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Abstract: Water quality monitoring plays a crucial role in urban water supply systems for the
production of safe drinking water. However, the traditional approach to water monitoring in Norway
relies on a periodic (weekly/biweekly/monthly) sampling and analysis of biological indicators,
which fails to provide a timely response to changes in water quality. This research addresses this
issue by proposing a data-driven solution that enhances the timeliness of water quality monitoring.
Our research team applied a case study in Ålesund Kommune. A sensor platform has been deployed
at Lake Brusdalsvatnet, the water source reservoir in Ålesund. This sensor module is capable of
collecting data for 10 different physico-chemical indicators of water quality. Leveraging this sensor
platform, we developed a CNN-AutoEncoder-SOM solution to automatically monitor, process, and
evaluate water quality evolution in the lake. There are three components in this solution. The first one
focuses on anomaly detection. We employed a recurrence map to encode the temporal dynamics and
sensor correlations, which were then fed into a convolutional neural network (CNN) for classification.
It is noted that this network achieved an impressive accuracy of up to 99.6%. Once an anomaly is
detected, the data are calibrated in the second component using an AutoEncoder-based network.
Since true values for calibration are unavailable, the results are evaluated through data analysis.
With high-quality calibrated data in hand, we proceeded to cluster the data into different categories
to establish water quality standards in the third component, where a self-organizing map (SOM)
is applied. The results revealed that this solution demonstrated significant performance, with a
silhouette score of 0.73, which illustrates a small in-cluster distance and large intra-cluster distance
when the water was clustered into three levels. This system not only achieved the objective of
developing a comprehensive solution for continuous water quality monitoring but also offers the
potential for integration with other cyber–physical systems (CPSs) in urban water management.

Keywords: water quality monitoring; urban water supply system; anomaly detection; signal calibration

1. Introduction

The provision of drinking water of an acceptable quality that meets public health targets
requires the effective implementation of a multi-barrier approach against pollutants from
source to tap [1]. Water treatment plants are generally configured to treat contaminants from
their raw water sources [2] and must have the capacity to dynamically respond to fluctuations
in contaminants of public health concern [3,4]. This has become more important as climate
change combined with anthropogenic activities is affecting the type, occurrence, and concen-
tration of contaminants in drinking water sources. Therefore, there is a need for consistent
water source monitoring to ensure optimal operations of water treatment plants to safeguard
public health [5]. Traditionally, water source monitoring has largely been a labour-intensive
endeavour, involving manual sampling, laboratory analysis, and in situ measurements of
water quality parameters. In this regard, the selection of the number of samples, frequency
of sampling, and water quality parameters to account for is often determined by national
regulatory requirements coupled with source water catchment, water treatment plant capacity,
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and national risk-based targets. In water quality monitoring, parameters accounted for are
generally categorized into physical, chemical, microbial, and radiological.

Physical and chemical parameters reflect the intrinsic physical and chemical attributes
of the water and include pH, temperature, electrical conductivity, dissolved oxygen, colour,
turbidity, organic compounds such as polyfluoroalkyl substances and polycyclic aromatic
compounds, and inorganic compounds such as the different species of heavy metals. Mi-
crobial parameters can be broadly classified into viruses, bacteria, parasites, and protozoa.
Radiological parameters characterize the ionizing radiation properties of the water. While
there are sensors for in situ and continuous monitoring of most of the physical parameters,
accounting for the concentrations of organic and inorganic chemical compounds, as well as
microbial organisms, requires routine sampling of water and transporting the samples to a
laboratory for analysis, leading to drawbacks of low sampling frequency, potential delays
due to lengthy laboratory processes, and the potential oversight of significant anomalies [6].
There are currently no sensors for in situ measurements of inorganic and organic com-
pounds in water. While there have been attempts to develop sensors for the continuous
monitoring of microbial organisms in water sources, such as by observing the behaviour
of rainbow trout [7], or detecting particles with UV–vis spectrophotometry [8], questions
remain regarding their accuracy, reliability, and scalability.

Unlike microbial organisms, there are possibilities for the continuous monitoring
of some physical and chemical parameters, which offers the advantage of being labour-
free, and capable of real-time monitoring, thereby facilitating enhanced efficiency with
minimal or reduced delays [9]. Recent research findings, as evidenced by [10], suggest a
correlation between physico-chemical water quality and microbial indicator organisms,
suggesting that the monitoring of physico-chemical parameters could be a viable alternative
for determining microbial water quality. For instance, physico-chemical parameters such
as turbidity, pH, electrical conductivity, and temperature are shown to have positive
relationships with microbial indicator organisms [10] and heavy metals [11]. Furthermore,
there now exist stable and accurate sensor technologies for monitoring physico-chemical
parameters, ranging from portable devices [12] to large sensor stations [13], which can be
tailored to specific water quality data collection requirements. This opens up possibilities
for efficient data collection without the need for labour-intensive processes. Moreover,
advances in low-cost sensor technologies have made monitoring such parameters more
feasible. The cost and technological requirements of low-cost sensors have significantly
reduced while maintaining stability and usability compared to wired sensors, enabling
broader coverage and higher sampling frequency [14]. Leveraging these benefits for the
continuous collection of physical and chemical water quality data can provide a more cost-
effective water quality management. However, since different organizations can choose
their own parameters, no universal water quality standard can be established. This makes
a a system which allows customer input parameters valuable.

In Norway, water utilities are leveraging sensor technologies, IoT, and big data analytics
to improve their service delivery. In the Ålesund Municipality of Norway, a Smart Water
Project was initiated in 2019 for the digital transformation of the water supply system [15]. The
project, among others, established a platform for the continuous monitoring of physical and
chemical parameters in the drinking water source. The aim of the station is to provide relevant
water quality data for the development of decision support systems for water treatment
optimization. The platform couples sensors with IoT devices for the real-time measurement,
transmission, storage and visualization of selected physical–chemical water quality parameters.
Although such real-time water quality monitoring platforms have the ability to reliably
monitor physico-chemical parameters, the data collected often have problems with errors
and missing values, often due to drifts in the sensors following calibration or malfunctioning
of sensors. In some cases, the collected data usually require extensive processing to make
them useful for water quality management decisions. Moreover, due to the remote locations
in which sensor platforms are typically placed in large water bodies, it can be impractical to
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calibrate the sensors in laboratories before sensor drift occurs [16,17]. Thus, anomaly detection
and calibration are vital for the post-processing of the water quality.

This research identifies three primary contributions in the development of a water
quality monitoring system.

First, as previously mentioned, the quality of the data gathered is often prone to some
errors due to sensor drifts and spikes, and thus, we applied anomaly detection to enhance data
quality. Both supervised and unsupervised machine learning algorithms have been proposed
to ameliorate the quality of sensor data. Munir, Siddiqui, Dengel, and Ahmed proposed
a deep-learning-based unsupervised machine learning algorithm for anomaly detection,
achieving an outstanding F1 score of 0.87, surpassing other algorithms at that time [18]. In
addition, graph-based algorithms have emerged as another promising solution, leveraging
advancements in convolutional neural networks (CNNs). For example, Zhang et al. designed
a multi-scale convolutional recurrent encoder–decoder framework that processes multivariate
time-series data using a CNN and a recurrent neural network (RNN), surpassing traditional
algorithms such as long short-term memory and support vector machine (SVM) [19]. On the
other hand, supervised machine learning algorithms offer enhanced accuracy by leveraging
labelled data. Through the analysis of a substantial amount of labelled data, the dataset can
be thoroughly explored, enabling precise classification of out-of-sample data. For instance,
Muriira, Zhao, and Min [20] employed kernelized linear support vector machine to establish
spatial links among sensor data and identify anomalies. However, the increasing number
of data parameters poses a challenge for most SVM-based anomaly detection algorithms
as the dimensionality becomes higher. To mitigate this issue, Borghesi et al. [21] utilized
AutoEncoder to extract normal patterns and reduce the feature space, while Canizo, Triguero,
Conde, and Onieva [22] applied a one-dimensional CNN to extract features from individual
sensors and classify them with an RNN. Their studies achieved high accuracy in industrial
scenarios. In this research, the raw data initially lacked any labels. However, considering the
effectiveness and accuracy of supervised machine learning, an interview was conducted with
experts in the domain to obtain their assistance in labelling the data.

Second, as in-laboratory sensor data calibration is not only time consuming but also
subjective, as there is no standard currently, the alternative, data-driven calibration, is
considered. Numerous supervised machine learning algorithms have been studied in
previous research. In a study by Guo et al. [23], the performance of an artificial neural
network (ANN), random forest, and SVM regression were applied to a dataset collected
from a small urban lake in northern China, with ANN showing the highest performance.
However, Bao et al. [24] demonstrated that random forest also performed well on a different
dataset, while Tenjo et al. [25] obtained better results with SVM than ANN. In addition to
these classic algorithms, CNNs have also shown significant promise in this field. Maier,
Keller, and Hinz [26] developed a highly accurate method for estimating chlorophyll
concentration using a one-dimensional CNN, which was proved to be applicable to real-
world scenarios. Furthermore, researchers have explored combining different algorithms to
improve performance. For example, Arnault et al. [27] combined an ANN with hierarchical
agglomerative clustering, while Wang et al. [28] used a genetic-algorithm-based SVM
approach. However, it is common among these studies that only the temporal dynamics
are considered while the synchrony among entities is neglected. To fully utilize the dataset,
we employ a self-organizing map (SOM) to produce criteria for forecasting water quality
based on the physical and chemical features of the water source.

Third, to further enhance data analysis and interpretation, the collected data are
clustered into different levels using unsupervised machine learning algorithms. Given the
high dimensionality of the data collected from wireless sensor networks (WSNs), feature
extraction plays a pivotal role in various applications in this field. Researchers have
leveraged different techniques for this purpose, such as SOM, a neural-network-based
clustering algorithm which has been used for extracting lower-dimensional tensors to
enable data visualization and pattern analysis [29,30]. Inspired by the findings from these
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studies, we decided to conduct our own experiments to investigate the synchrony among
different indicators, and thus, build a standard for the current Smart Water Project.

2. Methodology

Figure 1 provides the framework for the proposed data-driven method, outlining its
distinct components, each represented by a unique colour. The data source, marked in blue,
is the collection of raw data collected. The data processing and analysis component, which is
marked green, first checks whether the data requires calibration. If no calibration is needed, the
sensor data are stored as high-quality data and used for water quality clustering. However, if
an anomaly is detected, the data are fed into the signal calibration component, which produces
calibrated data that are then stored as high-quality data and input into the pre-trained water
quality cluster model to generate a timely water quality monitoring report. The final component,
marked in orange, represents the output of the entire system. Once the data have been processed,
the system generates both high-quality data and water quality clusters.

Anomaly detection

Data with Anomaly
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ity
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a 

Data without 
anomaly

Raw  
data

Data clustering

Data calibration
Processed 

data

Traing data
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Processed   data

Final clusters

Figure 1. System overview of the whole project.

The method assesses incoming data from the water quality monitoring platform
to ascertain if there is a need for calibration. High-quality data, once identified as not
requiring calibration, are directed into the data repository. In the event that anomalies
are detected, the data undergo a signal calibration procedure, before being deposited in
the data repository. The accumulated high-quality data significantly contribute to the
water quality clustering model, thereby expediting the generation of timely water quality
assessments. The concluding module, delineated by the colour orange, encapsulates
the ultimate outcomes, namely, the aggregation of high-quality data and the delineation
of water quality groupings. The former represents a crucial resource for subsequent
research endeavours and informs decision-making processes within the realm of water
quality monitoring. Concurrently, the water quality clusters furnish a comprehensive
understanding of water quality categorization.

2.1. Data Source

This study leverages water quality data from a Vertical Profiler System, an anchored
sensor platform made by the Water and Environmental Engineering Group at NTNU
in Ålesund. The sensor platform is located at 62.48◦ N and 6.47◦ E in Brusdalsvatnet
Lake in Ålesund, Norway, as depicted in Figure 2. The platform has an on-board winch
system with a multi-parameter sensor (EXO3) that autonomously measures water quality
parameters at different depths of its profiling location. The parameters accounted for are
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temperature, conductivity, salinity, turbidity, pH, optical dissolved oxygen (ODO), and
fluorescent dissolved organic matter (fDOM), as depicted in Figure 3. However, in this
study, only pH and turbidity are being studied due to the lack of clean data for other
parameters. Data on the parameters are relayed to a local server via a 900 MHz radio link.
The stored data are structured as interlinked time series.

Figure 2. Location of the water reservoir being studied.

Vertical Profiler System

(6.47°E, 62.48°N) 

Timestamp
Dep

th

…..
…..

…..

PH
ODO

fDOM
Salinity

Turbidity
Conductivity
Temperature 

Figure 3. Information about the sensor platform.

For the purposes of this study, the dataset used was from 9 June 2020 to 19 August 2022.
This period covers the first phase of the platform installation, where significant anomalies
in the dataset from the platform were recorded. Table 1 provides a descriptive overview
of the raw data collected during the period. The count column indicates the number of
observations for each parameter, while the min and max columns indicate the minimum
and maximum values for each parameter. The mean column presents the average value for
each parameter, and the missing data column shows the number of missing values for each
parameter. However, the total amount of data is less than anticipated due to the platform’s
inoperability during the lake’s freezing periods (usually from December to March) or the
sensor platform’s maintenance. By examining the mean values, it is apparent that not all
the data are reliable. For instance, the average pH should not be 2.60, which indicates a
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strong acid. Moreover, considering both the minimum and maximum values, it is apparent
that the raw data contain outliers in all indicators except timestamps and depths.

Table 1. Description of the raw dataset.

Parameter Count Min Max Mean Missing Data

Timestamp 38,675 9 June 2020 15:14:06 19 August 2022 01:18:29 / 0
Depth 38,765 1 81 32.86 0
pH 38,765 −4.35 141.87 2.60 0
Turbidity NTU 38,765 −2.24 36.92 −0.25 0
Turbidity FNU 38,765 0.836 81.036 32.86 0

To investigate the events that occurred on the platform, Figure 4 illustrates the temporal
dynamics of each sensor with a depth of 1 m. By comparing the differences between the
events and the recordings, we can assume the time and provide explanations for the events.
For instance, the decline in measurements on 22 November 2020 and 11 April 2021, as well
as 28 May 2021 and 23 March 2022, was due to winter maintenance and broken sensors,
respectively. Even minor changes, such as the sensor calibration on 26 September 2020, can
impact the data’s usability and necessitate data cleaning procedures.

Figure 4. Time series visualization of sensor data.

Further analysis is conducted through the data distribution, as depicted in Figure 5. It
can be observed that the other sensor data do not follow normal distributions, for example,
pH has three peaks while both turbidity NTU and turbidity FNU have several local maximum
points as well. According to the experts, this deviation is not always incorrect. With their
assistance, the sensor error label was added. The objective of the calibration was to make the
sensor data as close to the clean data as possible in terms of distribution, mean value, and
standard deviation.

Figure 5. Distribution of flattened sensor data.

The detection and correction of missing data are important in any data analysis project.
However, in this project, only spiky data and drift data were considered for calibration. This
is because the amount of missing data in the test dataset was small and the low sampling
frequency of the sensor data, which was collected every 12 h, made missing data less of
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an issue. Therefore, the focus was primarily on correcting spiky and drift data, which
have a greater impact on the accuracy and reliability of the data analysis. Four labels were
attached to the test dataset, where group 0 represents no error, group 1 represents spiky
data, group 2 represents drifted data, and group 3 represents both types of error.

2.2. Water Quality Anomaly Detection

The initial step after collecting raw data in this project is anomaly detection, which aims
to classify the signal based on the presence of outliers and the type of fault. Figure 6 depicts
the workflow. The data from various sensors are combined using a recurrence map based
on location. Subsequently, a CNN is employed to classify the data into different categories
based on the presence of anomalies. The effectiveness of this anomaly detection component is
evaluated using training loss and accuracy and a confusion matrix.

Indicator 1

Indicator 2

Indicator n

Recurrence matrix 
calculation

Recurrence map
CNN classification

Anomalies

Figure 6. Processing for anomaly detection.

A recurrence map, as its name suggests, is a visualization tool used to analyse the rep-
etition of data or patterns in given sequences. It works by comparing the distance between
two states of a system, and expressing the difference using the following equation [31]:

RN(t, τ) =

{
n nϵ ≤| x(t)− x(τ) |≤ (n + 1)ϵ
N | x(t)− x(τ) |> Nϵ

(1)

In this equation, R represents the distance, while x(t) and x(τ) denote the points in the
sequence. ϵ is a predefined standard number used for measuring distance. If the distance
between the two states is not greater than ϵ, R is calculated as the number of ϵ differences.
Otherwise, it is calculated as the maximum difference, which is defined as N. Once a signal
is provided, the Euclidean distances between every pair of statuses is calculated and form
the recurrency matrix, with dimensions equal to a predefined window length. With such a
matrix, an image-like form of the data can be generated for further analysis.

The architecture of the CNN network is illustrated in Figure 7 and the input data are
from the 2D recurrence matrix with a dimension equal to a predefined window length.
With reference to the labels, the network will adjust the weights and biases in every layer
according to the accuracy. By leveraging 2 convolutional and 2 pooling layers, the input
matrix is transformed into feature maps. A dropout layer is then applied to avoid overfitting
and flattened into a feature vector. Lastly, a fully connected layer is applied to extract the
classification of the sensor data. It is a multilayer perceptron neural network. The extracted
features are calculated with

y = WFCx (2)

where x and y are the input features and output classifications, respectively, and WFC is the
linear weights [32]. It is noted that the Softmax activation function is used for the last layer
of the CNN classifier since it is a multiclass classification problem. Softmax is an activation
function that is used to normalize a vector such that the sum of all the elements in the
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resulting vector is equal to one. It is mathematically represented in Equation (3) [33]. Here,
zj represents the jth element in a vector, and C represents the dimension of the input vector.

So f tmax(zj) =
ezj

∑C
c=1 ezc

(3)

24 x 24

Conv_2d
Max 

pooling
Dropout &
conv_2D

22 x 22 x 32 11 x 11 x 32 9 x 9 x 32

Max pooling

4 x 4 x 32

Dropout &
flatten

512 x 1

……

Fully connected layerClassification

Figure 7. CNN network structure.

By using this equation, the probability distribution among different classes can be
calculated, and the trainable parameters can be adjusted to minimize the loss function,
which is defined as categorical cross-entropy. It is calculated using Equation 4 [34], where y
and ŷ are the true one-hot encoded vector and prediction probabilities for each class of the
ith instance.

Loss = −
Output size

∑
i=1

yilog(ŷi) (4)

2.3. Correlated Time Series Calibration with AutoEncoder

After detecting anomalies in the sensor data, the signal calibration component is
employed to correct the errors. As the data are potentially to be a correlated time series,
both time dynamics and correlations can be considered in order to properly calibrate the
data, and thus, an AutoEncoder-based network is proposed.

AutoEncoder is a type of neural network trained to generate an output identical to the
input. Although the output x′j and input xj are not exactly the same, they remain consistent
with each other in probabilistic terms such as mean and standard deviation [35]. Thus, it is
commonly utilized for dimensionality reduction and image denoising. The AutoEncoder
model, as shown in Figure 8, can be divided into two parts: the encoder, which receives
input data and processes it to generate a code; and the decoder, which regenerates the data
from the code to make it as similar to the input data as possible. This process enables the
AutoEncoder to extract important features from the input data and remove noise. At the
beginning of this model, data are encoded into a 2D tensor, where both temporal and
correlation information will be considered. The tensor is of dimensions 10× 20× 1, where
10 indicates the number of indicators considered, 20 is the length of the time series window,
and 1 is the channel number. Specifically, each tensor is comprised of 20 samples containing
all the measured parameters.
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Conv_2d Conv_2d

Dropout &
conv_2D
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5 x 10 x 128
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Input
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Figure 8. AutoEncoder structure overview.

In an AutoEncoder network, the trainable parameters can be represented by
θ = {W, W ′, b, b′} Where W = {wj, j = 1, 2, . . . , n} and b = {bj, j = 1, 2, . . . , n} are
the weight matrix and bias vector for the encoder layer, while W ′ = {w′j, j = 1, 2, . . . , n}
and b′ = {b′j, j = 1, 2, . . . , n} are the weight matrix and bias vector for the decoder layer [36].
For both encode and decode operations, the rectified linear unit (ReLU) activation function,
as shown in Equation (5), was selected [37].

f j(x) = max(0, Oj) =

{
0 if Oj ≤ 0

Oj if Oj > 0
(5)

Thus, the jth element hj of compressed code can be expressed as [36]

hj = s(xi ∗Wj + bj) (6)

where ∗ is the convolution layer operations and s is the activation function.
With the calculation result, the regenerated data can be obtained through [36]

x′j = s(∑
j∈H

(hj ∗W ′j + b′j)) (7)

where H is the collection of feature maps.
Unlike the traditional AutoEncoder model, which measures the difference between

input and output data, the error in this project is considered as the difference between
uncorrupted data and regenerated data while estimating the effectiveness of the proposed
model. In this project, the sigmoid function, as shown in Equation (8) [38], was chosen to
measure the cross-entropy error, and thus, minimize it during the training process.

Sigmoid(x) =
1

1 + e−x =
ex

1 + ex (8)

2.4. Water Quality Clustering with Self-Organizing Map (SOM)

SOM clustering is an unsupervised machine learning algorithm. It was first proposed
by Teuvo Kohonen in 1982 in [39]. Basically, it receives n-dimensional input vectors and
feeds them into a neuron network to generate a two-dimensional map that can retain the
original information in the input dataset. This map preserves the structural information
of the data points in the dataset which, in other words, provides similar interconnecting
weights to the neighbouring points. Moreover, the map itself also contains information
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about centroids. Every point on the map is related to the interconnecting weights and the
points’ values represent the centroids. The size of the map indicates the assumed number
of clusters. In this project, an SOM-based model was proposed to cluster the water quality
data. The topology is depicted in Figure 9.

Y0

X00 X01 X02
X0N……

X00 X01 X02
X0N……

X00 X01 X02
X0N……

……

Y1 Y2 Y3

Output map

Interconnecting weights

Input data

….
. ….
.
…..

High quality data

Data encoding

Figure 9. Topology of self-organizing map.

The present model utilizes input data derived from the high-quality data obtained in
the previous section. To comply with the requirements of the sensor platform, the data are
structured as a 3D tensor with the dimensions of location, sensors, and timestamp. The first
step involves encoding this tensor into a 2D image, which organizes the data collected at
the same time. One dimension of the image represents the depth while the other dimension
comprises different sensor data. This transformation changes the problem into an image
clustering task while preserving the spatial correlation among the data. Moreover, by analysing
the data collected at various timestamps, the temporal changes in water quality can be
investigated in detail. Then, the images are processed through the SOM network, which
analyses the input data at the pixel level. The training process for SOM is outlined in
Algorithm 1.

Algorithm 1 Self-Organizing Map Algorithm

Require: Set of InputData points X = x1, x2, . . . , xn, stopping criterion
Ensure: Set of ClusterLabels label1, label2, . . . , labelk

Initialize the weights of the nodes randomly
Repeat

Select a data point randomly from the input dataset
distance← the Euclidean distance between the selected point to all other points
BMU ← the point with closest weight vector
Update the weights of BMU and its neighbouring nodes

Until stopping criterion is met

The initialization of weight values is performed randomly for each input sample, and
then, the weight at the best matching unit and its neighbouring weights are updated with a
learning rate. The best matching unit is defined as where the distance between a sample
and other weighted vectors is minimized, and thus, can be computed as shown in [39]:

∥ x−mc ∥= min(x−mi) (9)
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where x is the sample vector and mc and mi are the best matching unit and ith weighted
vector, respectively. The neighbouring weighted vectors at t + 1 can be then calculated
based on the value at time t as [40]

mi(t + 1) = mi(t) + η(t)hci(t)(x−mi(t)) (10)

Here, η(t) is the learning rate which decays with time, following

η(t) = η(0)exp(− t
τ1
) (11)

and hci denotes the neighbouring kernel and is expressed as

hci(t) = exp(−
d2

ci
2σ2(t)

) (12)

where
σ(t) = σ(0)exp(− t

τ2
) (13)

Here, dci denotes the distance from the best-matching unit to the ith neighbouring data
point rate while σ(t) is the radius of the neighbouring area, which follows an exponentially
decaying function.

The updating finishes when the convergence requirement or iteration number is
reached. Normally, the convergence is the dissimilarity, which can be calculated as the
distance between data points. This project achieves this by using the Euclidean distance,
where the weighted vectors are used to approximate the centroid.

2.5. Evaluation Matrix

In this project, the key parameter that needs to be defined is the number of clusters,
denoted by K. The selection of K is performed by comparing the distortion and silhouette
score, which are used to evaluate the tightness cohesion and separation, respectively.

Distortion, also referred to as intra-cluster distance, is a widely employed measure
for assessing the performance of clustering algorithms. It quantifies the average squared
Euclidean distance between each data point and its corresponding cluster centroid. By
evaluating distortion, researchers can determine the quality of clustering results and make
informed decisions regarding the optimal number of clusters.

For the silhouette score, cohesion refers to the distance from a data point to its cluster’s
centroid, while separation refers to the distance from this point to other clusters’ centroids.
Specifically, the silhouette score measures the ratio of cohesion to separation, which is
calculated using the following equation [41]:

Si =
bi − ai

max(ai, bi)
(14)

Here, bi is the mean distance from the ith data point to all other data points in the
same cluster, and ai is the average intra-cluster distance from the ith data point to all other
clusters’ centroids.

The silhouette score has a range from −1 to 1, where a higher index indicates higher
inter-cluster similarity and lower intra-cluster similarity. Specifically, 1, 0, and −1 denote
the best, indifferent, and wrong clustering results, respectively.

However, both matrices have their own limitations. The distortion does not take the
intra-cluster similarity into consideration and the silhouette score is sensitive to noise and
cannot handle overlapping clusters. Therefore, the combined results of both metrics are
used to determine the final number of clusters.



Water 2024, 16, 1238 12 of 18

3. Results and Discussion
3.1. Results Analysis
3.1.1. Water Quality Sensor Data Anomaly Detection

The labelled data were transformed into recurrence maps, as depicted in Figure 1.
To mitigate the influence of varying scales across different sensor data, the data were
normalized using Equation (15):

x′ =
x− X.mean

X.std
(15)

where X represents the data series, and x and x′ denote the original and normalized data. Here,
X.mean and X.std represent the mean value and standard deviation of the series, respectively.

Two different mapping strategies were employed in this study. The first strategy
considered the temporal dynamics of each sensor by retaining the original data values and
calculating the recurrence matrix, as described in Section 2.2. The second strategy involved
the normalization of data from multiple sensors recorded at the same time.

After the matrices are generated, they are fed into the CNN classifier for testing. Not
only the loss line is depicted but also the accuracy is presented to evaluate the model’s
performance. The results can be seen in Figure 10. Although for both strategies, the overall
accuracy increases with the training epoch and finally reaches a relatively stable stage, the
accuracy from the normalized multisensor is higher than the unnormalized sole sensor.
The former can reach as high as 99.6% while the latter can only reach 94.3%.

Figure 10. The training loss and accuracy change with epoch.

To provide a more detailed comparison, a confusion matrix was utilized. Table 2
shows the confusion matrix, which is calculated from the detection class for every class.
The F1 score, the harmonic mean of precision and recall, was applied to analyse this matrix;
it can be expressed as follows:

F1(class = a) =
1

1
Precision(class=a) +

1
Recall(class=a)

(16)

where precision(class = a) is defined as the ratio of true positive (TP) results to the sum of
true positive and false positive (FP) results for class a, which measures the model’s ability
to identify positive results, and recall(class = a) is defined as the ratio of TP results to the
sum of TP and false negative (FN) results for class a, which measures the ability to capture
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all positive examples. It should be noted that these are based on a single class in a multiclass
classification problem. In this case, the F1 score was calculated for each class separately as
0.96, 0.71, 0.97, and 0.96 for “clean”, “drift”, “spiky”, and “both” classes, respectively.

Table 2. Confusion matrix for anomaly classification.

Total Samples = 11,335 Prediction (%)
Clean Drift Spiky Both

Ground truth

Clean 2370 85 68 0
Drift 7 3381 0 99
Spiky 56 0 2290 0
Both 0 120 0 2859

3.1.2. Water Quality Sensor Data Reconstruction

A comparison between raw data and calibrated data at a depth of 1 m is depicted
in Figure 11. In all three figures, red lines represent the original data, while blue lines
represent the calibrated data. From Figure 11a, we can see that the raw pH sensor data
suffered from both drift and spikiness. After 60 samples, the mean value decreases, and
the variation starts increasing. Compared to these raw data, the calibrated data are more
usable, showing less drift and fewer spikes. Figure 11b and Figure 11c show positive results
for turbidity NTU and turbidity FNU, where drift is the primary challenge. The drift is
reduced compared to the uncalibrated data, and the distribution is closer to the 60 clean
data points.

(a) (b) (c)
Figure 11. Comparison of calibration results to original data.

To further analyse the data quality, a study of the calibrated data distribution is con-
ducted, and the results are shown in Table 3 and Figure 12. Since no dramatic changes
occurred during the data collection period, the sensor data should follow the same distri-
bution. Thus, the mean value, standard deviation, and density distribution are examined.
From Table 3, it can be observed that the regenerated pH data have the closest mean
value and standard deviation, with offsets of 1.6% and 17.6%, respectively. The calibrated
turbidity NTU and FNU also show smaller deviations from the clean data compared to the
uncalibrated data. Although drift still exists, the mean value drops from 1.145 to 0.101, with
a baseline of 0.126. This can be considered effective for data drift calibration. By examining
the distribution in Figure 12, a similar conclusion can be drawn. It is common for the three
parameters that the shapes formed by calibrated data are closer to the uncalibrated data.

Table 3. Distribution comparison among clean data and calibrated data.

Source
pH Turbidity NTU Turbidity FNU

Mean Std Mean Std Mean Std

Clean data 6.36 0.034 0.12 0.018 0.13 0.012
Uncalibrated data 6.38 0.11 1.15 0.054 1.14 0.52

Calibrated data 6.35 0.040 0.10 0.017 0.10 0.017
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Figure 12. Density distribution comparison of clean data, uncalibrated data, and AutoEncoder-
calibrated data.

It should be noted that the presented findings are consistent with the performance of the
algorithms for other depths, given the same sensor platform, location, and data structure.

3.1.3. Water Quality Clustering

With these calibrated data, clustering algorithms can be applied to generate the final
clustering for water quality monitoring. In addition to the originally clean data, the
calibrated data are also taken into consideration. The combination is then fed into the
clustering algorithm to evaluate the final results for our project.

Figure 13 illustrates the outcomes obtained from applying the SOM clustering algorithm.
These heatmaps enable a comparison of the silhouette scores based on different SOM grid
shapes, aiding in the determination of optimal parameters. Shapes (2, 1), (3, 1), and (2, 2)
exhibit identical silhouette scores of 0.73. Among these, both (2, 1) and (3, 1) indicate a tendency
for samples to be clustered into two groups. However, this preference for fewer clusters
stems from the silhouette score’s inclination towards selecting configurations with minimal
dissimilarity within clusters and maximal dissimilarity between clusters, rather than solely
considering the number of clusters. Consequently, it is crucial to consider alternative shapes
that yield high scores. To this end, shape (2, 2) clusters the data into three distinct groups.

Figure 13. Silhouette score heatmap for shape analysis with AutoEncoder-calibrated data.

The clustering distribution with AutoEncoder-calibrated data is visualized in Figure 14.
In this case, cluster 0 has the greatest portion of data points (49.2%) while 23.0% of the data
are assigned to cluster 3. This indicates a balanced distribution among the clusters, which
is required by the clustering algorithms.

During discussions on the clustering results, the experts emphasized the significance
of determining the appropriate number of clusters. In practice, it is uncommon to have
more than five clusters, especially in the context of drinking water reservoirs, where careful
selection and minimal drastic changes are expected. However, merely having two clusters
does not provide accurate enough results to represent the final outcome. Consequently, the
experts recommended that three, four, or five clusters would be the most suitable choices.
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Subsequently, they examined the clustering results and confirmed that the clustering
achieved using the SOM with AutoEncoder-calibrated data was reasonable and could be
further explored through in-depth analysis.

Level C
23.0%

Level B
27.8%

Level A
49.2%

Figure 14. Clustering distribution with SOM using AutoEncoder-calibrated data.

3.2. Potential Limitations

The approach outlined in this project faces several limitations, specifically pertaining
to environmental factors, workforce issues, and standardization challenges.

One of the primary limitations is related to the environmental conditions in which the
experiments are conducted. The experimental platform is situated in a lake in Ålesund,
and during the winter season, the platform freezes, rendering it incapable of collecting data.
Consequently, this poses a significant obstacle in obtaining accurate and reliable data during
those periods. Moreover, the surrounding environment further complicates data collection
efforts. The reservoir is not located in an isolated area, as there is nearby transportation
infrastructure that may introduce unwanted influences on the water quality sensors.

The second limitation revolves around the workforce involved in the project, particu-
larly in terms of data labelling. Labelling the data is crucial not only for anomaly detection
but also for enhancing calibration and clustering outcomes. Allocating additional resources
to ensure the collection of accurate sensor data and establishing standardized clustering
procedures would greatly improve the overall accuracy of the solution. However, acquiring
access to water quality data, which is confidential, proves to be challenging, hindering the
expansion of the dataset. Consequently, human labelling remains the most viable option,
despite requiring a substantial labour force.

The final limitation concerns the usability of the overall solution and the need for stan-
dardization. Establishing a comprehensive set of standards is essential to enhance the system’s
utility and comprehensibility. These standards would encompass indicator selection, data
collection, and processing procedures, as well as the final clustering methodology. However,
each city follows its own unique set of standards, and different systems are employed, further
complicating the task of standardization. Overcoming this challenge presents a difficult
undertaking due to the inherent variations across different locations and systems.

4. Conclusions

Currently, water source monitoring in water supply systems relies on regular sampling
and analysis for microbial water quality indicators and other pollutants such as heavy
metals to ensure the provision of safe drinking water to the public. However, these meth-
ods require long periods of in-laboratory processing, they are costly, and make real-time
monitoring impractical. To address this limitation, a sensor platform has been implemented
to collect data from Brusdalsvatnet Lake, the drinking water source for the municipality of
Alesund in Norway. Yet, measurements from the sensor platform often contain anomalies,
making it difficult to directly apply the data for effective management decisions. This
study proposes an architecture that can enable a more rapid and efficient preprocessing
and analysis of the data transmitted by the sensor platform. By implementing this pro-
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posed architecture, the water supply system can promptly identify anomalies, calibrate
the data, and conduct clustering, ensuring effective management of water resources which
contributes to advancements in water quality monitoring, providing valuable insights for
stakeholders and decision-makers involved.

The significance of the proposed system in the water quality monitoring for the
municipality was underscored by the stakeholders. They emphasized the system’s seamless
data analysis capabilities, which ultimately yield substantial benefits for them by providing
valuable insights into potential fluctuations in water quality. To further illustrate the
potential applications of the collected data, one example is the utilization of fluid dynamics
simulations. These simulations can be performed using the collected data, allowing for the
prediction and assessment of water quality dynamics [42]. Moreover, the recorded data can
be employed for water risk management purposes. The findings and observations derived
from the monitoring system can serve as essential inputs for assessing and mitigating
potential risks associated with water quality in urban water supply systems [43].

To make the whole system more feasible, the future work of this project involves
expanding its scope, collecting more data, collaborating with domain experts to validate
and interpret the results, and integrating the system with other relevant systems. By
pursuing these avenues, we can improve the reliability, usability, and applicability of our
models, enabling their effective implementation in real-life scenarios and benefiting various
stakeholders involved in water quality management and decision-making processes.
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