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Abstract: In 2030, the world population will exceed 8.5 billion, increasing the challenges to satisfy
basic needs for food, shelter, water, and/or energy. Irrigation plays a vital role in productive and
sustainable agriculture. In the current context, it is determined not only by water availability but also
by optimal management. Several authors have attempted to measure the performance of irrigation
networks through various approaches in terms of technical indicators. To improve the sustainability
in the pipe sizing of the pressurised irrigation networks, 25 different models were evaluated to discuss
the advantages and disadvantages to consider in future methodologies to size water systems, which
guarantee the network operation but contribute to improving the sustainability. They enable water
managers to use them as tools to reduce a complex evaluation of the performance of a system, and
focusing on better management of resources and sustainability indicators for agricultural ecosystems
are clear and objective values.

Keywords: hydraulic networks; water distribution systems; irrigation; forecasting; water demand

1. Introduction

By 2030, the world’s population will be above 8500 million. Over 800 million inhabi-
tants will add to the current quantity in less than ten years [1]. These substantial increases
present several challenges for cover inputs, such as food, shelter, water, and energy. To
satisfy them, the United Nations Organisation (UN) estimated necessary increases of 35%
in the food supply, 40% in water resources, and 50% in energy to prevent the consequences
of several human crises [2,3]. Undeniably, access to available resources is crucial in a rising
demand scenario to accomplish the required tasks.

According to experts, in terms of quantity, roughly 3% of the total water on the planet
is available for human activities [4]. Among these, the agricultural sector remains the
largest consumer of freshwater (Figure 1). Its consumption is around 70% of withdrawals
and 90% of consumptive usages, compared to 10% required for municipal purposes or
20% for industrial processes [2,5,6]. For example, rice produced requires around 3400 L
of water per kilo. Considering daily water requirements per person are about 100 L, this
consumption is equivalent to the domestic needs of 34 people [7,8].

Water and energy are inextricably linked; for instance, the water sector is a heavy
energy consumer in all life cycle phases: withdrawal, purification, storage, distribution,
and treatment. At the same time, the energy generation sector uses extensive amounts of
water for all its stages and processes [9,10]. In Europe, an estimated 18% of the total water
consumed in energy production is used for cooling [11–13]. With a growing population,
urbanisation, and rising living standards in many countries, the future picture implicates
increased energy use and water consumption [13]. However, several factors can affect
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the predictions, including efficient and renewable technologies and water-smart energy
choices, to achieve a more sustainable integrated water cycle [14–16].
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Figure 1. World freshwater allocation sectors.

Direct and indirect energy inputs are also crucial for the whole chain in agriculture.
Supply agri-food production accounts for 30% of the world’s total energy consumption.
Irrigated pumping has revolutionised food production, providing 40% of worldwide cereal
demand [17]. Nevertheless, despite intensification providing higher efficiency rates, it
is directly connected with more energy demands and elevated GHG emissions, putting
human mitigation and adaptation aspiration at risk [18,19]. Improving a “climate-smart
agriculture” behind and beyond the “farm gate” can achieve substantial savings in water–
energy areas, reducing the impact of the food supply system on the environment [18,20,21].

As the environment establishes the initial conditions, societies expand and climate
changes; therefore, the vision on energy and water concerns must shift, too. The Paris Agree-
ment and the 2030 Agenda recognise that humanity’s long-term development depends on
the sustainable management of resources [22,23]. According to the data, considering a 75%
population benefit, the irrigation sector is critical in a sustainable goal contributing to the
world’s GDP and global food security [24].

Irrigation plays a vital role in productive and sustainable agriculture [25]. Currently,
it is determined not only by water availability since optimal management from project
idea to building is necessary for the entire system life cycle [26]. Increasing knowledge
about irrigation systems and underlying internal processes improved our understanding
of how new conditions affect the systems and how the systems affect the environment. It
can provide detailed information and a solid base for a decision maker to develop smart
strategies towards a goal.

1.1. Irrigation Water Use

Agriculture is the way to provide the additional billion tons of food needed for
consumption shortly. Irrigation is vital for food security in most crops globally, especially
in arid and semiarid areas. Furthermore, artificial rainfall makes it possible to provide the
required water, nutrition, and pest control with crop growth [27–29], as well as diminish
drought losses, frost hazards, and climate variability [30].

Moreover, irrigation is a crucial component of rural economies, especially in areas that
maintain sustainable local small-scale production and the Mediterranean region [31,32].
Figure 2 shows the world’s irrigated area divided into three groups: developed, developing,
and least developing countries, in which the developing countries have a significant role
in food production [33]. Nevertheless, poor management represents a high extraction of
freshwater resources and energy investment. Likewise, it carries a process of progressive
deterioration of the environment. Pollution of wastewater, groundwater table reduction,
eutrophication, soil salinisation, displacement of native diversity, significant greenhouse
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gas emissions (GHGs), and micro-residual pollutants, among other consequences, can lead
to unsustainability [34,35].
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Figure 3 shows the different uses (i.e., agricultural, industrial, and urban) in the
different continents. It shows that agricultural use represents between 20 and 70% of the
consumption. Water use and pollution of resources for growing agriculture will reinforce
global water competition for municipal and industrial sectors.
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Figure 3. World water withdrawal. Data obtained from [36].

It is essential to pay attention to discrepancies between low rainfall regions where the
water resources are already in sustainable borders, such as Spain’s Mediterranean regions
and emerging or developing countries with significant water potential [36–38].

Figure 4 shows the high pressure in Mediterranean Europe in the freshwater, especially
in Spain.
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In the unclear future, the key to success relies on the availability of the resources to
satisfy user’s needs—enough demand, disposable energy, and acceptable cost for pumping
water—without neglecting the environmental premise, which currently must be at the
forefront of all the actors involved, especially water decision makers [40].

1.2. Environmental Implications

As an undeniable reality, climate change accelerated due to the current development
model built upon fossil energy consumption [41]. High climate variability (temperatures
and precipitation patterns), prolonged episodes of drought, and extreme events are re-
current. Those scenarios increase the insecurity in the future management of crop areas,
making it necessary to develop models and tools that allow farm viability within a sustain-
able use of resources [38].

Considering the high stress on non-renewable resources and crop, classical economic
criteria must not be the only performance evaluation parameters [42]. Measuring pro-
ductivity only as a rate between income benefits and inverted monetary inputs in a food
production process keeps the misunderstanding of an integral process where multiple costs
and benefits interact with economic, environmental, social, and cultural variables in the
short, medium, and long term [43].

Given the impossible dissociation between human beings and their surroundings, the
stakeholders should introduce performance monitoring instruments to manage complex-
ity in our new paradigm [44]. Identifying components of food supply challenges within
agriculture ecosystems, their relationships and boundaries, and the socioeconomic, envi-
ronmental, and cultural context lets water managers understand the production process
because of multiple interconnected factors [45].

As a tool for reducing a complex assessment of a system’s performance, focused on better
management of resources, sustainability indicators for agricultural ecosystems are a clear and
objective value [46]. Moreover, they also include the correlation between water–energy factors
(WF-EFs), the environment (climatic factors (CFs), soil factors (SFs)), socio-cultural factors
(SCFs), trade factors (TFs), and gender factors (GFs), among others [18,47,48].

An accurate indicator diagnosis can effectively align exigencies and vulnerabilities,
identifying patterns, tendencies, and cause–effect relations in irrigation activities [49].
Indicator benchmarks improve the efficient use of resources, the effectiveness of activities
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and decisions, equity and the environmental, and the reduction in social impacts. The goal
is to ensure long-term resilience systems and sustainable user welfare [50–53].

The global dimension of water–energy management leads to evaluating the environ-
mental footprint in food production and the entire set of negative and positive responses
that agriculture systems impose [54]. Special attention to irrigation systems is justified
because these are required in more places. However, its non-negligent critical water needs,
inherent pollution, and our uncertain context impose clear boundaries [55].

Considering limitations in environmental and sustainable terms, holistic knowledge
of irrigation systems brings a framework to reflect the wide margins of water and energy
savings in irrigated agriculture. For instance, in Spain, savings have increased by more
than 70% in 15 years [56,57]. Quantifying the performance and constraints of irrigation
systems provides a global view of a present system condition and the possible further
achievements according to the targets and criteria for appraising the improvements within
the water–energy–human nexus. It implies the evaluation of the different sustainability
indicators based on different targets of the Sustainable Development Goals [58].

Several authors attempted to measure the performance of irrigation networks by sev-
eral approaches, such as benchmarking analysis [59], flow-driven deliveries and pressure
studies [60–62], conventional energy and cost reduction [56], water and energy correla-
tions [63], loss quantification [64], and, finally, water footprint, water use performance,
and water savings in environmental and economic viability criteria utilising the effective
sustainability irrigation indicators [65–71].

The present investigation is an evaluation of the different existing methods for esti-
mating peak flow rates to address the design of installations. This stage is crucial not only
in the investment of infrastructures but it also impacts the estimation of the evaluation
of the different targets of the Sustainable Development Goals (SDGs). Also, approaching
the estimation of flow rates with different methodologies can lead to differences in the
assessment of sustainability indicators and energy audits that address the installation of
micro-hydro generation.

2. Evaluation Methodology and Materials

The research methodology is established in different steps, according to Figure 5.
Step I.—Establishment of the parameters. This set is divided into three parts, and a

background review is developed to search for the maximum number of proposal models,
enabling peak flow estimation. The second step of this block, called I.B analysis review,
elaborates a parameter list in which the main variables and characteristics are discretised
in the database by indicators or variables (Step I.C).

Step II.—Database development. A database was established using information and
data gathered from the consulted bibliographic sources. The indicators utilised in the
other examined case studies were chosen to populate the database, encompassing not
only measurements and variables but also reference values. It is noteworthy that certain
indicators were employed across multiple case studies discussed in the published research.
The main variables were peak flow, error between estimation and experimental data, peak
period, and type of distribution, among others.

Step III.—This third block constitutes the main block of the research. In the first
part (Step III.A), an estimation of the evapotranspiration and possible inputs allowing the
development of the different models to determine the peak flow, addressed in Step III.B,
was carried out. In this block, a detailed analysis of four different typologies was carried
out. A discussion was established evaluating different deterministic, statistical, random,
and artificial intelligence models.

According to the review of the background, 45 references were analysed, obtaining
25 different models distributed in Europe, according to Figure 6.
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3. Determination of Flows to Design Irrigation Water Networks

Whereas measuring water consumed in the municipal sector is usual in most countries
and almost essential in the industrial sector, water control in agriculture is not a strict
requirement [72]. Nevertheless, assessing water needs is a fundamental part of sustainable
water resource use to avoid losses and obtain “more crop per drop” [73,74]. In addition,
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operating losses throughout the life cycle of the network are difficult to identify and
quantify [64].

The lack of control, absence, or inaccuracy causes inefficient use of irrigation, affects
expected crops, and generates unnecessary environmental expenses. Boosting food produc-
tion in uncertain conditions calls for effective and sustainable irrigation management and
flexible supplies, which means full appraisal of water–energy deliveries. Qualifying the
systems and approaching the knowledge about demands initially imposed on the design
process can allow for implementation strategies and plans to improve the profit margin of
water–energy inversion [75,76].

Flow and pressure in the network are highly variable throughout the day and the
operation cycle. Said variations are closely connected to established area limitations of
irrigation systems and decision management in the phenological cycle determined by
agroclimatic variables and farmers’ perceptions. The real flows may differ from prior
requirements assumed at the design stage, causing operation problems impacting network
capacity, demand forecast, and environmental resilience [77].

3.1. Parameters of Study

A realistic approach to the dynamic interactions between water irrigation and sustain-
ability requires modelling the conditions and relations in a farm [78]. These are relative to
the cropping patterns demands over the growing process, hydrant discharges, established
network design, environmental conditions and reactions, irrigation technology available,
and crop responses, as well as user habits along different temporary and spatial scales [79].

To understand these complex interactions in agricultural, biological, and environmen-
tal systems and enhance our ability to make predictions, decision makers should study
the interconnected components rather than isolating them [80]. A machine learning ap-
proach was developed to represent diverse Earth systems models through mathematical
relations and schematic concepts nourished with extracted interpretable information from
uncountable data sources [81].

Systems models play a primary role in the development of sustainable agroecosystems.
Several crop models with different scales of complexity and limitations are available to
understand the interaction between soil–water–plant–atmosphere [82]. Different tools have
been developed to estimate yield production and the effects of crops that interact with
weather resources and management practices [83]. Scientific and decision/policy makers
have underpinned the different approaches for increasing the understanding of growing crop
processes and the interaction of soil–water–nitrogen along the life cycle, as well as the impacts
of cropping patterns and irrigation distribution under climate variability [77,84–86].

Different issues emerged in agricultural model sciences developed for researchers and
decision maker stakeholders, reinforced by the available data, technology and supporting
tools, cost–benefit relation, expected results, and specific targets. Purposeful development
of the model, increasing scientific tools, and decision/policy support lead to understanding
the agroecological systems improve under research questions about processes control and
agroclimatic interactions [85]. Description process, understanding relations, and forecast
tools motivate the development of models, which target simplifying complex processes
where more of the hypothesis and assumptions are not linked with real cases but decrease
uncertainty for reasonable results compared with data from the field.

There are models, which consider the soil–water process, reflected in crop water
space–time requirements and water balance [87]. They include calculating the inputs and
outputs of the system, effective rainfall, evapotranspiration, and crop requirements using
soil, climate, and crop data [88]. Soil moisture varies dynamically and at any time in a crop
cycle. Therefore, it is crucial to never drop below the wilting point without exceeding the
field capacity [89].

The Penman–Monteith and Priestley–Taylor equations for soil–water relation mod-
elling are highly simplified but widely applicable. According to FAO’s functional model,
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the physically based approach, FAO-56, allows for the soil–water balance to be obtained
following Equation (1) [90].

r + I + Dd ± ∆SM ± R + Wg − ETc = 0 (1)

where rainfall (r), irrigation (I), and capillary rise (Wg) are the inputs of the system. Surface
runoff (R), water loss out of the root due to deep percolation (Dd), and crop evapotranspi-
ration (ETc) are the outputs that compute the soil moisture change (∆SM).

Evapotranspiration (ET) is the most important variable in the balance [91]. These
phenomenological processes correlate soil evaporation and plant transpiration, which
depend on the climate factors, crop characteristics, and water availability in the soil.

In 1998, the FAO-56 ET model was launched. Several definitions and simulation
procedures are broadly used following the advances in computing calculation, modern
techniques, and tools [92,93].

Climate factors are introduced in this methodology by estimating the daily potential
evapotranspiration of a hypothetical parameterised surface—reference evapotranspiration
(ET0)—using Penman–Monteith, described in Equation (2) [90,94].

ET0 =
0.408 ∆ (Rn − G) + γ 900

T+273 u2 (es − ea)

∆ + γ (1 + 0.34 u2)
(2)

where detailed energy and aerodynamic data are required, and shortwave radiation at
crop surface (Rn), soil heat flux (G), air temperature (T), wind speed (u2), psychrometric
constant (γ), relative humidity by saturation vapour pressure deficit (es − ea), the slope
vapour pressure curve (∆) are found in the equation. Although it is currently used and
widely implemented for decades, the accuracy of this method depends on the available
data.

Other approaches imply evaluating the reference evapotranspiration when lacking in
measures required. The Hargreaves method is proposed as an alternative for assessing ET0
with fewer data, only air temperature, as shown in Equation (3) [95,96].

ET0 = 9.388 10−4Ra
(
Tavg + 17.8

)
TD0.5 (3)

The advantage of this method is that the average daily temperature (Tavg) and tem-
perature range (TD) are the only values that require a dataset of measures (maximum and
minimum daily temperatures). Extraterrestrial radiation (Ra) is a tabulated value. This
method is recommended for use, especially in the absence of existing data or dubious
quality [97].

Secondly, for assessing crop evapotranspiration, the FAO-56 method integrates the
crop characteristics (crop type and growth phases) via Kc. This is the dual coefficient that
combines soil transpiration and crop evaporation along the development stages [90]. This
coefficient is mainly connected to the canopy dynamics, leaf area, and ground cover [98].
Although Kc can be evaluated, crop coefficient tables and curves reported in the literature
adjusted to local conditions and midseason periods are widely used [99–101].

Thus, it is possible to calculate potential evapotranspiration for a given crop at any
moment of its growth following Equation (4).

ETc = ET0Kc (4)

Another parameter in irrigation that needs quantification is effective rainfall (Pe), a
fraction of total valuable rainfall for meeting the water needs to be used by crops, excluding
surface runoff, deep percolation, and soil surface evaporation from Equation (1) [102].
FAO-25 describes several approaches for calculating it by the fixed percentage method,
the potential evapotranspiration/precipitation ratio method, Renfro equation, empirical
relationships, the US Bureau of Reclamation method, and the USDA SCS method [103].
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The simplest methodology generally applies a percentage between 70 and 90% of
the monthly rainfall. The FAO manual proposes maximum slops in the 4–5% range for
Equation (5).

Pe = 0.8 P − 25ifP > 75mm/monthPe = 0.6 P − 10ifP > 75mm/month (5)

where rainfall or precipitation, in mm, is represented as (P), and effective rainfall, mm/month,
is (Pe).

Equation (6) is used to determine the irrigation net water needs. It shows how
these descriptive, empirical, and functional models allow researchers to better understand
the relationships between agro-environmental pieces combining physical and biological
components and mechanisms, permitting an approach to the possible system’s responses
due to certain strategies and decisions adopted within simplified scenarios.

IN = ETc − Pe (6)

In another approach, dynamic systems can integrate conceptual physical models
and mathematical equations with the data collected and provide outputs related to time
changes and responses to different externalities, such as climate change or users’ prac-
tices [104,105]. Sometimes highly complex, although robust, these models need experts to
achieve interpretable results and adapt them to specific issues. However, it is not always
a straightforward task due to knowledge gaps, and unavailable data add uncertainty to
the outputs [70,106]. Examples of such crop models related to irrigation crop water supply,
among others, are FAO agronomic models CROPWAT [107], AquaCrop [69], DSSAT [108],
CropSyst [109], and software tools [93].

There is extensive experience developing agroecosystem models, science, and analytics
tools [110]. The gaps are primarily related to accurately integrating analytical knowledge
into the user’s decision tools [111]. Moreover, various factors are needed to build an inte-
grative agricultural approach, such as the interactions between crops, farms, socioeconomic,
cultural, and landscape context, climatic, environmental, and ecological variables, trades,
and agro-economic business on different scales [112].

Food security crises, sustainability concerns, technology and computer advances,
open information and data accessibility, interdisciplinary and transboundary science, and
user-adapted models summarise a new context that must lead to a new generation model
focused on management for sustainability and productivity [113].

Agro-crop modelling under an irrigation environment forecasts the amount of water
needed, which determines irrigation scheduling, such as when and how much water quan-
tity is necessary to irrigate [114]. Therefore, it is necessary to have integral knowledge of the
internal crop process and system input/output estimable responses to decrease uncertain-
ties. Achieving an accurate system’s behaviour characterisation allows the implementation
of measures to reduce the water–energy quota invested without the possible detriment of
production results expected by farmers.

However, despite the substantial advances in system modelling, the disparity between
calculated and real flow demanded is frequently observed. This discrepancy is most often
attributable to unpredictable weather conditions, users’ practices, and local management
in the present new context of uncertainties [77,115].

3.2. Proposed Methods: Forecasting Irrigation Demand Flow

To determine the flow rate in a distribution system, the complexity of the agricultural
ecosystems mentioned must be taken into account [116]. Additionally, particular consid-
eration of the relationships between crop pattern, crop growth stage, water and energy
requirements, weather conditions, and users’ interactions must be given. They are several
approaches considered for studying the distribution of water discharges and irrigation
scheduling for on-demand irrigation networks [117].
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Space–time analysis of the randomness process in irrigation was introduced for the
flexibility of use and very low probability for a simultaneous operation of all hydrants in a
network, which allowed a mathematical approach for calculating the flow distribution. Of
all the methods developed, Clément’s first formula (CFF) has had great acceptance since its
publication [118].

This formula introduces a statistical analysis for the calculation, implementing a
distribution law of probabilities for hydrants’ operation in the network. Given the simple
application of the algorithm, this methodology has transcended until today. Despite several
errors in simulated flow distribution (since the assumed simplifications are not entirely
assured), it is the most widely used method [62,119–121]. Nevertheless, the accuracy of
these calculations has significant implications for the overall sustainability of the system
assessment, such as economic, energetic, hydric budget, flexibility, and safety parameters
in all stages, from construction to operation management.

Different approaches have been implemented recently due to technological and com-
putational developments that improve forecasting results. Generally called black box
methods, these computational methodologies allow correlating physical parameters with
advanced statistical routines to integrate existing uncertainties when correlating inputs
and outputs.

Tables 1–4 summarise some of the most significant research work. According to the
methodological approach to influence data and involved variables in the circulating flows
forecast, with predictive and management purposes, the methods are differentiated into
four groups: deterministic models (D), statistical models (F), random simulation models
(R) and computational intelligence models (CI).

3.2.1. Deterministic Models (D)

The deterministic conceptual models—empirical, functional, or mechanistic—assume
that uncertainties are external to the process [122]. These models aim to establish a re-
lationship between variables and constants that are well known or measurable and aim
to produce “accurate” results under specific facts and considerations. Their theoretical
approach does not include random methods [123]. This model entirely determines flow
rates by inputs and initial and boundary conditions, and since the model does not contain
any haphazard approach to the phenomena, it is necessary to understand and define the
problem through a vast set of existing information. Moreover, the methodologies described
must gather as much information as possible and use complex models to determine those
that cannot be measured directly or introduce any uncertainty.

Ref. [124] simulated the flow distribution in the network using the SIMODIS method-
ology, where remote sensing satellite data worked under techniques of temporal space
evaluation of soil–water balance by the numerical soil–water flow model (SWARP). The
studied network was in Gromola (southern Italy) using a daily forecast horizon, a one-year
temporal dataset and a 33-day peak period. The model assumes that the network’s hy-
drograph is a product of implicit needs and boundaries related to biophysical parameters
concerning crop water requirements—vegetation status, crop pattern and stage, potential
evapotranspiration rates, surface reflectance, soil properties, groundwater interactions, and
hydraulic capacity of the network, among others. Comparing the total irrigation daily
values from the irrigation season to the simulated data, the method underestimated the
volumes by 9%.

Refs. [125,126] conducted two studies, in 2006 and 2008, in a network in Sicily (Italy)
with different goals. In the first, the main goal was to create geohydrological models for
improving water management in irrigation. Instead, the latter tried to create a distributed
model for the assessment of water in irrigation networks. The irrigation phase is scheduled
based on two parameters: soil–water pressure head threshold and soil–water deficit to be
refilled. Several exposed case studies were conducted, and the outcomes for a simulated
Sicilian district were compiled, resulting in overestimating the modelled flows.
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Ref. [120] developed a model centred on water balance, simulating the whole irrigation
season by calculating the circulating flows through the network at any time based on the
soil moisture deficit. This network was in Santaella, Córdoba (southern Spain), with a
daily forecast horizon and two years’ worth of data accompanied by a 2-week peak period.
Using several climatic and study area characteristics (crop, network, system type, farmer
practices) as inputs, the model performs a complete simulation of the irrigation season
and provides an hourly consumption on each farm and the operation probability for each
event. After evaluating the simulated data and the seasonal volume by year, this method
overestimated the demand by 11.6%. The evaluation for each study is summarised in
Table 1.

Table 1. Summarised deterministic models articles reviewed.

ID Reference Main Results

D.1 [124]

• The temporal variation of water demand at the district level was satisfactorily reproduced.
• Irrigation efficiency was evaluated using indicators calculated from the real transpiration rate and

irrigation values computed by SIMODIS.
• The results of SIMODIS are exceptionally reliable at the primary unit scale while obtaining reliable

results at the secondary unit level.

D.2 [126]

• Agrohydrological simulation models and remote sensing can be effectively combined to improve
irrigation water management in semiarid regions.

• The SIMODIS procedure predicted the water demand satisfactorily at district and secondary levels.
• The distributed approach performed better than the lumped one at a large scale to define the upper

boundary conditions.

D.3 [120]

• Real demand tends to be concentrated at certain times of the day.
• During peak demand periods, water requirements can exceed the design flow.
• Demand is not uniform throughout the day; it increases in the morning until peaking, remains

constant for several hours, and then decreases at midday. This process is repeated in the afternoon.
• To be used in other districts, the gamma model should be applied considering local farmers’ practices

and network constraints.
Human behaviour affects uniform probability prediction.

D.4 [125]

• Differences between simulated and measured irrigation volumes were attributed to different
management behaviours.

• The threshold value of the soil water pressure head in the root zone (hm) and the fraction of soil
water deficit to be refilled (∆) can be tuned adequately to reproduce the spatial and temporal
evolution of crop water use.

• Depends on water availability and farmers’ subjectivity to recognise the crop water requirement.
• This approach can be effectively used to support the decision-making process in managing irrigation

water resources and improving the efficiency of irrigation systems.

3.2.2. Statistical Models (F)

More extended statistical models aim to find a relative frequency associated with
different flows during the irrigation season [127]. Through the assumption of certain
hypotheses and, despite the random behaviours of some variables, it is possible to arrive at
a particular degree of accuracy by utilising an adequate problem definition [128].

These models focus on finding hydrants’ operation probability at a given period, often
during peak periods, in the function of maximum crop requirements and own parameters
of the probability distribution that describe the system’s behaviour to meet a determined
water demand for a given supply [129].

Granados [130] made a detailed description of principal statistical methodologies:
Clément, [118,131], de Boissezon and Haït, [132], and Mavropoulos, [133]. Also, he sum-
marised various research works where authors contrast mathematical flows and calibrate
parameter implications with real or simulated flows in real irrigation networks.

Clément proposed that flows circulating into the network follow the normal distri-
bution when the number of outlets is significant enough by associating farmers’ activities
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with hydrant usage as a binomial variable in a Bernoulli experiment, assuming uniform
open probability and uniform nominal flow rate downstream of a line section [118,131].

According to Clément’s first formula (CFF), it is possible to determine the downstream
flow for a study section using a standardised outlet flow under a service guarantee, as
shown in Equation (7).

QClem = ∑ pidi + U
√

∑ pid2
i (1 − pi) (7)

where the variables are flow to forecast (QClem), fixed flow assignment of an outlet (d),
probability operation hydrant (p), and guaranteed service level (U). The subscript i
indicates the group of outlets with the same flow assignment and probability.

Mavropoulos [133] changed the perspective and described the system’s performance
by defining the oversaturation of the network based on the rate of recurrence of demands
in the network, for instance, how unusual or recurrent demand requests are.

The time between two successive irrigation calls, defined as a random variable (r.v.),
follows an exponential distribution and is associated with the flow discharged at any time
during a peak period using a Weibull distribution. This distribution was selected due to its
high flexibility, making it possible to adapt in several flow distribution cases. Equation (8)
shows the generalised formula proposed by Mavropoulos and Lotidi [134].

Q = ∑
i

Qi = ∑
i

ni pici + 0.5284 ∑
i

ni piqici
αW
√

ti (8)

The equation considers variables such as the number of outlets with the same assigned
flow (n), open hydrant probability (p), shape parameter of the Weibull distribution related
to available time use of the network (αW), outlet flow assignment (c), the time between
two demands (t), and i = index that groups uniform population outlets.

Between the articles that pursue the analysis, validation, and contrast of these equa-
tions, the results that evaluate the theoretical hypothesis assumed for the models are crucial
for future developments.

An entirely random variable is not a precise definition for an open hydrant demand
because external factors can influence it. Pulido-Calvo et al. [119] analysed energy tariff
constraints that affect farmers’ decisions in the township of Cordoba located in Southwest
Spain, using data from 8 years. Their work shows that the probability of outlet operation
cannot be the same over the day and defines different probabilities according to different
energy cost rates.

Monserrat et al. [121] analysed the CFF model’s hypothesis in networks located in
the Ebro River basin (northeast Spain), concluding that only the independent operation
of the outlets is satisfied. Setting the daytime irrigation as a preference rejects the random
probability. As a result, the calculated flow was underestimated compared to the observed
data; a higher standard deviation than calculated in real data, especially connected with
human irrigation preferences, is observed.

Ref. [120] also concluded that human behaviour affects predicted probability and
shows a more significant deviation in distribution flows due to a greater probability of
higher flows. The normal distribution is only shown in a peak period, not according to
CFF. Furthermore, after simulating a complete irrigation season in a case study, the gamma
distribution was proposed as a better fit with elevated suppleness.

The same appreciation was established by [135] in the network and peak period
analysed, where a larger hydrant group operated during weekends in contrast with low
cumulative operation on weekdays. This behaviour is justified due to a higher time
availability for the farmers and lower energy costs; also, a variable hourly probability
operation avoided costly and high evaporation periods.

For Mavropoulos’ method validation, the author published the verification through a
real network with registered data for monthly peak irrigation. Despite the good fit found
with Weibull’s asymmetric distribution, the uniform probability assumed in the model



Water 2024, 16, 1131 13 of 28

could not be corroborated. Therefore, introducing λ3, a correction factor, is necessary,
representing the non-random farmer’s behaviour and other uncertainties [134].

Unsuccessful demand forecasting and the assumed hypothesis for CFF are also dis-
closed in the work of Soler et al. [136]. The authors also mention that the flow rate cannot be
assumed as a random variable if the number of outlets is not large enough or the operating
conditions are not homogeneous.

Ref. [137] conducted various tests to compare CFF’s calculated distribution with
observed flow data compiled from a real system. The results showed that the expected
normal distribution did not match the observed data in any month of the analysis period.
The records had a strong right skew, showing that other distribution functions, such as
GEV, could be a better fit. Farmers’ behaviour and preferences like duration, quantity,
and hourly and weekly trends can explain the gap between data. As exposed by Pérez-
Sánchez et al. [138], human influence determines irrigation patterns, and it is unreasonable
to consider uniform probability as a valid hypothesis for forecasting irrigation flows.

Table 2. Summarised statistical models articles reviewed.

ID Reference Type Main Results

S.1 [119] Statistical

• Probability operation is not a constant due to cost energy discrimination. Farmers prefer low- and
medium-cost hours and avoid high-price hours.

• Human behaviour is influenced by time discrimination rate costs.
• The recommendations of optimum pump combination produced significant reductions in energy

costs.

S.2 [121] Frequentist

• Hypothesis 1: only two possible states of the hydrants (open/closed). Not fulfilled. CV = 25%.
• Hypothesis 2: Uniform hydrant opening throughout the day.
• Not fulfilled. CV = 5.7% daily and CV = 13% hourly.
• Hypothesis 3: The hydrants function randomly and independently.

- Random functioning is rejected since the Kolmogorov–Smirnov p-value = 0.
- Independent operation is fulfilled.

• The normal distribution hypothesis is not fulfilled.
Moreover, the model with Clément’s first formula seems robust enough in the conditions studied, so using
more complicated models is unnecessary

S.3 [120] Deterministic

• The generated distribution tends towards a normal distribution only in the peak demand month
(July) and will not coincide with Clément’s distribution.

• Because the standard deviation is higher, a greater probability of higher flows exists.
• Although most of Clément’s hypotheses were not fulfilled, his formula is a valid design criterion.
• The formula used to determine Clément’s design flow adjusts better to demand behaviour than

Mavropoulo’s does, particularly for a small number of outlets.

S.4 [134] Statistical

• The validity of the probability theory in on-demand irrigation networks was largely verified on the
study network.

• The goodness of fit test results shows that the same crop in a plain area with the same climate, and
general slope and high territorial homogeneity can significantly alter the irrigation water demand,
favouring the randomisation of demand over time.

S.5 [135] Random
Simulation

• Normal distribution fit hypothesis: the Kolmogorov–Smirnov test with a p-value lower than 0.05.
Therefore, it cannot be assumed to be a better approximation to a gamma distribution for 2003 and a
Weibull for 2004.

• Daily and hourly opening hydrant probability hypothesis: The analysis of a variance p-value was
lower than 0.05. Thus, it is concluded that there are significant differences between the peak period
days for each season.

• In the peak period week of the first season, farmers used weekends to irrigate because they had more
time and lower costs. In the following one, the behaviour of the network was not the same, which may
be due to some breakdown in the network or weather conditions.

The underestimation caused by the Clément methodology is due to using the average opening hydrant
probability concept.

S.6 [137] Statistical

• Data were not distributed in the network under CTD (in which the mean and standard deviation
were calculated under Clément’s parameters) in any of the months of the year.

• Normal distribution does not satisfactorily explain the behaviour of the random variables.
• Other distributions were proposed, obtaining a better fit for distributions of the observed flows in

each month.
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3.2.3. Random Simulation Models (R)

Random simulation models focus on system behaviour analysis through a random
approach. The target is a model configuring the relations between variables associated with
the portion of the irrigation problem that cannot be known accurately, thus introducing
uncertainty to the results.

Some parameters influenced by uncertainties are defined randomly within established
assumptions and scopes. Often used for performance analyses of existing networks, these
models propose considering stochastic flow variability due to farmers’ management strategies.
Defined by the users’ decisions related to the perception of crop stage, the number and
location of open hydrants define the complete system performance [139]. Also, the flow rate
is a product of a random computer simulation, a random variable within a sample space
of possible events, which can include potential combinations satisfying the corresponding
constraints and integral network spatial–time variability.

After considering the CFF model, Soler et al. [136] proposed calculating the flow rate
distribution as a non-normalised random variable; they implemented two random methods
based on the number of downstream outlets of the section analysed. Thus, the first step
was to create a complete sample space of irrigation events. Associates knew the constant
operation probability for each hydrant, the corresponding nominative discharge with a
randomly generated vector, and the operational state of the hydrant (on/off) configured by 1
or 0, respectively.

When the number of hydrants is sufficient, the authors used the Monte Carlo approach
to build an incomplete sample space according to known probability and discharge rates.

kj =
(

kj
1, kj

2, . . . , kj
n1

)
→ Qj

I =
n1

∑
i=1

kj
i ·qi → P

[
Q = Qj

1

]
=

n1

∏
i=1

f
(

kj
i

)
∀ j = 1, . . . , mI (9)

where the jth-event on/off vector is
(
kj), the total number of event vectors is (mI), the

probability for the event is (P[Q = Qi]), the nominal flow rate is (qi), and the index for
each hydrant is (i).
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(10)

where Q is the discrete random variable flow vector, f (Q) is the probability density function,
and F(Q) is the cumulative distribution function.

On the other hand, Labye [140] introduced it as part of the design process considering the
temporal variability of flows circulating through the network and the importance of Several
Flow Regimes (SFR approach). Likewise, as opposed to the “only a single flow”, Lamaddalena
et al. [141] provide a Random Generated Model (RGM) for obtaining different combinations
of hydrants simultaneously open among the total of hydrants in the network, satisfying a
given discharge and considering an upstream demand hydrograph at the end of the network
as an input.

The flow circulating in a specific section is calculated by adding the discharges withdrawn
from the downstream open hydrants. This tool serves different purposes, such as analysing
an existing network or designing a new one while computing the upstream end demand
input by a CFF-based model.

In a different approach, without considering an average operation probability, Moreno
et al. [135] assumed a random starting opening time for the hydrants and the irrigation set
time for each one according to the cropping requirements and the crop yield characteristics.
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The method builds vast Random Daily Demand Curves through a dataset of open hydrants
and the operation time of the network.

Adding these open hydrants makes it possible to calculate the total demand upstream
of the study section in a determined time. Obtaining the main line flow associated with an
operational quality service is possible. The case study provides a good fit between measured
and calculated data.

Table 3. Summarised random models.

ID Reference Conclusions

R.1 [141]

• A good fit exists between the theoretical Gaussian curve and the histogram of frequencies obtained
using field data. This means the population of the discharges during this period is well represented
by CFF.

• The r coefficient should be intended only as a calibration coefficient aiming to understand the
farmer’s behaviour.

• Using field calculations, the Clément operation quality corresponded to 97.6% (exceeding the
designed value of 95%). This implies a lower probability of exceeding the maximum discharge.

R.2 [142]

• The IRDEMAND model was able to generate hourly discharge hydrographs of pressurised irrigation
systems operating on demand.

• This methodology considers the deterministic component (crop irrigation requirements) and the
uncertainty associated with farmers’ decisions on crops, farm irrigation systems, seeding dates,
irrigation performances, and scheduling.

R.3 [143]

• The comparison has shown good correspondence, particularly for daily withdrawn volumes.
• A stochastic approach simulated the farmers’ management strategy.
• The simulated hourly discharges showed, sometimes, hourly peaks higher than the measured ones.
• Model results show good agreements between the registered and simulated values for both the daily

and hourly irrigation volumes.

R.4 [135]

• RDDC has a better fit with the measured data compared to the Clément methodology.
• Considering a normal flow distribution in each line, Clément’s underestimation is due to the use of

opening hydrant probability.
• The proposed methodology avoids the problem of using average opening hydrant probability.

R.5 [144]

• The HydroGEN model was conceived based on a methodology consisting of deterministic and
stochastic components.

• The model’s short approach cannot simulate the hourly configurations of hydrants in simultaneous
operations.

• The model applicability varies from system design and redesign to the analysis of operation and
evaluation of the performance of on-demand irrigation networks.

R.6 [136]

• The alternative methods proposed work well in the analysed scenarios, mainly because the normality
hypothesis is not required.

• The programs allow the applicability of Clément’s method to be checked and provide two alternative
solutions when the CFF fails.

R.7 [145]
• DESIDS module (Decision Support for Irrigation Distribution Systems)
• The model proved to be a crucial tool for decision making, providing information, flexibility, and the

ability to predict PID operation.

Hybrid models exposed by Khadra et al. [139,141], Calejo et al. [142], Zaccaria et al. [144],
and Fouial et al. [145] are a combination of deterministic and random stochastic models.
They assume the presence of variables within the model requiring random treatment due
to wider spatial–temporary variability, higher uncertainty contribution in the process, and
low viability to assess an accurate soil–water balance.

Deterministic components, water budget, and crop requirements are estimated utilis-
ing the soil–water balance at the plot irrigated level. Uncertainties and variability of some
parameters, such as those introduced by the farmers’ management decisions—seed day,
irrigation depths, irrigation efficiencies, and starting irrigation time—are modelled by a
stochastic approach.

Similarly, Pérez-Sánchez et al. [138] proposed a new methodology for determining
flow allocations, crop water demand, and consumption patterns, which are considered
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by a deterministic approach. Assuming indeterminate irrigation farmers’ habits are the
stochastic part, and the model included weekly and hourly trends and the irrigation
duration using information about users’ behaviour obtained from farm interviews.

3.2.4. Computational Intelligence Models (CI)

Fourthly, some proposals face the complex problem of flow distribution in the net-
works in a varying and uncertain environment under the influence of knowing compu-
tational intelligence models. Focused on understanding systems’ behaviour through the
design of “intelligent agents” that represent real problems, these models propose applica-
tions that exhibit an ability to learn from historical data and adapt it to predict new data,
inspired by the biological and organisational models [146,147].

The branches composing the computational intelligence that promotes efficient fore-
casting solutions include fuzzy logic, decision trees, neural networks, and evolutionary
algorithm models [148].

Krupakar et al. [149] performed a comparative analyses of a broad spectrum of meth-
ods regarding the performance and accuracy of predictions. Some of the analysed methods
are summarised below.

A Computational Neural Network, CNN, is a non-linear mathematical structure that
tries to reproduce the human brain’s performance to solve problems and its ability to
replicate complex non-linear problems, finding patterns and correlations. Learning from
the relations between inputs and outputs allows it to apply the knowledge acquired to
solve different situations in a new context [150,151].

The performance of CNN models in predicting water irrigation demands was pre-
sented by Pulido Calvo et al. [152], taking past and present data on water demands and
climatic and crop parameters as inputs.

In a four-layer feed-forward CNN structure (i.e., in a model where the previous
information travels only in one way from the input to output layers and with hidden
layers), a learning–training algorithm to determine the interconnecting weights between
the nodes and neurons of each layer is implemented.

Activation functions were linear, and sigmoidal non-linear functions were used for
the output layer and hidden layers, respectively. The controlled index chosen for the model
was the determination coefficient (R2

t ).
Fuzzy logic rules (FL) introduce the mathematics of fuzzy theory [153], which allows

one to study and describe the systems within a scale that includes partial values, such
as the Boolean logic of zeros (0) and ones (1), gaining knowledge of the information that
involves a certain degree of uncertainty.

This alternative to the binary systems resembles the human decision procedure that
can make a choice based on the information with much imprecision, such as “it is warm”
or “it is wet”, traducing it in clear values through the assigned relation functions [154].
Genetic algorithms (GAs) are used to find the optimum solution to complex problems. This
approach is inspired by natural selection and heritage principles, where through crossovers,
selection, and mutation rules, the initial populations defined “evolve” to better individuals
as a better solution, improving their characteristics generation after generation.

A defined objective function evaluates the fitness of each new individual generated,
and a constraint set penalises those who violate them [155].

Multiple regression models are used to obtain a linear equation that explains the
phenomena targeted to predict dependent variables by knowing independent variables
and the assigned contributions of each one to these estimations [156].

Pulido-Calvo et al. [157] implemented multiple regression for predicting daily water
consumed as a dependent variable in irrigation models. In a best-proposed model, the
water demand of the previous two days was recorded on a farm by a telemetry system
installed as input knowing variables. Equation (11) shows the linear equation obtained for
a calibrated analysis period for olive crop farms.

Q̂t = 4.01 + 0.91Qt−1 − 0.18Qt−2 (11)
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where Q̂t is the estimated consumption on day t and Qt−1 and Qt−2 are the observed
demands at one and two days before t, respectively.

Large amounts of information and variables can complicate any model and reduce the
precision due to high correlations between its components. Wang et al. [158] implemented
a regression analysis method to face this problem using Principal Component Analysis
(PCA) methods to identify the main factors influencing water demand, keeping as much
information as possible while reducing the large amounts of inputs in a multiple-factor
irrigation space.

Results show that the contribution of precipitation and irrigated areas have the
strongest influence among the analysed factors. Both are used in a linear regression
method in addition to a water-saving coefficient (α) representing the human influence on
irrigation demand.

This coefficient includes planting structure adjustment and water-saving technologies,
which can change the water demand required year by year. Equation (12) represents the
function of the water demand for irrigation.

W =
a + b ∗ P + c ∗ F

α(t−t0)
(12)

where W is the predicted amount of water, P is the precipitation, F is the irrigation area, α
is the annual average water saving coefficient, t is the forecasting year, and t0 is the data
series corresponding to the first year.

To capitalise on the strength of several models and enhance their entire performance,
combining them to create hybrid models is possible. Ref. [151] developed a model combining
different paradigms from CI, such as a feed-forward CNN, fuzzy logic, and genetic algorithms,
to forecast daily irrigation district demands, taking only the historical data series as the input.
According to the authors, the predictive capacity of this model is explained by its remarkable
ability to extract the highly variable and unstable underlying patterns of the time series data.

In further work, Ref. [159] opted for the Evolutionary Robotic method (ER), which obtains
the best CNN and integrates the capacity of the GA to improve precision. This method created
an optimal ANGN (Artificial Neuro-Genetic Network) for a short-term (daily) forecast of
irrigation demands at the district level. A GA was used to achieve the optimal parameters
that structure the CNN to forecast with maximal accuracy and minimal error estimation.

After correlation analysis, the model reduced the data to twenty-seven possible weather
inputs and daily historical water register data and selected seven of the best inputs to achieve
the singular water demand output.

Although the model has excellent performance, matching observed and simulated data
with small datasets and simulation time shows that for the peak demands, the lack of accuracy
is present for the three best CNNs. The article refers to various reasons, such as a lack of
adequately trained patterns with extreme values.

In another hybrid method, Ref. [160] predicted the amount of water applied on a farm.
Likewise, this work combines the three methodologies (CNN, FL, and GA). Fuzzy logic was
used to select relevant inputs from the vast irrigation space information and to model farmers’
behaviour related to local practices, empirical thermal sensation, or holiday appreciation.
Genetic algorithms were implemented to optimally split the linguistic universe for each
variable (e.g., “it is warm”) to be transformed in a range of mathematical inference sets.

Input variables that directly correlate with applied water forecast were, for this work,
irrigation depth water from the previous and two previous days; the thermal sensation can
also condition farmers’ irrigation decisions. Trained with three different crops in an irrigation
district, the analysis model shows that cultural and local practices defined for users’ demands
can differ for each crop, even when the irrigation system stays the same.

Accenting the relations between dataset attributes inputs and expected forecast outputs,
decision tree models (DT) are structures with internal and external nodes, decision functions,
and terminal data results, connected by branches that search for understanding logic rules
between them.
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Ref. [161] used the DT model to focus attention on when the irrigation event occurs at the
farm level. As a binary occurrence problem capable of better-replicating farmers’ behaviour,
a DT was built starting with an irrigation process input vector, which included weather,
phenological plant state, local practices, and daily hydrant operation, and was explicitly
selected for a case study and split into two main classes.

A multi-objective GA selected the optimal tree structure. The accuracy of predicted
event occurrences for the best DT designed was very high, between 90 and 100% of
irrigation events in a real network.

Table 4. Summarised computer intelligence models articles reviewed.

ID Reference Model Type Conclusions

CI.1 [152] Computational
Neural Networks (CNNs)

• The CNN model predicted daily water demand better than multiple
regression and univariate time series analysis.

• The best results were obtained when inputting the water demands
and maximum temperatures from the two previous days.

• The model is well suited for real-time operations when the system’s
state is continuously monitored.

CI.2 [157] Linear Regressions and Computational
Neural Networks (CNNs)

• The best demand predictions were obtained when using the water
demands from the two previous days as inputs.

• Results could indicate that rainfall factors and other climatic variables
are implicitly considered in water demand observations.

• The CNN performed better than the regressions when water demand
and climatic variables were considered as input data.

• Short-term demand modelling can be used as input in real-time
methods and/or programs for managing water delivery systems.

CI.3 [151]

Hybrid
Computational Neural Networks + Fuzzy Logic +

Genetic Algorithm
(CNNs + FL + GA)

• The hybrid methodology was designed to forecast one day ahead of
daily water demands at irrigation districts.

• Fuzzy inference was used to estimate the correction of forecasts
obtained from an autoregressive neural network to find the optimal
values of the parameters of the fuzzy system.

• This model, with not very large data requirements, can be very
suitable for decision-making strategies in networks.

CI.4 [159] Artificial Neuro-Genetic Networks (ANGNs)

• The model was applied to predict water demand one day ahead in the
network.

• The genetic algorithm was used to find the optimal neural network
settings to explain the maximum water demand variance with
minimal error estimation.

• Without an extended dataset and time requirements, the model can be
a powerful tool for developing management strategies.

CI.5 [158] Principal Component Analysis (PCA) + Regression
Analysis Methods

• The irrigation water demand forecasting method, considering
multiple factors, can achieve higher modelling accuracy.

• The PCA method was used to identify the main influencing factors
(precipitation, irrigation area, water-saving technology)

• The water-saving improvement coefficient (α) concept is introduced
into the water demand forecasting model based on the dual
characteristic of “artificial-natural”.

• The predicted irrigation water requirements of the Haihe River basin
are lower than the present situation at the moment of the study.

CI.6 [160]

Hybrid
Computational Neural Networks + Fuzzy Logic +

Genetic Algorithm
(CNNs + FL + GA)

• Farmers’ behaviour and cultural practices differ depending on the
crop, even when the irrigation system is the same for different crops.

• When several crops were trained together, the model’s
representativeness and accuracy were worse than those trained
independently.

• Irrigation district managers can determine the amount of water to
apply at each hydrant beforehand, thus making it possible to manage
the pumping station in advance and maximise its efficiency.

• In the event of a pumping station failure, these models allow
scheduling repairs and managing the time required to fix pumps,
repair equipment, and purchase materials.

CI.7 [161] Decision Trees + Genetic Algorithm (DTs + GA)

• DTs were successfully used as classification models to forecast when
farmers irrigate.

• The model focuses on the prediction of when irrigation events occur.
• The optimal classification model predicted between 99.16% and 100%

for the given dataset.
• The model also allows the user to know each operational zone of the

irrigation network one day ahead.
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3.3. Flow Pipe Sizing: Indicators

The use of the different methodologies, as well as the study of opening probabilities
as a function of the flow assessment and the estimation model, allows water managers to
obtain different flow distributions over time. These distributions, which are different ac-
cording to the chosen method (different colours), are represented schematically in Figure 7.
Defining the design value and the best estimate is crucial in the design and subsequent
management of water infrastructure.
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As shown in Table 5, which includes 20 different distribution networks, the uniqueness
of the network and its topology implies that the values of flow, leakage, and energy
consumed (and thus CO2 emitted) are different. Therefore, the analysis of flow distributions
is crucial to address the design and subsequent management of distribution systems.

Flow distributions not only involve energy consumption and CO2 water footprint, but
the construction of the network itself involves CO2 emissions for each metre of pipeline
installed when taking into account the creation, excavation, transport, and execution of
the irrigation system works, as shown in Figure 8,which shows that the variation of CO2
emitted varies between 50 and 150% as a function of the diameter and the material.
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Table 5. Variation of the flow, leakage, and annual consumed energy in irrigation networks.

No. Reference Country Average Flow
(L/s)

Average Leakage
(L/s)

Annual Energy Consumed
(MWh)

Annual Carbon Emission
(TnCO2)

1 [162] Portugal 17.36 3.47 139.09 257

2 [163] Spain 31.17 6.23 2949.01 2.98

3 [138] Spain 29.34 5.87 2776.28 2.81

4 [164] Spain 4012 802.40 379,567.30 383.97

5 [165] Italy 1200 240.00 113,529.60 114.85

6 [166] Spain 17.81 3.56 1685.21 13

7 [167] Spain 10 2.00 946.08 0.96

8 [168] Spain 479.8 95.96 45,392.92 1140.2

9 [168] Spain 1428 285.60 135,100.22 136.67

10 [169] Spain 221.80 6.76 20,984.58 21.23

11 [169] Spain 0.036 0.01 1245.95 1.26

12 [169] Peru 250 50.00 23,652.00 23.93

13 [170] Spain 76.27 2.32 7215.78 7.3

14 [171] Greece 774 154.80 73,226.59 74.08

15 [172] Uzbekistan 619.61 123.92 58,620.00 59.29

16 [173] Spain 4800 960.00 454,118.40 459.39

17 [174] India 6.3 1.26 596.03 0.6

18 [175] Spain 120 24.00 11,352.96 11.48

19 [176] Jordan 520.8 104.16 49,271.85 49.84

20 [177] Italy 215.04 43.01 20,345.10 20.58

4. Conclusions

To accurately forecast irrigation demands, agronomic variables have a key role. More-
over, relationships between crop patterns, crop group stage, water and energy requirements,
weather conditions, and user interactions should be considered. Various approaches have
been developed, resulting in different methodologies showing the different methods to
estimate the maximum flow to size the different pipes of water irritation networks.

This paper shows some of the most important articles supporting different methods for
forecasting irrigation demand. Based on the variables involved, the methods are classified
into four groups: (i) deterministic models (D), in which it is assumed that uncertainties
are external to the process, and they need to gather as much information as possible, and
(ii) statistical models (F), which aim to determine the relative frequency corresponding
to different flows during the irrigation season. The main goal is obtaining the operation
probability of the hydrants at a given period. (iii) Random simulation models (R) consider a
random approach of variables by creating and assuming relationships with the components
associated with the portion of the irrigation that cannot be known accurately. They be
influenced by uncertainties or within established assumptions and scopes. (iv) Computa-
tional intelligence models (CI) can learn from historical data and use them to predict new
values based on patterns and series inspired by the biological and organisational models.
The comparison of the different methods was focused on the adjustment of the function
and a better definition of the maximum flow rate that allows the design flow rate to be
established. Addressing and/or knowing the best flow frequency distribution function
according to statistical function settings can lead to improved irrigation network design
and management methods in terms of sustainability and investment.

Computer intelligence science is implemented in many fields and transforming water
management concepts. Progress in this area and data collection technology allow modelling
variables, such as human behaviour, thus finding relationships between expected water
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demands and weather conditions, water applied in previous days, and even the users’
thermal sensations.

It is powerful to learn from experience and quickly adapt to new information. More-
over, it is used to create robust models for getting into advanced irrigation management,
saving considerable water volumes and energy and leading to better planning for each
irrigation season and day-to-day operation time.

A study of the influence of flow distribution in distribution networks, considering its
influence on energy consumption, the possible installation of micro-hydraulic generation
systems, and its sustainability in terms of infrastructure implementation and operation, is
necessary to address sustainable management of irrigated agriculture.
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Abbreviation
List of acronyms and abbreviations used in this article.

CFF Clément’s first formula
CNNs Computer Neuronal Networks
DESA Department of Economic and Social Affairs
DESA Department of Economic and Social Affairs
FAO Food and Agriculture of the United Nations
EEA European Environmental Agency
ICID International Commission on Irrigation and Drainage
IPCC International Panel on Climate Change
IWMI International Water Management Institute
RGM Random Generated Model
SFRs Several Flow Regimes
UN United Nations
UN United Nations
WEF World Economic Forum
WWAP United Nations World Water Assessment Programme
WWDR World Water Development Report
αW Shape parameter of the Weibull distribution
α Annual average water saving coefficient
∆SM Soil moisture change
∆ET0 Slope vapour pressure
γET0 Psychrometric constant
ci Outlet flow assignment of group i
Dd Water loss out of the root due to deep percolation
di Fixed flow assignment of outlet group i
ETc Crop evapotranspiration
ET0 Reference evapotranspiration
es − ea Relative humidity by saturation vapour pressure deficit
F Irrigation area
F(Q) Cumulative distribution function (cdf )
f (Q) Probability density function
G Soil heat flux
I Irrigation
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IN Net irrigation water needs
Kc Crop coefficient
kj Vector representing the jth event
mI Total number of vectors analysed
ni Number of outlets with the same assigned flow at group i
P Precipitation; rainfall
Pe Effective rainfall
P [Q = Qi] Probability of Q being Qi
pi Probability of the operation of hydrant group i
Q Discrete random variable flow vector
Q̂t Estimated water demand in day t
QClem Flow to forecast (Clément’s first formula)
Qt−1 Observed water demand in day t − 1
Qt−2 Observed water demand in day t − 2
qi Nominal flow rate of vector i
R Surface runoff
Ra Extraterrestrial radiation
Rn Radiation at crop surface
r Rainfall
T Air temperature
TD Temperature range
Tavg Average daily temperature
t Forecasting year
t0 Data series corresponding to the first year
ti Time between two demands in group i
Ui Guaranteed service level of group i
u2 Wind speed
W Predicted amount of water demanded
Wg Capillary rise
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79. Foster, T.; Mieno, T.; Brozović, N. Satellite-Based Monitoring of Irrigation Water Use: Assessing Measurement Errors and Their
Implications for Agricultural Water Management Policy. Water Resour. Res. 2020, 56, e2020WR028378. [CrossRef]

80. Uralovich, K.S.; Toshmamatovich, T.U.; Kubayevich, K.F.; Sapaev, I.B.; Saylaubaevna, S.S.; Beknazarova, Z.F.; Khurramov, A. A
Primary Factor in Sustainable Development and Environmental Sustainability Is Environmental Education. Casp. J. Environ. Sci.
2023, 21, 965–975. [CrossRef]

81. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep Learning and Process Understand-
ing for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [CrossRef]

82. Gavasso-Rita, Y.L.; Papalexiou, S.M.; Li, Y.; Elshorbagy, A.; Li, Z.; Schuster-Wallace, C. Crop Models and Their Use in Assessing
Crop Production and Food Security: A Review. Food Energy Secur. 2024, 13, e503. [CrossRef]

83. Schauberger, B.; Jägermeyr, J.; Gornott, C. A Systematic Review of Local to Regional Yield Forecasting Approaches and Frequently
Used Data Resources. Eur. J. Agron. 2020, 120, 126153. [CrossRef]

84. di Paola, A.; Valentini, R.; Santini, M. An Overview of Available Crop Growth and Yield Models for Studies and Assessments in
Agriculture. J. Sci. Food Agric. 2016, 96, 709–714. [CrossRef]

85. Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al.
Brief History of Agricultural Systems Modeling. Agric. Syst. 2017, 155, 240–254. [CrossRef]

86. Siad, S.M.; Iacobellis, V.; Zdruli, P.; Gioia, A.; Stavi, I.; Hoogenboom, G. A Review of Coupled Hydrologic and Crop Growth
Models. Agric. Water Manag. 2019, 224, 105746. [CrossRef]

87. Lopez-Jimenez, J.; Vande Wouwer, A.; Quijano, N. Dynamic Modeling of Crop–Soil Systems to Design Monitoring and Automatic
Irrigation Processes: A Review with Worked Examples. Water 2022, 14, 889. [CrossRef]

88. Narmilan, A.; Sugirtharan, M. Application of FAO-CROPWAT Modelling on Estimation of Irrigation Scheduling for Paddy
Cultivation in Batticaloa District, Sri Lanka. Agric. Rev. 2020, 42, 73–79. [CrossRef]

89. Saleem, S.K.; Delgoda, D.K.; Ooi, S.K.; Dassanayake, K.B.; Liu, L.; Halgamuge, M.N.; Malano, H. Model Predictive Control for
Real-Time Irrigation Scheduling. IFAC Proc. Vol. 2013, 46, 299–304. [CrossRef]

90. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements (No. 56);
FAO: Rome, Italy, 1998.

91. Gong, L.; Xu, C.Y.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the Penman–Monteith Reference Evapotranspiration to Key
Climatic Variables in the Changjiang (Yangtze River) Basin. J. Hydrol. 2006, 329, 620–629. [CrossRef]

92. Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop Evapotranspiration Estimation with FAO56: Past and Future. Agric. Water
Manag. 2015, 147, 4–20. [CrossRef]

93. Kisekka, I.; DeJonge, K.C.; Ma, L.; Paz, J.; Douglas-Mankin, K. Crop Modeling Applications in Agricultural Water Management.
Trans. ASABE 2017, 60, 1959–1964. [CrossRef]

94. Allen, R.G.; Walter, I.A.; Elliott, R.; Howell, T.A.; Itenfisu, D.; Jensen, M.E. The ASCE Standardized Reference Evapotranspiration
Equation; American Society of Civil Engineers: Reston, VA, USA, 2005.

95. Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [CrossRef]
96. Berti, A.; Tardivo, G.; Chiaudani, A.; Rech, F.; Borin, M. Assessing Reference Evapotranspiration by the Hargreaves Method in

North-Eastern Italy. Agric. Water Manag. 2014, 140, 20–25. [CrossRef]
97. Hargreaves, G.H.; Asce, F.; Allen, R.G. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng.

2003, 129, 53–63. [CrossRef]
98. Farg, E.; Arafat, S.M.; Abd El-Wahed, M.S.; El-Gindy, A.M. Estimation of Evapotranspiration ETc and Crop Coefficient Kc of

Wheat, in South Nile Delta of Egypt Using Integrated FAO-56 Approach and Remote Sensing Data. Egypt. J. Remote Sens. Space
Sci. 2012, 15, 83–89. [CrossRef]

99. Allen, R.G.; Pereira, L.S. Estimating Crop Coefficients from Fraction of Ground Cover and Height. Irrig. Sci. 2009, 28, 17–34.
[CrossRef]

100. Martínez-Cob, A. Necesidades Hídricas En Cultivos Hortícolas. Rev. Hortic. 2004, 177, 34–40.
101. Mateos, L.; González-Dugo, M.P.; Testi, L.; Villalobos, F.J. Monitoring Evapotranspiration of Irrigated Crops Using Crop

Coefficients Derived from Time Series of Satellite Images. I. Method Validation. Agric. Water Manag. 2013, 125, 81–91. [CrossRef]

https://doi.org/10.1016/j.agwat.2016.05.007
https://doi.org/10.2166/9781780402284
https://doi.org/10.1016/j.agwat.2006.06.008
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000210
https://doi.org/10.1016/j.jclepro.2022.131270
https://doi.org/10.1029/2020WR028378
https://doi.org/10.22124/CJES.2023.7155
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1002/fes3.503
https://doi.org/10.1016/j.eja.2020.126153
https://doi.org/10.1002/jsfa.7359
https://doi.org/10.1016/j.agsy.2016.05.014
https://doi.org/10.1016/j.agwat.2019.105746
https://doi.org/10.3390/w14060889
https://doi.org/10.18805/ag.R-152
https://doi.org/10.3182/20130828-2-SF-3019.00062
https://doi.org/10.1016/j.jhydrol.2006.03.027
https://doi.org/10.1016/j.agwat.2014.07.031
https://doi.org/10.13031/trans.12693
https://doi.org/10.13031/2013.26773
https://doi.org/10.1016/j.agwat.2014.03.015
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
https://doi.org/10.1016/j.ejrs.2012.02.001
https://doi.org/10.1007/s00271-009-0182-z
https://doi.org/10.1016/j.agwat.2012.11.005


Water 2024, 16, 1131 26 of 28

102. Brower, C.; Heibloem, M. Irrigation Water Management Training Manual No. 3: Irrigation Water Management: Irrigation Water
Needs. FAO, Inter-national Support Program for Irrigation Water Management. In Land and Water Development Division; FAO:
Rome, Italy, 1986.

103. Dastane, N.G. Effective Rainfall in Irrigated Agriculture. In Bulletins FAO d’Irrigation et de Drainage (FAO)-Estudios FAO; FAO:
Rome, Italy, 1978.

104. DeJonge, K.C.; Thorp, K.R. Implementing Standardized Reference Evapotranspiration and Dual Crop Coefficient Approach in
the DSSAT Cropping System Model. Trans. ASABE 2017, 60, 1965–1981. [CrossRef]

105. Wallach, D.; Makowski, D.; Jones, J.W.; Brun, F. Working with Dynamic Crop Models: Methods, Tools and Examples for Agriculture and
Environment, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 1–487. [CrossRef]

106. Dzotsi, K.A.; Basso, B.; Jones, J.W. Development, Uncertainty and Sensitivity Analysis of the Simple SALUS Crop Model in
DSSAT. Ecol. Modell. 2013, 260, 62–76. [CrossRef]

107. FAO CropWat | Land & Water | Food and Agriculture Organization of the United Nations | Land & Water | Food and Agriculture
Organization of the United Nations. Available online: https://www.fao.org/land-water/databases-and-software/cropwat/en/
(accessed on 4 August 2022).

108. Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie,
J.T. The DSSAT Cropping System Model. Eur. J. Agron. 2003, 18, 235–265. [CrossRef]

109. Stöckle, C.O.; Kemanian, A.R.; Nelson, R.L.; Adam, J.C.; Sommer, R.; Carlson, B. CropSyst Model Evolution: From Field to
Regional to Global Scales and from Research to Decision Support Systems. Environ. Model. Softw. 2014, 62, 361–369. [CrossRef]

110. Prost, L.; Martin, G.; Ballot, R.; Benoit, M.; Bergez, J.E.; Bockstaller, C.; Cerf, M.; Deytieux, V.; Hossard, L.; Jeuffroy, M.H.; et al.
Key Research Challenges to Supporting Farm Transitions to Agroecology in Advanced Economies. A Review. Agron. Sustain.
Dev. 2023, 43, 1–19. [CrossRef]

111. Ara, I.; Turner, L.; Harrison, M.T.; Monjardino, M.; deVoil, P.; Rodriguez, D. Application, Adoption and Opportunities for
Improving Decision Support Systems in Irrigated Agriculture: A Review. Agric. Water Manag. 2021, 257, 107161. [CrossRef]

112. Mouratiadou, I.; Wezel, A.; Kamilia, K.; Marchetti, A.; Paracchini, M.L.; Bàrberi, P. The Socio-Economic Performance of
Agroecology. A Review. Agron. Sustain. Dev. 2024, 44, 19. [CrossRef]

113. Antle, J.M.; Basso, B.; Conant, R.T.; Godfray, H.C.J.; Jones, J.W.; Herrero, M.; Howitt, R.E.; Keating, B.A.; Munoz-Carpena, R.;
Rosenzweig, C.; et al. Towards a New Generation of Agricultural System Data, Models and Knowledge Products: Design and
Improvement. Agric. Syst. 2017, 155, 255–268. [CrossRef]

114. Hussain, S.B.; Karagiannis, E.; Manzoor, M.; Ziogas, V. From Stress to Success: Harnessing Technological Advancements to
Overcome Climate Change Impacts in Citriculture. Crit. Rev. Plant Sci. 2023, 42, 345–363. [CrossRef]

115. Dehghan, Z.; Fathian, F.; Eslamian, S. Climate Change Impact on Agriculture and Irrigation Network. In Climate Change
Management; Springer: Cham, Switzerland, 2019; pp. 333–354. [CrossRef]

116. Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision Support Systems for Agriculture 4.0: Survey and Challenges. Comput.
Electron. Agric. 2020, 170, 105256. [CrossRef]

117. Akbari Variani, H.; Afshar, A.; Vahabzadeh, M.; Molajou, A. A Review on Food Subsystem Simulation Models for The Water-
Food-Energy: Development Perspective. Environ. Sci. Pollut. Res. 2022, 30, 95197–95214. [CrossRef]

118. Clément, R. Calcul Des Débits Dans Les Réseaux d’irrigation Fonctionnant à La Demande. La Houille Blanche 1966, 52, 553–576.
[CrossRef]

119. Pulido-Calvo, I.; Roldán, J.; López-Luque, R.; Gutiérrez-Estrada, J.C. Water Delivery System Planning Considering Irrigation
Simultaneity. J. Irrig. Drain. Eng. 2003, 129, 247–255. [CrossRef]

120. Rodríguez Díaz, J.A.; Camacho Poyato, E.; López Luque, R. Model to Forecast Maximum Flows in On-Demand Irrigation
Distribution Networks. J. Irrig. Drain. Eng. 2007, 133, 222–231. [CrossRef]

121. Monserrat, J.; Poch, R.; Colomer, M.A.; Mora, F. Analysis of Clément’s First Formula for Irrigation Distribution Networks. J. Irrig.
Drain. Eng. 2004, 130, 99–105. [CrossRef]

122. Srikrishnan, V.; Lafferty, D.C.; Wong, T.E.; Lamontagne, J.R.; Quinn, J.D.; Sharma, S.; Molla, N.J.; Herman, J.D.; Sriver, R.L.; Morris,
J.F.; et al. Uncertainty Analysis in Multi-Sector Systems: Considerations for Risk Analysis, Projection, and Planning for Complex
Systems. Earths Future 2022, 10, e2021EF002644. [CrossRef]

123. Tangirala, A.K. Principles of System Identification: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2018; ISBN 1315222507.
124. D’Urso, G. Simulation and Management of On-Demand Irrigation Systems: A Combined Agrohydrological and Remote Sensing

Approach. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2001.
125. Minacapilli, M.; Iovino, M.; D’Urso, G. A Distributed Agro-Hydrological Model for Irrigation Water Demand Assessment. Agric.

Water Manag. 2008, 95, 123–132. [CrossRef]
126. Minacapilli, M.; Iovino, M.; D’Urso, G. Crop And Irrigation Water Management Using High Resolution Remote Sensing And

Agrohydrological Models. AIP Conf. Proc. 2006, 852, 99. [CrossRef]
127. Cui, S.; Zhang, J.; Wang, X.; Wu, M.; Cao, X. Fuzzy Composite Risk Assessment of Water-Energy-Food-Carbon Nexus in the

Dispark Pumped Irrigation System. J. Hydrol. 2023, 624, 129879. [CrossRef]
128. Valizadeh, N.; Rezaei-Moghaddam, K.; Hayati, D. Analyzing Iranian Farmers’ Behavioral Intention towards Acceptance of Drip

Irrigation Using Extended Technology Acceptance Model. J. Agric. Sci. Technol. 2020, 22, 1177–1190.

https://doi.org/10.13031/trans.12321
https://doi.org/10.1016/C2011-0-06987-9
https://doi.org/10.1016/j.ecolmodel.2013.03.017
https://www.fao.org/land-water/databases-and-software/cropwat/en/
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/j.envsoft.2014.09.006
https://doi.org/10.1007/S13593-022-00855-8
https://doi.org/10.1016/j.agwat.2021.107161
https://doi.org/10.1007/s13593-024-00945-9
https://doi.org/10.1016/j.agsy.2016.10.002
https://doi.org/10.1080/07352689.2023.2248438
https://doi.org/10.1007/978-3-319-75004-0_19
https://doi.org/10.1016/j.compag.2020.105256
https://doi.org/10.1007/s11356-023-29149-6
https://doi.org/10.1051/lhb/1966034
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:4(247)
https://doi.org/10.1061/(ASCE)0733-9437(2007)133:3(222)
https://doi.org/10.1061/(ASCE)0733-9437(2004)130:2(99)
https://doi.org/10.1029/2021EF002644
https://doi.org/10.1016/j.agwat.2007.09.008
https://doi.org/10.1063/1.2349333
https://doi.org/10.1016/j.jhydrol.2023.129879


Water 2024, 16, 1131 27 of 28

129. Naderi, M.M.; Mirchi, A.; Bavani, A.R.M.; Goharian, E.; Madani, K. System Dynamics Simulation of Regional Water Supply and
Demand Using a Food-Energy-Water Nexus Approach: Application to Qazvin Plain, Iran. J. Environ. Manag. 2021, 280, 111843.
[CrossRef]

130. Granados García, A. Criterios Para el Dimensionamiento de Redes de Riego Robustas Frente a Cambios en la Alternativa de
Cultivos. Ph.D. Thesis, Universidad Politécnica de Madrid (UPM), Madrid, Spain, 2013.

131. Clément, R. Le Calcul Des Débits Dans Les Canalisations d’irrigation [The Calculation of Flows in Irrigation Pipes]. Association
Amicale des Ingenieurs du Genie Rural, journees d’ etudes sur l’irrigation, 1955. (In French)

132. de Boissezon, J.; Haït, J.-R. Calcul Des Débits Dans Les Réseaux d’irrigation. La Houille Blanche 1965, 51, 159–164. [CrossRef]
133. Mavropoulos, T.I. Development of a New Demand Formula for Determination of the Peak Discharges in Irrigation Networks

Operating On-Demand. Irrig. Dren. 1997, 44, 27–35.
134. Mavropoulos, T.I.; Lotidi, P.A. Validity of the Theory of Probability in On-Demand Irrigation Networks. J. Irrig. Drain. Eng. 2016,

142, 04016048. [CrossRef]
135. Moreno, M.A.; Planells, P.; Ortega, J.F.; Tarjuelo, J. New Methodology to Evaluate Flow Rates in On-Demand Irrigation Networks.

J. Irrig. Drain. Eng. 2007, 133, 298–306. [CrossRef]
136. Soler, J.; Latorre, J.; Gamazo, P. Alternative Method to the Clément’s First Demand Formula for Estimating the Design Flow Rate

in On-Demand Pressurized Irrigation Systems. J. Irrig. Drain. Eng. 2016, 142, 04016024. [CrossRef]
137. Pérez-Sánchez, M.; Carrero, L.M.; Sánchez-Romero, F.J.; Amparo López-Jiménez, P. Comparison between Clément’s First Formula

and Other Statistical Distributions in A Real Irrigation Network. Irrig. Drain. 2018, 67, 429–440. [CrossRef]
138. Pérez-Sánchez, M.; Sánchez-Romero, F.J.; Ramos, H.M.; López-Jiménez, P.A. Modeling Irrigation Networks for the Quantification

of Potential Energy Recovering: A Case Study. Water 2016, 8, 234. [CrossRef]
139. Khadra, R.; Lamaddalena, N.; Inoubli, N. Optimization of on Demand Pressurized Irrigation Networks and On-Farm Constraints.

Procedia Environ. Sci. 2013, 19, 942–954. [CrossRef]
140. Labye, Y. Design and Optimization of Irrigation Distribution Networks, 44th ed.; FAO: Rome, Italy, 1988; ISBN 9251026661.
141. Lamaddalena, N.; Sagardoy, J.A. Performance Analysis of On-Demand Pressurized Irrigation Systems; FAO: Rome, Italy; CIHEAM-

IAMB: Rome, Italy, 2000; ISBN 92-5-104437-6.
142. Calejo, M.J.; Teixeira, J.L.; Pereira, L.S.; Lamaddalena, N. Modelling the Irrigation Demand Hydrograph in a Pressurized System.

In Proceedings of the EFITA/WCCA 2005, Vila Real, Portugal, 25–28 July 2005.
143. Khadra, R.; Lamaddalena, N. A Simulation Model to Generate the Demand Hydrographs in Large-Scale Irrigation Systems.

Biosyst. Eng. 2006, 93, 335–346. [CrossRef]
144. Zaccaria, D.; Lamaddalena, N.; Neale, C.M.U.; Merkley, G.P.; Palmisano, N.; Passarella, G. Simulation of Peak-Demand

Hydrographs in Pressurized Irrigation Delivery Systems Using a Deterministic-Stochastic Combined Model. Part I: Model
Development. Irrig. Sci. 2013, 31, 209–224. [CrossRef]

145. Fouial, A.; Lamaddalena, N.; Díaz, J.A.R. Generating Hydrants’ Configurations for Efficient Analysis and Management of
Pressurized Irrigation Distribution Systems. Water 2020, 12, 204. [CrossRef]

146. Engelbrecht, A.P. Computational Intelligence: An Introduction, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-470-03561-0.
147. Poole, D.; Mackworth, A.; Goebel, R. Computational Intelligence; Oxford University Press: Oxford, UK, 1998.
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