest compactness ξ → 0.
As ξ increases the low-energy spiral is reformed, moving towards higher temperatures and energies.
This means that as the sphere becomes more compact, and therefore relativistic effects more intense,
the stability domain is decreasing, and thus the system gets destabilized. This relativistic generalization
of gravothermal catastrophe occurs to progressively higher minimum energies, which for ξ = 0.1
corresponds to point called A, as in Figure 1a.

As we move along this caloric curve from point A to B, and then to higher energies and
temperatures, the total mass-energy density profile becomes more homogeneous, because the
dominating rest mass density gets more homogeneously distributed. This is manifested by a decrease
of the density contrast ln ρ0/ρ(R). However, as temperature rises, the thermal energy density profile
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continuously steepens due to the Tolman–Ehrenfest effect—the weight of heat, at some point, denoted
Σ in Figure 1c—the gravitation of thermal energy takes over its outward pointing, stabilizing, pressure
effect. From that point on, the density profile becomes steeper, i.e., the density contrast increases,
and thermal mass gravity dominates over rest mass gravity.

At sufficiently high energies, there appears a second spiral, the high-energy one. At the point of
maximum energy, denoted ∆ for ξ = 0.1 in Figure 1b, the high-energy or relativistic gravothermal
instability sets in. Figure 1c,d shows that this instability is similar to gravothermal catastrophe,
in that it occurs as the system passes from negative to positive specific heat and not the other way
around. This indicates that similarly to gravothermal catastrophe, in the high-energy gravothermal
instability a self-gravitating core with negative specific heat forms and decouples from the rest of
the system. A heat transfer from the core to the halo, i.e., a core–halo structure, leads to a runaway
effect as the halo acquires positive specific heat; likewise, the whole system does in the unstable
domain. However, the big difference is shown in Figure 2a,b. The core at the onset of the high-energy
gravothermal instability is dominated by thermal energy density and not rest mass-energy density,
which is completely opposite to Antonov instability. The system collapses under the weight of its
own heat. The temperature gradient from the core to the outer regions, formed at the onset of the
instability, causes the self-gravitating (negative specific heat) core to heat up further, and thus become
even heavier because it accumulates more heat. Thus, the system becomes destabilized, as its energy is
increasing and not decreasing, unlike the Antonov case. This is evidenced in Figure 1b.

Both spirals, together with the stable branch connecting them, are shown in a single diagram
in Figure 3 for ξ = 0.25. As the rest compactification is increasing, i.e., relativistic effects become
more intense, the relativistic spiral moves along lower energies, i.e., the stable domain gets smaller.
This destabilization adds up to the destabilization caused by the low-energy spiral. The two spirals
approach each other with increasing ξ, and finally merge to a single point for

ξmax = 0.3529. (31)

This is an ultra-maximum limit of rest compactness. No static, stable, relativistic classical ideal
gas can exist with rest mass to radius ratio higher than ξmax. Thus, for stable equilibria, it always
holds that

2GmN
Rc2 < 0.3529. (32)

Let us now keep the energy fixed along with the number of particles and vary the radius of the
system. This means we assume conditions of the microcanonical ensemble. If the gravothermal energy

E = Mc2 − Nmc2 (33)

is negative, but sufficiently high so that stable equilibria do exist, there appear two critical radii,
which delimit the stable domain shown in Figure 4a. The maximum radius is a manifestation of the
low-energy instability and the minimum radius signifies the high-energy gravothermal instability.
Therefore, in the low-energy instability, the gas sphere becomes unstable when it becomes sufficiently
large and not small. The expansion causes the cooling of the system, which forces the rest mass
towards the center in order to generate a pressure gradient strong enough to halt gravity. Above the
critical radius, a runaway heat transfer appears, with direction from the core to the halo and the
core collapses. On the other hand if the radius is sufficiently decreased the resulted heating of the
system forces thermal energy, and not rest mass, to concentrate on the center in order to generate a
pressure gradient of a different origin in this case. Below a critical radius, the high-energy gravothermal
instability sets in and the system collapses with a similar core–halo mechanism. However, now the
system becomes unstable when it becomes sufficiently small and not large. As relativistic effects
becomes more intense, i.e., when the absolute gravothermal energy, |E| approaches a value closer to
Nmc2 and the system gets destabilized, as the stable domain decreases. The low-energy maximum
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radius decreases and the high-energy minimum radius increases. They merge at the ultra minimum
gravothermal energy Emin = −0.015Nmc2, represented by point I in Figure 4a. Therefore, for stable
equilibria, it always holds that

E > −0.015Nmc2. (34)

This limit corresponds to the limit (32). For positive gravothermal energy E, there appears
only the high-energy gravothermal instability, and thus the stable domain is bounded only by the
minimum radius.

In Figure 4b, the critical compactness 2GM/Rc2 w.r.t. the rest compactness 2GmN/Rc2 is plotted.
This plot may also be realized as the critical mass-energy w.r.t. the number of particles for a fixed
radius Mcr = Mcr(N). For any rest compactness, there appear two critical energies: The lower energy
corresponds to the low-energy gravothermal instability and the higher energy to the high-energy
gravothermal instability. The maximum rest compactness given in (32) corresponds to point I. The total
mass compactness cannot be bigger than 0.5.

Note that this analysis applies to the conditions of a microcanonical ensemble. This means that
we assume adiabatic boundary conditions where no energy exchange between the system and its
environment is allowed. In a canonical ensemble, where the system is allowed to exchange heat with
a reservoir, the stability properties are completely different. This highlights the nonequivalence of
ensembles in gravity (see, e.g., in [23]). In the canonical case, both instabilities, in either the low or high
energy regime, now called low-T or high-T isothermal collapse, respectively, occur below a minimum
radius for fixed temperature [5]. However, in the low-T regime, the instability sets in below a critical
temperature, and, in the high-T one, above a critical temperature for fixed radius. In the low-T case,
the decrease of temperature reduces the ability of the system to generate a pressure gradient, and,
in the high-T case, the increase of temperature enhances the concentration of thermal energy towards
the center increasing its gravitation.

Apparently, the source of gravitational instability is in all of the above cases some heat transfer,
either between subsystems of the system or the system and its environment: Gravitational instability
manifests the universality of gravity and heat. The origin of gravitational instability, including quantum
effects and interactions, will be discussed further in a separate work.
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(a) Low-energy gravothermal instability
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Figure 2. The mass-energy density distribution of the equilibrium point A (a) and ∆ (b) for
rest compactness ξ = 0.1. At A, the low-energy gravothermal instability sets in, whereas at ∆,
the high-energy gravothermal instability. In the low energy case, the core is dominated by the rest mass
energy, whereas in the high energy case, the core is dominated by thermal mass-energy.
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Figure 3. The double spiral of the caloric curve β̃ = β̃(E) for rest compactness ξ = 0.25 of the relativistic
classical ideal gas reflecting the gravothermal instability. The upper spiral is a manifestation of the
low-energy gravothermal instability, and the lower spiral of the high-energy or relativistic gravothermal
instability [5]. The two spirals are connected with a stable series of equilibria. As ξ increases, the
spirals approach each other and merge to a single point for ξ = 0.35. Beyond this point, no equilibrium
is attainable.

(a) Critical radius (b) Critical mass and compactness

Figure 4. (a) The critical radius at which a gravothermal instability—for low or high energy—sets
in with respect to the gravothermal energy. There appears a minimum gravothermal energy Emin =

−0.015Nmc2 at point I below which no equilibria exist. For radii bigger than I, the low-energy
gravothermal instability sets in, while for radii smaller than I, the relativistic gravothermal instability
sets in. The ultimate minimum radius is 2RS. (b) The critical compactness w.r.t. the rest compactness.
Above the maximum value, the high-energy gravothermal instability sets in, whereas below the
minimum value, the low-energy one sets in. Point I denotes the maximum possible rest compactness
under any conditions that equals 0.35. The maximum possible compactness is 0.5.

4. Core-Collapse Supernova

In a core-collapse supernova, the collapse of the core of a massive star is initiated by the shift
of nuclear statistical equilibrium (some modern reviews include [24–26]) when the nuclear fuel is
exhausted. During the collapse, the core is heated up. Part of this thermal energy is consumed to
dissociate heavy nuclei to nucleons with parallel emission of energetic neutrinos, while electron capture
by protons enriches the core with neutrons. Neutrinos become trapped inside the core at densities
∼ 1012 gr/cm3, and the collapse of the core may be halted at densities above the normal nuclear density
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∼ 2.7· 1014 gr/cm3 with a bounce. At the bounce, the core consists of an ultra-hot (&50 MeV) nucleon
gas, dominated by neutrons, and trapped neutrinos of energy 100–300 MeV.

If the core at the time of the bounce lies in the unstable domain of Figure 4b, which defines the
stable domain in compactness space, it will be subject to the high-energy gravothermal instability and
will not be able to halt collapse. The temperature corresponding to the ultra maximum limit, point I of
Figure 4b, of relativistic gravothermal instability is kT̃ = 0.19 mc2, that is, 178 MeV for neutrons.

Note that the physics of the relativistic gravothermal instability, does not, qualitatively, depend
on the equation of state. It is natural to expect that will persist for any equation of state. This is due to
the universality of the effects of gravity and heat. Regarding our case of interest, namely, the quantum
Fermi gas, this is proved in [27,28].

Note, in addition, that a system undergoing a gravothermal instability will be subject to heat
transfer from a newly formed core to the outer regions, the “halo”. Due to its negative specific heat,
the core will get hotter and contracted. Such a phenomenon resembles the implosion–explosion
structure of a supernova. If, at some point, the temperature and compactness values allow for quantum
degeneracy pressure to halt the collapse, the system will form a protoneutron star. In this case,
the core-collapse supernova may be viewed as a microcanonical gravitational phase transition [28,29]
from the initial gaseous (gravitational) phase of the massive star to the collapsed (gravitational) phase
of the protoneutron star. This may only occur if the system is subject to the low-energy gravothermal
instability, i.e., if at the onset of instability it lied below the lower line of Figure 4b.

5. Conclusions

This paper focused on two fundamental properties of matter: the ability to move and to gravitate.
The aim of this paper was to investigate how these phenomena intervene with respect to the stability
of systems containing material particles that present only these phenomena. Such a system is called
the relativistic, classical, self-gravitating ideal gas.

Although random movement, namely, thermal energy, naturally favors a disordered,
homogeneous state, the intriguing, universal character of gravity intervenes, and I propose that
there exists a threshold beyond which the heating of the system does not homogenize, but steepens,
the total mass-energy density. This is because the thermal energy gravitates. At a critical point of
maximum energy and minimum radius, an instability sets in. A self-gravitating core with negative
specific heat, dominated by the gravitation of thermal mass, decouples from the outer regions and
collapses similarly to Antonov instability. A relativistic generalization of Antonov instability—the
low-energy gravothermal instability—also occurs, but, in this case, beyond critical points of minimum
energy and maximum radius. As the relativistic effects get more intense, i.e., the compactness of rest
mass is increasing, the caloric curve, which has the form of a double spiral, decreases in size. At some
point, it reduces to a point where the two types of gravothermal instability, at low and high energy,
merge, revealing that they are aspects of a single phenomenon.

Figure 4b depicts the stable domain outside which a gravothermal instability occurs. I argue
that if the collapsing ultra-hot core formed during a core-collapse supernova lies inside the unstable
domain of Figure 4b at the time of the bounce (when it achieves densities ∼ 2.7· 1014 gr/cm3), it will
be subject to the relativistic gravothermal instability. It will not be able to stabilize itself and continue
to collapse towards the formation of a black hole. Finally, the current results support the idea that the
implosion–explosion structure of supernovae, i.e., the implosion of the core with parallel explosion of
outer parts, reflects the core–halo structure of the low-energy gravothermal instability.
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