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Abstract: Recently, the frequent occurrence of droughts has caused a serious impact on vegetation
growth and progression. This research is based upon the normalized difference vegetation index
(NDVI) from 2001 to 2020. The correlation between the NDVI and standardized precipitation
evapotranspiration index (SPEI) at disparate time scales was used to assess the response of vegetation
growth to drought in the Yinshanbeilu region. The drought levels of SPEI1, SPEI3, SPEI6, and SPEI12
increased prominently in the eastern region of the country, while the NDVI decreased significantly
from east to west in spring, summer, and autumn but was reversed in the winter. The area with an
upward trend (33.86%) was slightly lower than that with a downward trend (66.14%). The correlation
coefficients between the NDVI and SPEI over the entire year increased with the SPEI timescale. The
elevated values were concentrated in the southeastern and western regions of the survey region.
Additionally, the best correlation timescales were SPEI6 and SPEI12. Grassland was the most sensitive
vegetation type to the SPEI response in the NDVI. The correlation coefficients of NDVI and SPEI1–12
were 0.313, 0.459, 0.422, and 0.406. Both spring and summer were more responsive to SPEI12, whereas
autumn and winter were more responsive to SPEI3. The correlation of disparate time scales exhibited
complex soil texture features with respect to different seasonal scales, and the soil texture showed a
strong response to vegetation in both summer and autumn. Loam, sandy loam, and silty loam all
exhibited the highest response to SPEI12, with coefficients of 0.509, 0.474, and 0.403, respectively.

Keywords: normalized difference vegetation index; SPEI; drought index; seasonal changes; multiple
time scale; remote sensing

1. Introduction

Vegetation, as a key part of continental ecosystems, becomes a natural connection
between water, the atmosphere and soil and plays an important role in ecosystems. Addi-
tionally, vegetation is an “indicator” of global change [1–4]. Climate change, particularly
climate extremes, is capable of exerting significant effects on community structure and
ecosystem productivity, in addition to affecting vegetation [5–9]. Drought causes a disequi-
librium of the water supply and demand because of abnormally low or no precipitation
during a lengthy time period and has become a general natural disaster with an extensive
impact and a lengthy duration [10–13]. As an illustration, a drought that occurred in the
southwest of China from 2009 to 2010 led to an evident decrease in vegetation productivity,
and a period of vegetation recovery in several fields lasted for more than half a year [14].
Therefore, based on the background of global warming and the significant increase in the
frequency and severity of droughts, research on the association between vegetation and
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drought is highly practically significant and can provide an efficient theoretical foundation
for vegetation to handle climate change in the future.

Drought occurrence is generally quantified by the drought index. Several scholars
have proposed a variety of drought indices [15–17]. These indices include the Palmer
drought severity index (PDSI) [18], the standardized precipitation index (SPI) [19], and
the SPEI [20]. Among the multitude of drought indices, the SPEI not only considers the
influence of precipitation upon drought but also integrates the sensitivity of the PDSI to
feasible evapotranspiration variations and the advantage of the SPI at multiple time scales;
thus, it is extensively adopted with a view to dissecting the response of vegetation to
drought [21–26].

Presently, researchers worldwide have implemented many relevant projects concern-
ing the effect of vegetation growth upon drought. Kong et al. [27] used the Pearson
correlation coefficient to research the response features of vegetation in disparate areas of
China to multiple timescales of drought (1–24 months) and found that in most regions, veg-
etation was greatly impacted by drought. In addition, the grassland was the most affected
by drought. Liu et al. [28] analysed the association between vegetation growth and drought
during 1998–2013; additionally, the results showed that in most areas at the 6 month and
12 month scales, the NDVI and SPEI were significantly positively correlated. The droughts
had a greater effect on vegetation change in Inner Mongolia; however, droughts had a
lesser effect on the eastern forest and western desert. Gouveia et al. [29] evaluated the
correlation between the NDVI and SPEI in vegetation categories and different seasons in
the southwestern United States from 2000 to 2015 and noted that the NDVI of grassland
and scrub vegetation was strongly correlated with the SPEI in summer and that the forest
NDVI was strongly connected to the SPEI in winter. Zhao et al. [30] analyzed the effect of
vegetation on droughts during 1982–2015 by calculating the maximal Pearson correlation
coefficient between the NDVI and SPEI. In addition, the results showed that grassland
vegetation in this region was susceptible to droughts on a short-term scale, while forest and
desert vegetation were susceptible to droughts on a longer-term scale. Moreover, the stabil-
ity and resistance of different vegetation types to drought pressure vary, indicating that
disparate vegetation categories cause disparate responses to drought during the growing
season. In addition, droughts can alter the storage and location of usable soil water through
differences in soil particle size and permeability, thereby affecting the water absorption
of roots [31–33]. The effects of droughts on ecosystems depend not only upon drought
features (such as prevailing timescales, seasonality, and drought severity) but also on other
factors, such as topography and land use history [34–37]. Previous studies [38,39] have
shown that the degradation and regeneration of forest vegetation are strongly related to
variations in soil conditions.

With global warming, Yinshanbeilu has become the most sensitive and important area
affected by climate change in all of Inner Mongolia [40]. Due to its distinctive ecosystem
vulnerability and its interannual volatility of climate elements, Yinshanbeilu might be a
perfect observation region for evaluating how the integration of water and heat affects
natural vegetation growth. Recently, in addition to precipitation, Yinshanbeilu has expe-
rienced increased temperatures; however, the frequency and intensity of droughts have
significantly increased. The increase in drought largely occurred because of the decrease in
precipitation. The increase in soil and vegetation evapotranspiration was largely caused
by the increase in atmospheric temperature [41]. Currently, there are numerous studies
on the temporal and spatial characteristics of droughts and the effects of climate change
on vegetation in Inner Mongolia. Nevertheless, few studies have evaluated the influence
of vegetation dynamics on drought cases at multiple time scales, particularly at seasonal
scales with disparate land cover categories and different soil textures. In addition, the
correlation between NDVI and SPEI at different time scales is also quite different, and
the response regularity between seasons is also different. Therefore, when studying the
response of vegetation to drought, the effects of drought on vegetation growth at different
time scales should be considered more carefully.
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Therefore, the purpose of this study was as follows: (1) To explore the spatio-temporal
characteristics of vegetation change and multi-time scale drought. (2) The correlation
between the SPEI and vegetation throughout the entire year was analyzed. (3) To evalu-
ate the effects of drought on vegetation dynamics of different land cover types and soil
texture from 2001 to 2020. The results are helpful in terms of exploring the response of
different desert vegetation to multi-time scale drought, and they provide scientific basis for
vegetation protection and effective water resources treatment.

2. Materials and Methods
2.1. Study Area

Yinshanbeilu is located in the transitional zone between the Yinshan Mountain Range
and the Mongolian Plateau and is a semi-agricultural and semi-pastoral area (Figure 1). The
geographical coordinates are 107◦17′~116◦53′ east longitude and 40◦43′~43◦23′ north lati-
tude. The administrative scope includes 12 banner counties, with a total area of 97,250.5 km2.
The terrain of the study area is gradually lowered from south to north, reaching 941~2295 m
in elevation. The area experiences a subarid continental monsoon climate in the mid-
temperate zone, with an average yearly precipitation of 200~400 mm, an average annual
temperature of 1.3~3.9%, an average annual evaporation of 1748~2300 mm, and an average
annual frost-free period of 102~121 days. Coupled with the influence of land use change
and human activities, ecological and environmental problems such as soil wind erosion,
land desertification, soil erosion, and land degradation are becoming increasingly serious
in the Yinshanbeilu area, which greatly restricts the development of the local economy
and society.
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Figure 1. Geographic location of the study region. (a) Yinshanbeilu location; (b) digital elevation
model; and (c) land use type.

2.2. Data Sources
2.2.1. Remote Sensing Data

The NDVI data were obtained from the MOD13A2-level NDVI normalized vegeta-
tion index data provided by EOS/MODIS (TERRA satellite) of NASA from 2001 to 2020
(https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 1 February 2024), with a temporal
resolution of 16 days and a spatial resolution of 1 km. Mean radiant temperature MODIS
Reprojection Tool (MRT) was used for batch splicing and projection conversion of the ob-
tained NDVI data, and the sinusoidal projection was subsequently converted into WGS-84
geographical coordinates. Then, the vector boundary of the study area was used to cut the
NDVI data after projection conversion, and the monthly NDVI data of the Yinshanbeilu
region from 2001 to 2020 were obtained. The NDVIs for spring (March to May), summer

https://ladsweb.modaps.eosdis.nasa.gov/
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(June to August), and autumn (September to November), as well as winter (December to
February), were calculated via the arithmetic average method.

The land use type data were obtained from the Data Center for Resources and En-
vironmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/, accessed
on 1 February 2024), with a spatial resolution of 1 km. The figures were produced by
manual visual explanation based upon Landsat TM/ETM remotely sensed imagery of each
phase, and the phases were divided into 6 primary types and 25 secondary types, from
the National Earth System Science Data Center (https://www.geodata.cn, accessed on 1
February 2024). According to the research needs, based on the primary type, the vegetation
was reclassified into six categories: grassland, forestland, cultivated land, unused land,
building land, and water body.

This dataset is based on national land survey data from 2010 to 2020 and was generated
by geographical weighted regression, random forest (RF), and other digital soil mapping
methods through the secondary processing of 3 datasets with 1 km resolution of 0–20 cm
soil sand content, soil clay content, and soil silt content in China, from the National Earth
System Science Data Center (https://www.geodata.cn, accessed on 1 February 2024). In
this research, the texture of the study region was split into three types: silty loam, sandy
loam, and loam.

2.2.2. Meteorological Data

Meteorological data were derived from the periodic-based precipitation and periodic-
based average temperature data of Yinshanbeilu and the surrounding standard meteo-
rological stations between 2001 and 2020, provided by the China Meteorological Data
Sharing Network (http://cdc.cma.gov.cn, accessed on 1 February 2024). In addition, the
meteorological data were interpolated to obtain the spatialized raster meteorological data,
and during the processing, the projection, resolution, and temporal scale of the raster
meteorological data were ensured to be consistent with those of the NDVI data.

2.3. Methods

The technical route of this research is shown in Figure 2.
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2.3.1. SPEI

The SPEI is the drought index normalized with the cumulative probability of the
difference between the precipitation and the feasible evapotranspiration series. The SPI
based only on precipitation data was improved by introducing the effect of temperature
on potential evapotranspiration. Based upon the average periodic-based temperature and
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precipitation grid figures between 2001 and 2020, the SPEI was calculated pixel by pixel
in this study, and the SPEI data for spring, summer, autumn, and winter were obtained.
The specific calculation formulas can be found in reference [42]. The calculation formula is
as follows:

The first step is to calculate the potential evapotranspiration (E):

E = 16.0 ×
(

10Ti

H

)A
(1)

where Ti is the monthly average temperature.

H =
12

∑
i=1

Hi =
12

∑
i=1

(
Ti

5

)1.514
(2)

where H is the annual caloric index.
The second step is to calculate the difference between monthly precipitation and

evapotranspiration:
Di = Pi − Ei (3)

where Pi is the precipitation and Ei is evapotranspiration.
In the third step, since there may be negative values in the original data series, the Di

data series is normalized with the Log-logistic probability distribution of 3 parameters (α,
β, γ), and the SPEI index corresponding to each value is calculated:

F(x) =

[
1 +

(
α

x − γ

)β
]−1

(4)

where F(x) is the function; α, β, and γ are scale parameters, shape parameters and position
parameters, respectively; and x is Di.

Finally, the cumulative probability density is standardized:

P = 1 − F(x) (5)

where P is the probability distribution function. When the cumulative probability P ≤ 0.5:

ω =
√
−2 ln(P) (6)

SPEI = ω − 2.515517 + 0.802853ω + 0.010328ω2

1 + 1.432788ω + 0.189269ω2 + 0.001308ω3 (7)

The calculation includes SPEI data of different time scales from 1 to 12 months, repre-
senting dry and wet changes at different time scales. For example, SPEI1 reflects the dry
and wet conditions of the current month, while SPEI12 is calculated based on the input
factors of the current month and the previous 11 months, representing the comprehensive
situation of the 12 months. The drought classification is shown in Table 1.

Table 1. Drought grading of SPEI.

Drought Grade SPEI Value

Extreme drought ≤−2.00
Severe drought −1.99~−1.50

Moderate drought −1.49~−1.00
Normal −0.99~0.99

Moderate wetting 1.00~1.49
Severe wetting 1.50~1.99

Extreme wetting ≥2.00
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2.3.2. Linear Trend Estimation

Trends in both the NDVI and SPEI at multiple time scales between 2001 and 2020
were analyzed via trend analysis with the aim of determining the features of the variation
trends [43] according to the formula below:

θSlope =
n × ∑n

i=1 i × Xi − ∑n
i=1 i × ∑n

i=1 Xi

n∑n
i=1 i2 − (∑n

i=1 i)2 (8)

where Slope refers to the slope of the trend line, n refers to the cumulative quantity of years
of the research time series, and Xi refers to the value of the ith year.

2.3.3. Correlation Analysis

To study the influence of climate factors upon drought, the correlation coefficient
between the NDVI and SPEI at multiple time scales was calculated image by image [44]
with the following equation:

R =

n
∑

i=0
(xi − x)(y − y)√

n
∑

i=0
(xi − x)2

√
n
∑

i=0
(y − y)2

(9)

where xi refers to the NDVI within season, i refers to the average value of the NDVI in the
calendar year, yi denotes the yearly mean value of the multiscale SPEI within season i, and
y refers to the mean value of the multiscale SPEI during the calendar year.

3. Results
3.1. Seasonal-Temporal Trends in SPEI Values at Multiple Time Scales

The variation characteristics of the SPEI in the different seasons differed; in spring,
the linear trend rates of SPEI1, SPEI3, SPEI6, and SPEI12 showed a decreasing trend
(Figure 3), and the drought trend of SPEI3 was relatively evident, at −0.393/10a. The linear
trends of SPEI1, SPEI3, and SPEI12 showed increasing trends in summer, in which SPEI1
showed a relatively evident wetting trend (0.122/10a), while SPEI6 showed a drying trend
(−0.061/10a). However, from the perspective of the annual mean change, the volatility
trend was greater than the annual mean. In autumn, the linear trends of SPEI1, SPEI3,
SPEI6, and SPEI12 exhibited increasing tendencies; here, the wetting tendency of SPEI1
was relatively evident (0.241/10a), the increasing trend was slightly greater than that in
summer, and the volatility was slightly lower all summer. In winter, the linear trend rates
of SPEI1, SPEI3, SPEI6, and SPEI12 showed a decreasing trend, and the drought trend of
SPEI3 was relatively evident (−0.421/10a) and was greater than that in spring.

According to Figure 4, the spatial differences in the seasonal SPEI trends in Yinshan-
beilu were significant. In spring, SPEI1, SPEI3, SPEI6, and SPEI12 exhibited decreasing
trends in most areas (64.25%, 92.35%, 93.21%, and 56.35%, respectively); here, the areas with
significant decreasing trends (p < 0.05) accounted for only 1.37%, 24.35%, 25.63%, and 3.48%,
respectively, and these areas were concentrated in the western and central parts of Yinshan-
beilu, showing significant aridification trends in the spring. Yinshanbeilu’s western and
central regions exhibited significant trends of spring aridification (Figure 4a). In summer,
SPEI1, SPEI3, SPEI6, and SPEI12 had greater percentages of regions with upward trends
than those with downward trends, with the upward trends dominating in most of the
eastern part of the region and downward trends dominating in parts of the western region;
however, most regions had insignificant tendencies (Figure 4b). In autumn, the change
trend in the SPEI1 was relatively evident, and the areas with an increasing trend in the
SPEI1 continued to spread to the west and east compared to those in summer, accounting
for 72.47% of the total area. Among these areas, those with a highly prominent upward
tendency (p < 0.01) and a prominent upward tendency (p < 0.05) accounted for 25.37%
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and 18.01%, respectively, of the area and were centrally located in the eastern and central
regions, respectively, with most of the regions being usable land distribution areas. The
mass of the region was usable arable land, and the decreasing trend in the SPEI1 shifted
from the northwest to the southeast in comparison to that of summer and accounted for
only 27.53% of the area (Figure 4c). In winter, the drought trend increased compared with
that in autumn, and the change in drought trend in SPEI3 was relatively evident. The
area with an upward trend (33.86%) was slightly lower than that with a downward trend
(66.14%), and the change trend in most areas was not significant. Among them, the SPEI
showed a significant downward trend in only 11.28% of the regions and was concentrated
in parts of the southern region (Figure 4d). In general, the SPEI in spring and winter showed
drying trends, but the SPEI in summer and autumn showed wetting tendencies, indicating
that dry and wet conditions in summer and autumn strongly impacted the yearly climate
in northern Inner Mongolia.
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3.2. Spatial and Temporal Trends of the Seasonal NDVI

The interannual variation characteristics of the NDVI throughout the year at Yinshan-
beilu are depicted in Figure 5. Linear regression analysis revealed that the NDVI over the
entire year except in winter exhibited a significant increasing trend (p < 0.05), with growth
rates of 0.001, 0.003, and 0.002 a−1, whereas the NDVI in winter exhibited decreasing trend,
with a decreasing rate of −0.001 a−1. Overall, the increase rates in the later parts of the
spring, summer, and autumn were much greater than those in the earlier part of the year,
and the change in the increase rate in the summer was especially evident. Rates of increase
in late spring, summer, and autumn were much greater than those in the early part of the
season, especially in summer, during which the variation in the rate of increase was the
most evident.
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The NDVI showed an overall trend of increasing in the north and south with a decrease
in the middle of the spring (Figure 6). The increasing and decreasing NDVI areas accounted
for 76.34% and 23.66%, respectively, of the overall regions of the study region, and 17.38%
and 6.35%, respectively, passed the significance test. According to the spatial distribution,
the regions where the NDVI exhibited a prominent and extremely significant increasing
trend were chiefly distributed in the southwest and central north regions of the plateau.
The areas where the NDVI exhibited prominent and exceedingly prominent decreasing
trends were mainly distributed in the northeast and northwest regions of Yinshanbeilu.
In summer and fall, the NDVI tended to increase in the southern region and decrease
in the central region of the study area. The areas with increasing and decreasing NDVIs
in summer accounted for 83.17% and 16.83%, respectively, of the total study area, and
11.46% and 7.81%, respectively, passed the significance test. The regions in which the NDVI
increased and decreased in autumn accounted for 78.69% and 21.31%, respectively, of the
overall regions in the study, and 9.88% and 5.66%, respectively, passed the significance
test. According to the spatial distribution, the areas where the NDVI exhibited prominent
and extremely prominent increasing trends were largely distributed in the southeastern
and central regions of Yinshanbeilu. The areas where the NDVI showed a significant or
extremely significant decreasing trend were largely distributed in the central and northern
parts of Yinshanbeilu. In winter, the NDVI exhibited an overall decreasing trend; here,
the area with an increasing trend and a decreasing trend accounted for 5.61% and 94.39%,
respectively, of the overall region in the study, and only 4.73% passed the significance test;
these areas were distributed in the western area of Yinshanbeilu. In autumn and winter,
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vegetation began to fade and yellow, and the influence of water on it weakened, resulting
in a gradual decrease in the significant area of SPEI and NDVI in autumn and winter.
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3.3. Seasonal Spatial Correlation Analysis of the NDVI and SPEI at Disparate Time Scales

The relationships between the NDVI and SPEI at the seasonal scale were determined
per grid for the different time scales. Figures 7 and 8 show the prominent spatial differences
in the correlations for 1, 3, 6, and 12 months for the entire year. During each season, the
spatial distribution characteristics of the coefficients between vegetation NDVI and SPEI
at disparate time scales were significantly different (Figure 7). In addition to autumn, the
correlation coefficients between NDVI and SPEI in summer, spring, and winter increased
with increasing SPEI time scale, and the elevated values were concentrated in the southeast-
ern and western regions of the study region. The best correlation time scales were SPEI6
and SPEI12, indicating that long-term drought in the study area could play a key role in
vegetation growth. Specifically, the coefficient between the spring vegetation NDVI and
SPEI maintained one low value on a short time scale and occupied most of the study area.
The coefficients between the spring vegetation NDVI and SPEI12 varied between −0.592
and 0.908, and 83.45% of the regions were positively correlated; here, 28.45% and 42.16% of
the regions were significantly positively correlated and mainly distributed in the central
and eastern regions, respectively. Additionally, 16.55% were negatively correlated. This
region was mainly distributed in parts of western China, and the areas with extremely
significant and significant negative correlations were less than 9.36%. The coefficient in
summer exceeded that in spring at the same time scale. The coefficients between the
summer vegetation NDVI and SPEI12 varied between −0.615 and 0.942, and 87.32% of the
regions were positively correlated; here, 43.21% and 24.58% of the regions were significantly
positively correlated, mainly distributed in the central and eastern regions, respectively.
Additionally, 12.68% were negatively correlated. This region was mainly distributed in
parts of western China, and less than 10.35% of the regions exhibited very significant and
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significant negative correlations. The correlation coefficients of the autumn vegetation
NDVI and SPEI were lower than those of summer compared with those of the other seasons
at the same time scale. The correlation coefficients of the autumn vegetation NDVI and
SPEI3 ranged from −0.735 to 0.867, and 88.59% of the areas were positively correlated; here,
12.58% and 19.87% were highly significantly and significantly positively correlated, mainly
in the central and eastern regions of the study region; however, 11.41% of the correlations
were negatively correlated, mainly in the western region of the study region, with less than
8.34% of the areas showing highly significant and significant negative correlations. The
winter vegetation NDVI and SPEI correlations at all time scales were weak and changed
minimally, indicating a negative correlation, and the mean value basically remained at
approximately −0.4 (Figure 9). The coefficients between the vegetation NDVI and SPEI6
in winter varied between −0.751 and 0.725, with 24.37% of the area positively correlated
and 75.62% negatively correlated, and only 2.16% of the region passed the significance
experiment. During this season, high values of image elements were largely concentrated
in the northern part of the study region, while low values of image elements were largely
distributed in the eastern part.
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The correlation of the disparate time scales showed complicated features on the
seasonal scale of disparate land cover categories. In spring, the grassland sensitivities were
greater at all time scales (Figure 10), indicating a positive correlation, and the correlation
coefficient increased with increasing SPEI time scale. The responses of forestland, cultivated
land, and grassland to SPEI12 were the highest, and the coefficients reached 0.517, 0.529,
and 0.482, respectively. Forests are able to withstand droughts over long time scales
because of their higher water content in deep soil. In summer, SPEI1, SPEI3, SPEI6, and
SPEI12 were positively correlated with the NDVI in woodlands, cultivated lands, and
grasslands. Summer was the most drought-stressed growing season. In addition, the effect
of drought on various land cover types increased, especially for the SPEI12 of forestland,
SPEI1 of cultivated land, and SPEI3 of grassland. The coefficients reached 0.681, 0.654, and
0.567, respectively. The drought resistance of forests and grasslands was relatively strong
and mainly affected by the SPEI3-12 long scale drought. In fall, the correlation values
of forestland reached 0.091, 0.275, 0.274, and 0.276; the correlation values of cultivated
land were 0.133, 0.306, 0.287, and 0.294; and the correlation values of grassland were 0.313,
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0.459, 0.422, and 0.406. Among them, the correlation coefficients of SPEI1, SPEI3, SPEI6,
and SPEI12 for grassland were greater than those for forestland and cultivated land, and
the maximum correlation occurred at the 3 month time scale (SPEI3). During winter, the
relationships of forestland, cultivated land, and grassland were negative at all time scales,
and the maximum correlation occurred at the 3 month time scale (SPEI3), with coefficients
of −0.452, −0.516, and −0.402, respectively.
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significance of the SPEI12 and NDVI.

Land 2024, 13, x FOR PEER REVIEW 12 of 18 
 

 
Figure 9. SPEI1-12 correlation coefficient in different seasons. 

The correlation of the disparate time scales showed complicated features on the sea-
sonal scale of disparate land cover categories. In spring, the grassland sensitivities were 
greater at all time scales (Figure 10), indicating a positive correlation, and the correlation 
coefficient increased with increasing SPEI time scale. The responses of forestland, culti-
vated land, and grassland to SPEI12 were the highest, and the coefficients reached 0.517, 
0.529, and 0.482, respectively. Forests are able to withstand droughts over long time scales 
because of their higher water content in deep soil. In summer, SPEI1, SPEI3, SPEI6, and 
SPEI12 were positively correlated with the NDVI in woodlands, cultivated lands, and 
grasslands. Summer was the most drought-stressed growing season. In addition, the effect 
of drought on various land cover types increased, especially for the SPEI12 of forestland, 
SPEI1 of cultivated land, and SPEI3 of grassland. The coefficients reached 0.681, 0.654, and 
0.567, respectively. The drought resistance of forests and grasslands was relatively strong 
and mainly affected by the SPEI3-12 long scale drought. In fall, the correlation values of 
forestland reached 0.091, 0.275, 0.274, and 0.276; the correlation values of cultivated land 
were 0.133, 0.306, 0.287, and 0.294; and the correlation values of grassland were 0.313, 
0.459, 0.422, and 0.406. Among them, the correlation coefficients of SPEI1, SPEI3, SPEI6, 
and SPEI12 for grassland were greater than those for forestland and cultivated land, and 
the maximum correlation occurred at the 3 month time scale (SPEI3). During winter, the 
relationships of forestland, cultivated land, and grassland were negative at all time scales, 
and the maximum correlation occurred at the 3 month time scale (SPEI3), with coefficients 
of −0.452, −0.516, and −0.402, respectively. 

To sum up, in spring, vegetation was in the growth stage. Among the multi-scale 
SPEI, only SPEI3 showed a negative correlation between forest land and farmland, while 
only the SPEI3 of grassland showed a positive correlation. In summer, most vegetation is 
in a critical period of growth and development, such as grassland and crops. Due to the 
influence of strong rainfall, forest land, cultivated land, and grassland are less affected by 
drought, showing a strong correlation, and the correlation coefficient was greater than 0.5. 
In autumn and winter, vegetation began to wither and fall, and the influence of water on 
it was weakened. At this time, NDVI and SPEI showed a weak positive or negative corre-
lation, and both showed a negative correlation in winter. 

0.13222 0.11087 0.24167 0.48781

0.57929 0.57652 0.5247 0.52666

0.27398 0.42174 0.39092 0.38035

−0.2085 −0.4188 −0.0881 −0.0780

SP
EI
1

SP
EI
3

SP
EI
6

SP
EI
12

Spring

Summer

Autumn

Winter

−0.420

−0.220

−0.020

0.180

0.380

0.580

Figure 9. SPEI1-12 correlation coefficient in different seasons.
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To sum up, in spring, vegetation was in the growth stage. Among the multi-scale
SPEI, only SPEI3 showed a negative correlation between forest land and farmland, while
only the SPEI3 of grassland showed a positive correlation. In summer, most vegetation
is in a critical period of growth and development, such as grassland and crops. Due to
the influence of strong rainfall, forest land, cultivated land, and grassland are less affected
by drought, showing a strong correlation, and the correlation coefficient was greater than
0.5. In autumn and winter, vegetation began to wither and fall, and the influence of water
on it was weakened. At this time, NDVI and SPEI showed a weak positive or negative
correlation, and both showed a negative correlation in winter.

The correlation of the disparate time scales shows complicated features on the sea-
sonal scales of disparate soil textures (Figure 11). In spring, sandy loam exhibited a high
correlation at all time scales, revealing a positive correlation, and the correlation coefficient
increased with increasing SPEI time scale. Loam, sandy loam, and silty loam all exhibited
the highest response to SPEI12, with coefficients of 0.509, 0.474, and 0.403, respectively.
During summer, the SPEI1, SPEI3, SPEI6, and SPEI12 exhibited positive correlations with
the NDVI in loam, sandy loam, and silty loam, respectively. Summer was the most drought-
stressed season for vegetation in the growing season, and the effects of drought on various
soil texture types increased, especially for the SPEI3 of loam, SPEI1 of sandy loam, and
SPEI3 of silty loam, with correlation coefficients of 0.612, 0.558, and 0.626, respectively.
The drought resistance became relatively weak and was mainly affected by the SPEI1-3
short-term drought. In autumn, the correlation values of loam reached 0.212, 0.357, 0.335,
and 0.332, and the correlation values of sandy loam were 0.324, 0.475, 0.437, and 0.421,
respectively. The correlation coefficients of silty loam at the various time scales were 0.085,
0.188, 0.197, and 0.208. Among them, the SPEI1, SPEI3, SPEI6, and SPEI12 of sandy loam
were greater than those of loam and silty loam, and the maximum correlation occurred
within a 3 month time scale (SPEI3). In winter, loam, sandy loam, and silty loam exhibited
negative correlations at all time scales, and the largest correlation occurred at the 3 month
time scale (SPEI3), with correlation coefficients of −0.478, −0.375, and −0.433, respectively.
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4. Discussion

Over the past 20 years, based on the SPEI at the disparate time scales within Yinshan-
beilu, drought trends have been decreasing since the 21st century, which is consistent with
the actual situation [45]. Most of Yinshanbeilu has arid and subarid areas; however, due
to global warming, relevant studies have shown that the climate warming trend in this
region has already been more pronounced during the last two decades. Moreover, annual
precipitation is increasing, which has alleviated the degree of drought in Yinshanbeilu to a
certain extent [46,47].

In terms of the interannual variation in the NDVI, the overall NDVI in Yinshanbeilu
significantly increased in spring, summer, and autumn, which was generally consistent
with the findings of Yang et al. [48]. The trends from this study further showed that the
rates of increase in the NDVI in different years were different, and the rates of increase
in the latter part of each season were much greater than those in the earlier part [49–51].
These results indicated that the trend of vegetation increase in Inner Mongolia became
more evident since the 21st century [52]. The spatial distribution of the NDVI has a certain
degree of variability, which is caused by seasonal solar radiation, climatic characteristics of
vegetation types, soils, topography, and other factors; thus, the NDVI values during each
season exhibited corresponding variability at the spatial level. As the temperature starts to
rise, the plants return to the greening and nodulation stage, and thus, the NDVI gradually
increases. In summer, the solar altitude angle reaches its highest angle in the year, and solar
radiation and air temperature also reach their highest values; thus, the NDVI reaches its
highest value in a year in summer [53–55]. In autumn, when the solar radiation decreases,
the temperature decreases, as the solar altitude angle decreases; thus, the vegetation cover
decreases in autumn. In winter, when the intensity of solar radiation reaches its lowest
level, temperatures drop further to the lowest level of the year, the night length reaches the
longest time of the year, and the vegetation is covered by a thick layer of snow [56,57].

From the perspective of spatial distribution, the relationship between the NDVI and
SPEI in the western region of the study region was high and significant, while the abovemen-
tioned relationships in the central and eastern regions were weak and mostly insignificant,
likely being related to the distribution features of precipitation and vegetation categories in
the study region [58]. First, precipitation exhibited a decreasing distribution from east to
west, and the western part of the study region was more prone to water deficit events than
the eastern part. Additionally, the west areas of the study region had greater intensities
and frequencies of the droughts. Second, according to the vegetation type distribution,
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the above-described region was grassland. Additionally, vegetation growth in grassland
was more easily constrained by water quantity; thus, a strong correlation was observed in
grassland. In addition, in the eastern region, where crops are mainly concentrated, human
disturbance, including fertilization, irrigation, and other field management practices, pro-
vided beneficial conditions for the growth of crops; thus, the correlation between NDVI
and SPEI in this area was low [59]. The forestland was mainly distributed in the southern
region of the study area, where the NDVI and SPEI exhibited weak positive correlations
and partial inverse correlations. The above results occurred because the roots of forest trees
stretched to deep soil to absorb water when water availability was inadequate; therefore,
water had little restriction on vegetation growth in this region, and temperature was the
dominant factor impacting the growth of forests [60–62].

In addition to winter, the correlation coefficient between the NDVI and SPEI of forest
vegetation was the highest in long-run scale SPEI6-12; however, the correlation coefficient
between the NDVI and SPEI of grassland was the largest in short time scale SPEI3 in winter.
To some extent, these results indicated that different ecosystems had different drought
resistance abilities [63]. Studies have shown that forests were able to respond to extreme
drought four years ago, while the response period of grasslands is only one year. This
difference is related to the water-drawing ability of plant roots, and another important
factor is the disparate distribution rates of soil water in the shallow, middle, and deep
layers of soil within different vegetation areas [64,65]. With increasing soil thickness, the
soil water in the forest area gradually increased, while the soil water in the shallow and
middle layers in the grassland area was much greater than that in the deep layer. When
autumn drought occurs on a short time scale, grasslands likely consume the shallow soil
water quickly and thus are sensitive to drought change. Forests, on the other hand, are
able to withstand drought on a long-term scale because of their higher water content in the
deep soil [66,67].

In light of the seasonal distribution features of the coefficient between the NDVI and
SPEI, the correlation between the two is the most powerful in summer and subsequently
in autumn, spring, and winter. Summer is the most relevant season because most of its
vegetation, including grasslands and crops, is in a critical period of growth and progression,
and the region is highly susceptible to drought [68]. In fall, the vegetation fades, leaves fall,
and less water is needed. At this time, the NDVI and SPEI exhibited a weak positive or
negative correlation.

5. Conclusions

In this study, the relationship between the NDVI and SPEI at disparate time scales
between 2001 and 2020 in the Yinshanbeilu region was studied to evaluate the response of
vegetation to drought. The main conclusions of these studies are listed below:

(1) Except for those in winter, the correlation coefficients between the NDVI and SPEI
in spring, summer, and autumn increased with increasing SPEI. The increase in
correlation was concentrated in the southeastern and western regions of the study
region, and the timescales with the best correlation were SPEI6 and SPEI12.

(2) Grassland was the most sensitive vegetation type to the SPEI response of the NDVI;
the correlation coefficients of NDVI and SPEI1-12 were 0.313, 0.459, 0.422, and 0.406.

(3) In spring, loam, sandy loam, and silty loam exhibited the highest response to the
SPEI12. In summer, the SPEI3 of loam, SPEI1 of sandy loam, and SPEI3 of silty loam
were sensitive to the vegetation response. In the fall, the SPEI1, SPEI3, SPEI6, and
SPEI12 of sandy loam had greater correlation coefficients than those for loam and silty
loam. In winter, loam, sandy loam, and silty loam exhibited negative correlations
at all time scales, with the highest correlation occurring at the 3 month time scale.
Loam, sandy loam, and silty loam all exhibited the highest response to SPEI12, with
coefficients of 0.509, 0.474, and 0.403, respectively
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