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Abstract: The secondary waste produced by NdFeB waste after rare earth recycling, with an annual
output of more than tens of thousands of tons, is the largest solid waste emission source in the rare
earth industry, and long-term storage causes land resource occupation and environmental pollution.
Arsenic-containing mine wastewater has serious harm, wide distribution, and long duration of
pollution. In this study, the mechanical ball milling method was used to activate NdFeB secondary
waste to prepare micro-nano magnetic composite materials, the main components of which are Fe2O3,
Fe3O4, and C. Under mechanical mechanochemical action, the particles are more dispersed, the
particle size decreases, the specific surface area increases significantly, the crystal structure changes to
amorphous structure, the degree of amorphous shape increases, and the content of Fe-OH increases.
Applied to the treatment of As (V) in simulated mine water, it was found that the removal of As (V)
by this material was mainly based on chemisorption and monolayer adsorption, and the maximum
adsorption amount reached 10.477 mg/g. Zeta, FT-IT, and XPS characterization confirmed that the
removal of As (V) was a coordination exchange reaction between the material and As (V) to form
an inner sphere complex. The removal rate of As (V) decreased from 94.33% to 73.56% when the
initial concentration of solution was 10 mg/L, pH value was 3.0, and material dosage was 1 g/L after
5 times of regrowth. This study provides a new way for the application of NdFeB secondary waste,
which has low cost, green environmental protection, and wide application prospects.

Keywords: high-energy ball milling; mechanochemistry; NdFeB Secondary Waste; micro and nano
magnetic composites; mine water; As (V)

1. Introduction

NdFeB waste is the solid waste generated by NdFeB permanent magnet materials
in the process of cutting, grinding, and polishing, accounting for about 30% of the total
raw materials for magnet production [1]. China is a major producer of NdFeB permanent
magnet materials. From 2002 to 2021, the production of NdFeB permanent magnet materials
increased from 62,000 tons to 213,300 tons [2]. The NdFeB waste generated in the production
process also increases year by year and is expected to produce 27,000–54,000 tons of
NdFeB waste in 2030 [3]. NdFeB waste contains 27–33% rare earth elements and 66–73%
iron elements, which have high recycling value [4]. If it is directly discharged into the
environment, it is easy to cause heavy metal pollution and waste of resources [5]. At
present, the hydrochloric acid optimal solution method, total solution method, and double
salt precipitation method are used to recover and treat rare earth elements in NdFeB
waste [6]. NdFeB secondary waste is the solid waste produced by NdFeB waste after rare
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earth recycling and treatment. Its main components are iron oxide and graphite, with an
annual output of more than tens of thousands of tons, and it is one of the largest solid
waste discharge sources for rare earth enterprises. Long-term storage is easy to cause land
resource occupation and environmental pollution [7].

The mechanical mechanochemical method, also known as ball milling method, is
a green and efficient modification method. The principle of mechanical force is to grind,
compress, shear, and impact the ball milling material so that the physical and chemi-
cal properties of the material are changed, the crystal structure is destroyed, and the
surface properties are changed to improve the adsorption properties of the material [8].
The mechanochemical method is widely used in the fields of material surface modification
and synthesis [9], heavy metal separation [10], and solid waste recycling [11] due to its
advantages of simple operation, easy control of reaction process, and more green envi-
ronmental protection without adding other chemical reagents. Haowen Zou et al. [12]
successfully prepared a new biochar/iron oxide composite material (BM-Fe-HC) for Cr(VI)
wastewater treatment by placing Fe-HC in a planetary ball mill at a ball milling speed of
500 r/min for 4 h. The experimental results showed that ball milling effectively reduced
the particle size, increased the specific surface area, and exposed more iron oxide to the
surface of biochar, which was beneficial to the adsorption of Cr(VI). The maximum adsorp-
tion capacity reached 48.1 mg/g, which was much higher than that of other biochar/iron
complexes. Fang Li et al. [13] successfully prepared a new adsorbent for the treatment of
wastewater containing As (V) by ball-milling 20% pecan biochar and 80% expanded vermi-
culite. The test results showed that under the mechanochemical action, the specific surface
area, pore volume, and surface functional group increased significantly, the crystallinity of
the material changed significantly, and the material had stronger adsorption capacity than
the raw material.

The mining of mine resources has caused many environmental problems. For example,
mining exposes buried metal sulfide minerals to the surface and forms acid mine wastew-
ater (AMD) after oxidation by air and microorganisms and erosion by rain [14]. Arsenic
(As) is one of the main ore-forming elements of sulfide minerals. According to statistics,
every 1 t of gold extracted in China will be accompanied by 1732 to 20,829 t of arsenic, and
every 1 t of other metals except gold will be accompanied by 0.12 to 10.8 t of arsenic [15].
Arsenic mainly exists in AMD is arsenate (As V) with the oxidation and dissolution of
sulfide minerals [16], and with the flow of AMD contaminating surrounding rivers and
groundwater, it infiltrates into farmland, resulting in excessive arsenic content in water
and soil [15]. For example, the wastewater from the Richmond iron mine in the United
States contains as much as 850 mg/L of arsenic [17]. The Ottery mine in Australia ceased
operation in 1936, but the river around the mine was still found to contain as much as
10 mg/L of arsenic [18]. The maximum arsenic content of rivers in the Dabaoshan mining
area in China is as high as 175 µg/L [19], and many mining areas in Hunan, Guizhou,
and Inner Mongolia are faced with different degrees of AMD arsenic pollution [20,21].
Therefore, the treatment of arsenic in mine water is imperative.

Currently, the main methods for removing As (V) from the aquatic environment
include ion exchange, bioremediation, chemical precipitation, membrane separation, and
adsorption. The ion exchange method can extract harmful ions from polluted water, which
has the advantages of rapid reaction, high removal efficiency and being renewable [22].
However, this method is cumbersome and requires filtration prior to use to eliminate
organic compounds that may damage the resin. In addition, other coexisting anions in
the water body will form a competitive relationship with arsenate ions, greatly reducing
the removal rate of arsenate ions and accelerating the consumption of exchangers [23].
The bioremediation method requires only a small amount of nutrient inputs for investment,
which is inexpensive and has the advantages of being easy to manage and green [24].
However, the plant growth cycle is long and the efficiency of arsenic treatment is low [25].
The chemical precipitation method is simple and suitable for large-scale treatment of arsenic-
containing wastewater. However, the arsenic-containing chemical precipitates formed after
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the reaction are difficult to remove, creating a new solid waste pollution problem. Although
the membrane separation method has a better arsenic removal effect, due to the high cost of
the membrane, the treatment process requires high energy consumption [26]. Therefore, the
membrane separation method is difficult to be widely used in practical arsenic-containing
wastewater treatment.

In arsenic removal formula technology, the adsorption method is widely used because
of its good removal effect, simple operation, and rapid reaction [27].

Therefore, this paper uses mechanical force to activate NdFeB secondary waste to
prepare magnetic micro-nano composite for mine As (V) wastewater treatment, providing
a new idea for comprehensive utilization of NdFeB secondary waste.

2. Materials and Methods
2.1. Chemicals and Material

(1) Reagents
Sodium arsenate dodecahydrate (Na3AsO4·12H2O), hydrochloric acid (HCl), sodium

hydroxide (NaOH), sodium chloride (NaCl), anhydrous sodium sulfate (Na2SO4), chromium
chloride (CdCl2), anhydrous calcium chloride (CaCl2), and magnesium chloride hexahydrate
(MgCl2·6H2O) were all purchased from Sinopharm Group Reagent Co., Ltd (Shanghai, China).

(2) Source and composition of raw materials
The NdFeB secondary waste comes from Ji’an Co., Ltd., Jiangxi Province (Ji’an, China),

and its main components are shown in Table 1.

Table 1. Content of various elements in neodymium iron boron secondary waste.

Elements Wt/% At/%

O 51.9 0.5
C 24.7 0.6
Fe 23.4 0.3

According to the analysis of Table 1, NdFeB secondary waste mainly consists of Fe, O,
and C elements.

(3) Simulate wastewater containing As (V)
A total of 5.658 g of Na3AsO4·12H2O was accurately weighed into a 1 L volumetric

flask, and then added with deionized water to the scale, shaken well to obtain 1 g/L As (V)
stock solution, which was protected from light. The As (V) solution used in the subsequent
tests was prepared by diluting 1 g/L As (V) stock solution.

2.2. Magnetic Micro-Nano Composite Materials Preparation

The NdFeB secondary waste is placed in the oven at 105 ◦C for 24 h and then taken
out after drying, ground through a 50-mesh sieve, and stored for later use. The NdFeB
secondary waste that has been dried for 50 mesh screens is taken as the raw material, and
5 g of raw material is placed in the model QXQM-2 (Changsha, China) planetary ball mill.
The ball grinding parameters are set as the grinding time of 150 min, the grinding speed of
400 r/min, and the ball material ratio of 10:1. After the ball grinding, the material is put in
the sample bag, sealed, and stored. The preparation process of micro- and nano-magnetic
composites is shown in Figure 1.
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2.3. Characterization

Quatto S field emission scanning electron microscopy (SEM-EDS), produced by the
FEI Company of Czech Republic (Karlsruhe, Germany), was used to observe the changes
in the micromorphology of the materials before and after mechanochemical activation
and adsorption of As (V), and the composition and content of the surface elements were
analyzed. The D8 Advance X type X-ray diffractometer (XRD) produced by Bruck AXS
Co., Ltd. (Karlsruhe, Germany). in Germany was used to measure the materials before
and after mechanochemical activation, and the composition of the raw materials and the
crystal structure changes of the materials before and after mechanochemical action were
analyzed. The test conditions were Cu target (Kα radiation), and the working voltage
was 40 KV. The current is 100 mA, the scanning range is 10–80◦, and the scanning speed
is 2◦/min. The TENSORII Fourier infrared spectrometer (FFT-IR) produced by Bruker
Spectroscopy of Germany (Karlsruhe, Germany) was used to test the materials before
and after the mechanical chemical action and the adsorption of As (V). The test wave
number range was 500–4000 cm−1, the resolution was 1.0 cm−1, and the scanning times
were 33. The ESCALab250Xi X-ray photoelectron spectrometer (XPS) produced by Thermo
Scientific in the United States (Waltham, MA, USA) was selected to conduct broad spectrum
scanning of the samples before and after adsorption of As (V), and the four elements C, Fe,
O, and As were narrowly scanned. The test results were corrected with C1s binding energy
(284.8 volts) as reference. The test results of XPS elements were fitted using Avantage
software (v5.9921). Zetasizer Nano ZSE potential and nano-particle size analyzer produced
by Malvern Instruments Co., Ltd. (Malvern, England). were used to test the Zeta potential
of the material before and after adsorption As (V) at different pH values (1, 3, 5, 7, 9, 11).

2.4. Batch Sorption

(1) Comparison of NdFeB secondary waste vs. micro-nano composite removal of As (V)
Weighing 0.05 g of NdFeB secondary waste and micro- and nano-magnetic composites,

the mixture was placed in a 200 mL conical flask, 50 mL of As (V) solution at a concentration
of 10 mg/L was added, and the pH of the mixture was adjusted to 3.0 by dropping in
0.1 mol/L hydrochloric acid. The mixture was placed in a water-bath thermostatic oscillator
at a reaction temperature of 25 ◦C and a rotational speed of 160 r/min, and the reaction
was carried out by shaking the reaction using samples that were taken at different reaction
times (0, 5, 10, 20, 30, 60, 90, 120 min) by syringe, filtered through 0.45 µm aqueous filter
membrane, and the concentration of the filtrate was determined by ICP-OES.

(2) Test on the effect of initial pH of solution on the removal rate of As (V)
Weigh 0.05 g magnetic micro-nano composite material, place it in 200 mL conical

bottle, and add 50 mL of As (V) solution with a concentration of 10 mg/L, add 0.1 mol/L
of hydrochloric acid or 0.1 mol/L sodium hydroxide to adjust the mixture to different pH
values (1.0, 3.0, 5.0, 7.0, 9.0, and 11.0). The mixture was placed in a water bath thermostatic
oscillator at a reaction temperature of 25 ◦C and a rotating speed of 160 r/min for 120 min,
and then sampled, filtered by 0.45 µm water filter membrane, and the concentration of
filtrate was determined by ICP-OES.

(3) Test on the influence of coexisting ions on As (V) removal rate
Using 10 mg/L of As (V) solution as the base solution, use CdCl2, MgCl2.6H2O, CaCl2,

NaCl, and Na2SO4 to prepare the coexistence of Cd2+, Mg2+, Ca2+, Cl−, and SO4
2− with

different ion concentrations (1, 10, 100 mM).Take 200 mL conical bottle, add 50 mL mixed
solution of different concentrations and co-existing ions, drop 0.1 mol/L hydrochloric acid
into it to adjust its pH to 3.0. Weigh 0.05g (prepared under optimal conditions) magnetic
micro-nano composite material and add it into the mixed solution. The conical bottle
was placed in a water bath thermostatic oscillator, the water bath temperature was 25 ◦C,
the rotating speed was 160 r/min, and the oscillation reaction was 120 min. The reaction
solution was filtered by 0.45µm aqueous filter membrane, and the filtrate concentration
was analyzed by ICP-OES.
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(4) Repeated material regeneration test
Weigh 0.05 g of magnetic micro-nano composite material, put it into a 200 mL con-

ical bottle, add 50 mL of As (V) solution with a concentration of 10 mg/L, drop it into
0.1 mol/L of hydrochloric acid-mixed solution, and adjust the pH to 3.0. The mixed solu-
tion was placed in a water bath thermostatic oscillator at a reaction temperature of 25 ◦C
and a rotating speed of 160 r/min for 120 min, and the sample was taken, filtered by
0.45 µm water filter membrane, and the concentration of the filtrate was determined by
ICP-OES. The filter slag was placed in a 200 mL conical bottle, and 100 mL of sodium
hydroxide solution with a concentration of 0.1 mol/L was dropped into the water bath
constant temperature oscillator with a reaction temperature of 25 ◦C and a rotating speed
of 160 r/min. After the desorbing reaction, the filter slag was filtered and washed until
the pH of the cleaning solution was neutral, and then the regeneration was completed by
drying treatment. The experiment was repeated with recycled material.

(5) Kinetics and isotherm fitting
In this paper, quasi-first-order and quasi-second-order kinetic models were used to fit

the adsorption process of As (V) on magnetic micro-nano composites, and the adsorption
kinetics of As (V) on magnetic micro-nano composites were studied.

Quasi-first-order kinetic model equation:

Qt = Qe [1 − exp(−K1t)] (1)

Quasi-second-order kinetic model equation:

Qt = Qe

[
1 − 1

1 + QeK2t

]
(2)

where, Qe is the adsorption amount of magnetic micro-nano composite at equilibrium
adsorption of As (V), mg·g−1; Qt is the adsorption capacity of magnetic micro-nano com-
posite for As (V) at time t, mg·g−1; K1 is the quasi-first-order kinetic parameter, min−1; and
K2 is the quasi-second-order kinetic parameters, g·(mg·min)−1.

In this paper, Langmuir and Freundlich isothermal models were used to fit the experi-
mental data, and the relationship between the adsorption capacity of magnetic micro-nano
composites and the equilibrium concentration of As (V) was studied, and the maximum
adsorption capacity of magnetic micro-nano composites was further predicted.

Langmuir model equation:

Qe =

(
QmKLCe

1 + KLCe

)
(3)

Freundlich model equation:

Qe = KFC
1
n
e (4)

where, Qe is the adsorption amount of magnetic micro-nano composite at equilibrium
adsorption of As (V), mg/g; Qm is the maximum adsorption capacity of magnetic micro-
nano composite for As (V), mg/g; Ce is the concentration at equilibrium, mg/L; KL is
the Langmuir equilibrium adsorption constant, L/mg; KF is the Freundlich adsorption
constant; and n is the Adsorption strength.

3. Results
3.1. Comparison of NdFeB Secondary Waste and Magnetic Micro-Nano Composite Materials

(1) As (V) Removal Rate of Micro-nano Composite Materials and NdFeB secondary waste
From the analysis of Figure 2, it can be seen that the As (V) removal rate of NdFeB

secondary waste in the reaction time of 120 min is only 56.43%, the As (V) removal rate of
magnetic micro-nano composite materials is greatly increased to 96.43%.
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(2) Crystal structure before and after mechanochemical activation
The XRD pattern of the material before and after mechanochemical activation was

obtained by the X-ray diffractometer in Figure 3.
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According to the analysis in Figure 3, the main components of NdFeB secondary waste
are graphite, Fe3O4, and Fe2O3. After mechanical mechanochemical activation, the diffrac-
tion peak strength of NdFeB secondary waste is significantly weakened, which indicates
that the crystal structure of the material is damaged under the mechanical mechanochemi-
cal action, and the material is transformed from crystal structure to amorphous state, and
its amorphous degree is deepened [28]. The presence of this amorphous phase can increase
the strength of the interaction between the adsorbent and the adsorbent, thereby improving
the adsorption capacity of the material for As (V) [29].

(3) The changes in material morphology before and after mechanochemical activation:
The SEM images before and after mechanochemical activation and the mapping images

of C, O, and Fe elements on the surface of the material before and after mechanochemical
activation were obtained by field emission scanning electron microscopy (SEM)-energy
spectrometer (EDS).

From the analysis of Figure 4, it can be seen that the raw materials without mechanical
force chemical activation before the particle size is large and the powder particles are
seriously agglomerated, in the mechanical force chemical activation of the material, the
micro-morphology of the material has been significantly changed, and the material particles
in the mechanical force chemical action of the particle size are significantly reduced. In
addition, the mechanical chemical activation effectively eliminates the agglomeration
between the material particles and makes the material particles more dispersed.
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It can be seen from the analysis of Figure 5 that Fe element agglomeration is more
serious on the surface of NdFeB secondary waste material, and Fe element distribution
is more uniform after mechanical mechanochemical activation, which indicates that the
exposure of iron oxide can be increased under mechanical mechanochemical action, so that
iron oxide can be more evenly distributed on the surface of the material, which is favorable
for the complex reaction between the material and arsenate ion in the solution.
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(4) The changes in chemical bonds and functional groups of materials before and after
mechanochemical activation

It can be seen from the analysis of Figure 6 that the raw materials mainly have the
following characteristics: Fe-O stretching vibration characteristics peak at 466 cm−1 [29],
Fe-OH bending vibration characteristics peak at 590 cm−1, C-O stretching vibration char-
acteristic peak at 1090 cm−1. H-O-H water molecule bending vibration characteristics
peak located at 1635 cm−1, and O-H stretching vibration characteristic peak located at
3420 cm−1 [30]. After mechanochemical activation, these functional groups and chemical
bonds changed to different degrees, and the strength of Fe-O stretching vibration charac-
teristic peak, Fe-OH bending vibration characteristic peak, and C-O stretching vibration
characteristic peak increased significantly and produced a small amount of deviation.
Among them, the increase in bending vibration characteristic peak-peak strength of Fe-OH
after mechanical mechanochemical activation means an increase in Fe-OH content, and
Fe-OH will react with arsenate ions in solution to produce complexes to remove arsenic
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pollution, which is also one of the main reasons for the significant increase in the As (V)
removal rate of materials after mechanical mechanochemical activation.
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3.2. As (V) Removal by Magnetic Micro-Nano Composite Materials

(1) Test on the effect of initial pH of solution on the removal rate of As (V):
The initial pH value of the solution can affect the whole reaction process by changing

the existence, form, and chemical properties of arsenic pentavalent in the solution and the
surface charge of the adsorbed material [31]. When the initial pH of the solution is less than
2.0, As (V) exists in the solution mainly in the form of neutral H3AsO4 molecules; when
the initial pH of the solution is between 2.0 and 7.0, As (V) exists in the solution mainly
in the form of negatively charged H2AsO4 ions; and when the initial pH of the solution is
between 7.0 and 11.0, As (V) exists in the solution mainly in the form of negatively charged
HAsO4

2− ions [32]. Figure 7a shows the effect of magnetic micro-nano composites on the
As (V) removal rate and Zeta potential value at the initial pH values of different solutions
(1.0, 3.0, 5.0, 7.0, 9.0, and 11.0). As can be seen from the figure, the removal rate of As (V)
and the Zeta potential value of magnetic micro-nano composites are significantly affected
by the initial pH value of the solution. The effect of initial pH value of the solution on
the removal of As (V) from magnetic micro-nano composites is first increased and then
decreased, and the Zeta potential value of the material significantly decreased with the
increase in the initial pH value of the solution. When the initial pH value of the solution
was 1.0, the As (V) removal rate of the magnetic micro-nano composite was only 63.00%,
and with the increase in the initial pH value of the solution, the As (V) removal rate of the
magnetic micro-nano composite also increased, reaching the maximum of 94.33% when
the pH value was 3.0, and then with the increase in the initial pH value of the solution,
the removal rate of As (V) from the magnetic micro-nano composite decreases gradually
and decreases to 45.29% when the initial pH value of the solution is 11.0. The analysis
shows that As (V) exists in the form of neutral H3AsO4 molecules in the solution when the
initial pH value is 1.0, and the removal of As (V) by magnetic micro-nano composite is less
affected by the electrostatic effect. On the other hand, the partial dissolution of magnetic
micro-nano composites under the condition of strong acid results in a reduction of effective
adsorption sites on the surface of the material. Therefore, the As (V) removal effect of the
material is significantly reduced. Subsequently, As the initial pH value of the solution
increased, the degree of deprotonation on the surface of the magnetic micro-nano composite
became deeper, resulting in an increase in negative charge on the surface of the material
and a decrease in the Zeta potential value of the material. As a result, the electrostatic
attraction effect between the negatively charged arsenate ion and the adsorption site on the
surface of the magnetic micro-nano composite was weakened, and the As (V) removal rate
of the material was reduced. In addition, it can be seen from the figure that the zero-point
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potential pHzpc of the magnetic micro-nano composite material is 9.1, that is, when the
pH is 9.1, the amount of negative and positive charges on the surface of the material is the
same, and the net charge on the surface of the material is zero. When the pH value of the
solution is greater than the zero potential pHzpc, the surface of the material is negatively
charged, and when the pH value of the solution is less than the zero potential pHzpc, the
surface of the material is positively charged. When the pH is greater than 9.1, the net charge
on the surface of the material is negative, which repels the arsenate ions, which is also the
reason why the removal rate of the material decreases significantly when the pH is 11.0.
Therefore, pH 3.0 was determined to be the best initial pH value of the solution for the test.
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(2) Test on the influence of coexisting ions on the removal rate of As (V):
In the actual mine wastewater containing As (V), it is inevitable that many coexisting

ions compete with arsenate ions for the adsorption sites of adsorption materials. Therefore,
in order to simulate the real wastewater environment, the common cations (Cd2+, Ca2+,
mg2+) and anions (Cl−, SO2−

4 ) in the wastewater are selected as coexisting ions. Three
concentration gradients of 1, 10, and 100 mM were selected to investigate the effects of
these coexisting ions on the removal of As (V) from magnetic micro-nano composites.
Figure 7b shows the effect of coexisting ions on the removal rate of As (V) in magnetic
micro-nano composites. It can be seen from the figure that the order of influence of cations
on the material removal rate is as follows: Ca2+ > mg2+ > Cd2+. The overall effect is small,
among which the highest effect is 79.61% removal of As(V) by micro- and nano-magnetic
composites at Ca2+ concentration of 100 mM and the lowest effect is 88.01% removal of
As(V) by micro- and nano-magnetic composites at Cd2+ concentration of 100 mM. It shows
that the affinity of the magnetic micro-nano composite to arsenate ions is much higher than
that of the above three cations. The Cl− in the anion has little effect on the removal of As
(V) by the magnetic micro-nano composite. When the concentration of Cl− is 100 mM, the
removal rate of As (V) by the magnetic micro-nano composite is still 89.65%, which only
decreases by 3.79%. This is because the negative valence of Cl− does not participate in
or a small amount of competition with arsenate ions for effective adsorption sites on the
surface of magnetic micro-nano composite materials. SO2−

4 has the greatest influence on
the material removal rate. When the concentration is 100 mM, the material’s removal rate of
As (V) is 63.76%, which is because the negative bivalent SO2−

4 ion has an electrostatic effect
with the negatively charged arsenate ion and forms a competitive adsorption relationship,
which reduces the material’s removal rate of As (V). The above experimental studies show
that the magnetic micro-nano composite still has a good removal effect on As (V) in the
presence of coexisting ions in the solution, so the magnetic micro-nano composite is suitable
for treating complex arsenic polluted wastewater in practical application.
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3.3. Regeneration of Magnetic Micro-Nano Composite Materials

To evaluate the application potential of magnetic micro-nano composites, the repetitive
regeneration performance was investigated. The hydroxide in NaOH solution can undergo
coordination exchange with the arsenate ion on the surface of the material after adsorption
of As (V), thus achieving the purpose of regenerating the material [33]. Therefore, in this
experiment, 0.1 mol/L NaOH solution was used desorb As (V) adsorbed by magnetic
micro-nano composite material. Figure 8 shows the removal efficiency of the magnetic
micro-nano composite material for As (V) after repeated regeneration five times, as shown
in the figure. After five adsorption–desorption cycles, the magnetic micro-nano composite
still has a good removal effect on As (V). With the increase in the number of cycles, the
removal rate of As (V) of the magnetic micro-nano composite decreases from 94.33% to
73.56%, but it is still much higher than that of the raw materials without mechanical
and chemical activation. It is concluded that the As (V) removal rate of the regenerated
magnetic micro-nano composite decreases due to the inevitable loss of the material during
the adsorption–desorption cycle and the fact that the effective adsorption site on the surface
of the material is continuously occupied by the arsenate ion and the functional group is
continuously weakened. In addition, the surface charge of the material changes, and the
electrostatic effect on arsenate ions is weakened. The As (V) removal ability of the magnetic
micro-nano composite was reduced after repeated regeneration. The excellent repeatability
of magnetic micro-nano composite material reduces its use cost, so the magnetic micro-nano
composite material has great application potential and economic benefits in the treatment
of As (V)-containing wastewater in actual mines.
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3.4. Kinetics for As (V) Uptake

Adsorption kinetics is a curve used to describe the adsorption rate of adsorbents [13].
In this study, the quasi-first-order kinetic model and quasi-second-order kinetic model
were used to fit the adsorption process of magnetic micro-nano composite As (V), and the
adsorption kinetics of As (V) on the magnetic micro-nano composite were studied with the
intention of studying the adsorption mechanism. Figure 9a shows the adsorption kinetics
of As (V) on magnetic micro-nano composites and the fitting diagram of its quasi-first-
order/second-order model. Table 2 shows the fitting parameters of the quasi-first-order
kinetic model and quasi-second-order kinetic model. As can be seen from the Figure 9a, the
quasi-second-order kinetic model has the best fitting effect on the adsorption of As (V) by
magnetic micro-nano composite materials, where the correlation coefficient R2 is as high as
0.9977 and the theoretical adsorption capacity is 9.459 mg/g, which is close to the actual
adsorption capacity (9.471 mg/g). Therefore, it can be seen that the adsorption of magnetic
micro-nano composite materials for As (V) is more inclined to chemical adsorption, and
the adsorption process mainly depends on the complex reaction between the functional
groups on the magnetic micro-nano composite materials and arsenate ions.
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Figure 9. (a) Kinetics adsorption of As (V) on magnetic micro-nano composite materials and pseudo-
first/second-order fitting. (b) Intraparticle diffusion model of As (V) adsorption on magnetic micro-
nano composite materials.

Table 2. Fitting parameters of adsorption kinetics of As (V) on magnetic micro-nano composite materials.

PFO Kinetic Model PSO Kinetic Model

Qe (mg.g−1) K1 (min−1) R2 Qe (mg/g) K2 (g.mg−1.min−1) R2

9.148 0.266 0.9772 9.459 0.0579 0.9977

Considering the porous properties of magnetic micro-nano composites, the internal
diffusion behavior in the adsorption of As (V) cannot be ignored. In order to determine
the internal diffusion behavior of As (V) during the adsorption of magnetic micro-nano
composites, the in-particle diffusion model was fitted to the adsorption kinetic data of
As (V) on magnetic micro-nano composites. Figure 9b shows the in-particle diffusion
model of magnetic micro-nano composites adsorbed with As (V). As can be seen from
the figure, the fitting result of the in-particle diffusion model consists of three linear parts,
indicating that the adsorption of As (V) by magnetic micro-nano composite materials
can be divided into three stages. The first stage is the rapid adsorption stage, in which
many adsorption sites are exposed on the surface of the magnetic micro-nano composite
material, and arsenate ions rapidly diffuse from the solution to the surface of the magnetic
micro-nano composite material to occupy the adsorption site. The second stage is the
intra-particle diffusion stage, in which most of the effective adsorption sites on the surface
of the magnetic micro-nano composite have been occupied, and arsenate ions diffuse to
the inner surface of the material through the pore size, occupying the internal adsorption
sites of the material, and the adsorption rate gradually slows down. The third stage is the
adsorption equilibrium stage, in which the arsenate ion gradually occupies the adsorption
site in the pores of the magnetic micro-nano composite material, and the adsorption rate
approaches zero, reaching the adsorption equilibrium state. In addition, the line fitted
in the fitting diagram does not have an origin, indicating that the adsorption rate of the
magnetic micro-nano composites for As (V) is limited by intra-particle diffusion and is also
affected by other factors such as film diffusion and surface adsorption [34].

3.5. As (V) Uptake Isotherms

The adsorption isotherm is a curve used to describe the concentration relationship
between the liquid and solid phases in the reaction equilibrium at constant temperature [35].
To further understand the adsorption mechanism, study the relationship between the
adsorption capacity of magnetic micro-nano composite materials and the equilibrium
concentration of As (V) and further predict the maximum adsorption capacity of magnetic
micro-nano composite materials. In this paper, Langmuir and Freundlich isothermal
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models were used to fit the test data. The fitting results are shown in Figure 10, and the
fitting parameters are shown in Table 3.
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Figure 10. The adsorption isotherm of As (V) on magnetic micro-nano composite materials and
Langmuir and Freundlich model fitting.

Table 3. Adsorption isotherm fitting parameters of As (V) on magnetic micro-nano composite materials.

Langmuir Model Freundlich Model

Qm (mg.g−1) KL (L.mg−1) R2 KF n R2

10.477 0.189 0.853 25.62 0.25 0.793

As can be seen from Figure 10, the adsorption capacity of magnetic micro-nano compos-
ites for As (V) increases first and then tends to balance with the increase in the equilibrium
concentration of As (V). The Langmuir isothermal model has the best fitting effect on
the adsorption of magnetic micro-nano composites for As (V), for which the correlation
coefficient R2 is 0.853. The theoretical maximum adsorption capacity is 10.477 mg/g, which
indicates that the adsorption of As (V) on the surface of magnetic micro-nano composite
materials is more inclined to single-molecular layer adsorption, and As (V) is uniformly
adsorbed on the surface of magnetic micro-nano composite materials.

3.6. Surface Analysis of As (V)-Adsorbed Magnetic Micro-Nano Composite Materials

(1) Zeta potential analysis
Figure 11a shows the variation of the Zeta potential with the pH value of the solution

before and after adsorption of As (V) by magnetic micro-nano composite. It can be seen
from the figure that the Zeta potential of magnetic micro-nano composites before and
after adsorption of As (V) decreases with the increase in pH value, the Zeta potential
value of magnetic micro-nano composites after adsorption of As (V) decreases significantly,
and the zero-point potential pHzpc of magnetic micro-nano composites before adsorption
of As (V) is 9.1. After adsorption of As (V), the zero-point potential of the magnetic
micro-nano composite decreases to 5.6. Studies have shown that the specific adsorption of
anions, namely chemisorption, can make the anions form an inner layer complex with the
adsorption material, and the surface of the adsorption material has more negative charges,
thus reducing the Zeta potential of the material and moving the zero point potential to the
low pH region [36]. In contrast, if the anion interacts electrostatically with the adsorbed
material only through non-specific adsorption, the Zeta potential of the material does
not change. Therefore, according to the Zeta potential characterization test results after
adsorption of As (V), it can be inferred that there is not only a simple electrostatic attraction
between As (V) and magnetic micro-nano composite materials but also chemical adsorption.
Covalent bonds are formed between the arsenate ion and the material, and a complex is
generated, resulting in a decline in Zeta potential of the material after adsorption of As (V).
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(2) FT-IR spectrogram analysis
Figure 11b shows the FT-IR spectra of magnetic micro-nano composites before and after

adsorption of As (V). It can be seen from the figure that before adsorption of As (V), the mag-
netic micro-nano composite material has the following characteristic peaks: Fe-O stretching
vibration peak at 466 cm−1, Fe-OH bending and stretching vibration peak at 590 cm−1

and 1381 cm−1. C-O stretching vibration characteristics peak located at 1090 cm−1, H-O-H
water molecule bending vibration characteristics peak located at 1635 cm−1, and O-H
stretching vibration characteristics peak located at 3420 cm−1. The FT-IR spectra of the
material after adsorption As (V) showed that the characteristic peaks of Fe-O stretching
vibration, Fe-OH bending vibration, C-O stretching vibration, H-O-H bending vibration
and H-O stretching vibration did not significantly shift or stretch. These results indicate
that these functional groups do not play a role in or participate in the reaction of mag-
netic micro-nano composite materials with As (V). The strength of the Fe-OH stretching
vibration characteristic peak at 1381 cm−1 decreased significantly after adsorption of As (V)
by magnetic micro-nano composites, indicating that hydroxyl groups were involved in
the adsorption process. The adsorption of As (V) by magnetic micro-nano composites
followed the inner sphere coordination mechanism, which was consistent with the surface
charge analysis results. In addition, FT-IR spectra of the material after adsorption of As (V)
also showed a new characteristic peak at 819 cm−1, which is the characteristic peak of the
stretching vibration of AS-O [37] according to literature review, indicating that arsenic is
successfully adsorbed on the surface of the magnetic micro-nano composite material and
that covalent bonds are formed between arsenate ions and the material. The analysis results
are consistent with the fitting results of the adsorption kinetics model.

(3) XPS spectral analysis
Figure 12 shows the XPS spectrum of magnetic micro-nano composite materials before

and after adsorption of As (V). It can be seen from Figure 12a that the position and intensity
of the Fe2p peak before and after adsorption of As (V) have little change. The binding
energy of Fe2p1/2 is about 724.0 eV, the binding energy of Fe2p3/2 is about 710.8 eV, and
the shock excitation effect is about 719.0 eV. This indicates that before and after adsorption
of As (V), iron mainly exists in the form of trivalent iron oxide [38]. Figure 12b is the As3d
fine spectrum. As shown in the figure, the characteristic peak of As (V) appears at the
binding energy position of 45.6 eV [39], which once again proves that As (V) is successfully
adsorbed on the magnetic micro-nano composite material, and no characteristic peak of
other valence arsenics appears. The results indicated that As (V) did not undergo a REDOX
reaction during the adsorption process of the magnetic micro-nano composite and As (V)
and arsenic was adsorbed on the magnetic micro-nano composite in the pentavalent form.
Figure 12c is a fine spectrum of C1s, from which it can be seen that the characteristic peak
intensity and position of carbon-containing functional groups did not change significantly
before and after the magnetic micro-nano composite adsorbed As (V), indicating that
element C did not play a role or participate in the reaction between the magnetic micro-
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nano composite and As (V) [40]. Figure 12d is the fine spectrum of O1s. As shown in the
figure, there are mainly three different oxygen-containing functional groups of element
O, namely H2O, Fe-OH, and Fe-O. The relative content of Fe-OH decreased from 38.33 to
30.42% after the reaction of magnetic micro-nano composites with As (V), indicating that
Fe-OH on the surface of magnetic micro-nano composites plays a key role in the adsorption
of As (V). This analysis result is consistent with that of FT-IR analysis.
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3.7. As (V) Removal Mechanisms

From the above analysis, it can be seen that the removal mechanism of As (V) by
magnetic micro-nano composites is that arsenate ions in solution rapidly diffuse to the
surface of magnetic micro-nano composites through electrostatic attraction, and then
arsenate ions and metal hydroxyl groups (Fe-OH) on the surface of magnetic micro-nano
composites undergo coordination exchange reaction to form an inner spherical complex.
Arsenate ion is fixed in the pore of the material, and the removal mechanism is shown in
Figure 13.
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4. Conclusions

In this study, the NdFeB secondary waste was activated by the mechanical mechanochem-
ical method, and the micro-nano magnetic composite material was successfully prepared for
the treatment of As (V)-containing wastewater in mines. The As (V) removal performance and
mechanism of micro-nano magnetic composite material were studied. The main components
of the NdFeB secondary waste are Fe2O3, Fe3O4, and C. After mechanochemical activation, the
material particles become more dispersed, the particle size decreases significantly, and the spe-
cific surface area increases significantly. At the same time, the diffraction peak strength of the
material decreases significantly, indicating the transformation from crystal structure to amor-
phous structure, and the degree of amorphism increases. In addition, after mechanochemical
activation, the peak-to-peak strength of Fe-OH flexural vibration of the magnetic micro-nano
composite increases, indicating that the Fe-OH content increases. The experimental results of
removing the wastewater containing As (V) show that the treatment results are best when
the initial solution pH is 3. Combined with Zeta potential analysis, it is concluded that the
material removal process of As (V) is affected by electrostatic adsorption. In addition, the
material is less affected by coexisting ions and still maintains a high removal rate of As (V) in
the presence of high concentrations of coexisting ions, which has great application potential.
The kinetic and isotherm fitting results show that the adsorption process of As (V) is more con-
sistent with the quasi-second-order kinetic model and Langmuir isothermal model, indicating
that the removal of As (V) by the material is more biased towards chemisorption and single
molecular layer adsorption, and the theoretical maximum adsorption capacity is 10.477 mg/g.
Zeta, FT-IT, and XPS characterization tests confirm that the removal of As (V) depends on
the coordination exchange reaction between the material and As (V) to form the inner sphere
complex. After five repeated regeneration tests, the material still maintains a high removal
rate of As (V), which proves that the micro-nano magnetic composite material generated by
NdFeB secondary waste under the action of high-energy ball milling is used to remove As (V)
in water, which has low cost, green environmental protection, and high economic benefits.
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