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Abstract: Due to underlying surface changes (USCs), the changes in the Taojiang River Basin’s
flood generation conditions could impact the flooding process in the basin. However, most studies
have typically focused on either land-use changes (LUCs) or soil and water conservation measures
(SWCMs) to assess the impact of the USCs on floods, which may not provide a more comprehensive
understanding of the response of floods to the USCs. To investigate how the USCs have altered the
floods in the Taojiang River Basin, located upstream of Poyang Lake, China, the HEC-HMS model,
which incorporates the influence of the USCs into the parameter calibration, is established in this
study to investigate the flood processes on an hourly scale. The flood peak and the maximum 72 h
flood volume are selected as two indexes and are applied to analyze the changes in floods caused by
the USCs. The 1981–2020 period is divided into three sub-periods (i.e., 1981–1992, 1993–2007, and
2008–2020) based on the conditions of the USCs. It is found that the two indexes have exhibited
decreasing trends, mainly due to the USCs during 1981–2020. Benchmarked against the baseline
period of 1981–1992, the two indexes decreased by 3.06% (the flood peak) and 4.00% (the maximum
72 h flood volume) during 1993–2007 and by 5.92% and 7.58% during 2008–2020. Moreover, the
impacts of the LUCs and SWCMs are separated through parameter adjustments in the model,
revealing that the SWCMs played a dominant role in the USCs in the Taojiang River Basin. The
quantification and assessment of the impact of the USCs on floods of different magnitudes revealed
that the influence decreases with increasing flood magnitude. The results of this study improve
our understanding of how USCs affect the flooding process and therefore provide support for flood
control management under changing environments.

Keywords: underlying surface changes; land-use changes; soil and water conservation measures;
flood simulation; HEC-HMS; Taojiang River Basin

1. Introduction

Many environmental surface elements, such as the topography, land use, and soil type,
influence the Taojiang River Basin’s underlying surface conditions [1]. The hydrological
properties of the basin’s underlying surface have been impacted as a result of human
activity, which has an impact on the condition of the flood generation in the basin [2]. The
land-use changes (LUCs) are typically a direct manifestation of the underlying surface
changes (USCs). The rapid growth of urbanization has increased the basin’s impervious
area, reducing rainfall infiltration and increasing the flood risk [3,4]. Zhao et al. [5] found
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that urbanization would cause an increase in flood peak and flood volume, which has a
significant amplification effect on designed flood. As urbanization levels rise, there is a
more significant increase in the trend of flood peak and flood volume, which can result
in a greater expansion of the flood risk areas [6]. Janizadeh et al. [7] predicted land-use
scenarios for 2050 using the cellular automata (CA)–Markov model and used multiple
machine-learning models and their integrated models to predict the future flood risk of
the Kalvan Basin in Iran and found that urbanization would increase the proportion of the
area at high risk by about 11% and the proportion of the area at very high risk by about 6%.
The higher the level of urbanization, the greater the susceptibility to flooding. Contrary
to the impact caused by urbanization, increased vegetation cover has a significant impact
on reducing the runoff and flooding in small basins [8]. Vegetation intercepts rainwater
and increases the surface roughness, resulting in less surface runoff [9]. Ghalehteimouri
et al. [10] discovered that a large loss of forest trees in the city would lead to an increase
in flooding in Kuala Lumpur. Gabriels et al. [11] estimated that an afforestation scheme
of about 1.88 km2 in the Maarkebeek Basin could lower the flood risk by 57%. Therefore,
increasing vegetation cover is crucial for flood control in the basin.

Similarly, soil and water conservation measures (SWCMs) have a significant impact on
the USCs [12,13]. SWCMs can control soil erosion, improve the infiltration of rainfall, and
increase the water storage capacity of the basin, so they play a significant role in reducing
the extent of flooding during heavy rainfall events [14,15]. Zhao et al. [16] revealed that
SWCMs can reduce the flood modulus by 57.2%, and they are the major driver of the flood
changes in the Yellow River Basin under extreme rainfall conditions. Moreover, SWCMs
such as terraces have been found to be more efficient in mitigating flooding compared
to farmland and grassland [17]. In addition, the effectiveness of SWCMs in reducing
runoff and flooding varies with the amount of rainfall. Zhu [18] demonstrated that in
the Wangjiagou experimental basin, the effectiveness of SWCMs in reducing flood peaks
ranged from 50.6% to 72.8% when the recurrence interval of the rainfall was 1–20 years, but
it was significantly lower (only 15.8%) for rainfall with recurrence intervals of more than
20 years. While SWCMs are beneficial for flood control in the basin, their effectiveness is
constrained by the treatment area.

The Taojiang River Basin, located in the upstream area of Poyang Lake, is one of the
most serious areas of soil erosion in southern China [19]. Heavy rainfall is the primary
cause of soil erosion in the Taojiang Basin, particularly during the high rainfall in the spring
and summer months. The soil in the basin is mostly red soil with poor erosion resistance,
which is prone to flash floods [20]. Since 1980, there has been significant urban expansion in
the basin, which has resulted in an increase in soil erosion caused by urban construction. As
a result, over the last four decades, a series of SWCMs have been implemented throughout
the basin to control soil erosion [21]. In addition, urban development and SWCMs have
contributed to the USCs in the basin and have affected the flooding process.

Hydrological models are an important tool for studying floods. The Hydrologic Engi-
neering Center’s Hydrologic Modeling System (HEC-HMS) is a powerful and user-friendly
semi-distributed hydrological model that has exceptional versatility in accommodating
various basin sizes and time scales [22]. The practical applications of this model, such as
runoff simulation [23,24], flood simulation [25,26], flash flood forecasting [27,28], and flood
simulation in areas with little data [29,30], have been demonstrated to have remarkable
efficacy. It can also be used to analyze the impact of USCs on floods [31,32]. Gao et al. [33]
built the HEC-HMS model to simulate and predict the flooding process in the Qinhuai
River Basin in 2028 under different degrees of urbanization. Kabeja et al. [34] examined
the changes in the flood peaks caused by afforestation in the Yanhe and Guangyuan river
basins using the HEC-HMS model. Therefore, it is appropriate to use the HEC-HMS model
to analyze the impact of USCs on flooding in the Taojiang River Basin.

Currently, numerous studies have investigated the impacts of USCs on floods and have
primarily focused on either LUCs or SWCMs. However, this approach is not applicable
in the Taojiang River Basin, in which the underlying surface changes are predominantly
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influenced by a combination of both LUCs and SWCMs. By building the HEC-HMS model
at an hourly scale, in this study, we quantified the response of floods to the USCs and
separated the impacts of the LUCs and SWCMs through parameter adjustments. The
results of this study improve our understanding of the impact of USCs on flooding and
are of great significance for flood control in the Taojiang River Basin. In addition, limited
research has been conducted on simulating the flooding process at an hourly scale in a
large basin, and this study provides valuable support for its application in this area.

2. Study and Data
2.1. Study Area

The Taojiang River Basin, with a basin area of 7864 km2, is located in the southern
region of Ganzhou City, Jiangxi Province, China, as the upstream area of the Poyang Lake
Basin (Figure 1). The Taojiang River flows in a northerly direction from the basin. Julongtan
Station is a hydrological station at the outlet of the basin, with a control area of 7715 km2,
which is 98.6% of the total area of the basin. The basin contains a comprehensive river
system, encompassing 10 first-class tributaries with catchment areas exceeding 200 km2,
including the Taiping River, Wojiang River, Lianjiang River, and Huangtian River. It has a
typical mid-subtropical humid monsoon climate characterized by prevailing winter and
summer monsoon winds and notable temperature fluctuations. The basin’s topography is
dominated by mountains and hills, with significant terrain fluctuations. The predominant
types of soil observed within the basin are red soil and brown-red soil. Regarding the
land-use patterns, forest land such as horsetail pine forest, cedar forest, and moso bamboo
pines dominates the landscape, followed by farmland. The average annual rainfall in the
basin is 1595 mm, but due to the influence of the monsoon climate, there is an imbalanced
spatial and temporal distribution of rainfall throughout the year. Heavy rainfall and floods
are predominantly concentrated during April–June, and the storm centers are primarily
distributed in the upper part of the basin [35].
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2.2. Data

The dataset utilized in this study includes a digital elevation model (DEM), land-use
data, soil-type data, and rainfall and hydrological data. The DEM of the Taojiang River Basin
was derived from the advanced spaceborne thermal emission and reflection radiometer
(ASTER) global digital elevation model (GDEM) 30 m resolution digital elevation data from
the Geospatial Data Cloud (https://www.gscloud.cn/). The land-use data were obtained
from the PixelInformationExpert (PIE)-Engine remote sensing and geographic information
cloud service platform (https://engine.piesat.cn/), and land-use data for 1985, 2000, and
2015 with a resolution of 30 m were selected. The soil-type data were derived from the
Harmonized World Soil Database V1.2 (HWSD) created by the Food and Agriculture
Organization of the United Nations (https://www.fao.org/), with a resolution of 1 km.
The rainfall and hydrological data were obtained from the Hydrological Monitoring Centre
of Jiangxi Province. The rainfall data included the extracts of the rainfall elements from
14 rainfall stations in the basin, including Julongtan, Xinfeng, and Dutou stations, spanning
the period from 1981 to 2020. In addition, the hydrological data were extracts of the
flood elements solely obtained from Julongtan Station during the same time period. (The
extracts of the rainfall elements provide the observation records of each section of the major
rainstorm events at the rain station, including the start and end time of each section and
rainfall. The time interval of each segment is not fixed, but it is at the sub-day scale. It is the
same for the extracts of the flood elements, which provide the major flood events observed
by hydrological stations.) To achieve temporal alignment, the rainfall and flood data were
uniformly discretized at an hourly time step.

3. Characteristic Analysis of the USCs

In the Taojiang River Basin, the USCs are mainly reflected in the SWCMs and LUCs
under the influence of human activities. Due to the poor geological conditions in the
basin and the frequent occurrence of heavy rainfall during the flood season, soil erosion
in the basin has become very severe. To control soil erosion, a series of SWCMs have
been carried out in the basin since the early 1980s, such as the treatment of collapsed
hillocks, the transformation of terraces, and the sealing of forested areas in the mountains.
Under the High Quality Development Plan for Soil and Water Conservation in Ganzhou City
(2021–2030) issued by the Ganzhou Municipal Government, the area of soil and water
erosion in Ganzhou City was reduced from 11,187 km2 in 1980 to 6949 km2 in 2020. The
erosion area in the Taojiang River Basin decreased by about 547 km2 from 1985 to 2000,
accounting for 6.96% of the total area of the basin, and the erosion area decreased by about
750 km2 from 1985 to 2015, accounting for 9.54% of the total area of the basin.

However, the overall LUCs in the Taojiang Basin were minor from 1985 to 2015
(Figure 2). As shown in Table 1, the main type of land use in the Taojiang River Basin was
forest land, accounting for about 81% of the basin, followed by farmland, accounting for
about 15%. In 2000, compared with 1985, the area of forest land increased by 2.50%, with an
increase in the area of 157.68 km2; the area of farmland decreased by 11.07%, with a decrease
in the area of 151.48 km2; the area of grassland decreased by 28.45 km2, and the areas of
the built-up land and water increased by 19.82 and 2.88 km2, respectively. This indicates
that during 1985–2000, the LUCs were primarily reflected by the conversion of farmland
into forest land. In 2015, the forest land area decreased by 23.15 km2 compared with 2000,
while the farmland and grassland areas decreased by 8.23 and 11.99 km2, respectively.
Conversely, the built-up land and water area increased by 40.10 and 3.30 km2, respectively.
This indicates that during 2000–2015, the LUCs were primarily reflected in the increase in
the area of built-up land due to urbanization. According to the aforementioned data, the
areas of the forest land and farmland in the Taojiang River Basin changed considerably
between 1985 and 2000, and then they became relatively stable, whereas the area of the
built-up land, influenced by urbanization, exhibited an increasing trend, especially after
2000. The proportion of grassland and water areas in the basin was minor, and thus they
made a relatively limited contribution to the LUCs within the basin.

https://www.gscloud.cn/
https://engine.piesat.cn/
https://www.fao.org/
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Table 1. Areas of land-use types in the Taojiang River Basin in 1985, 2000, and 2015.

Land-Use Types

1985 2000 2015

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Farmland 1367.87 17.39 1216.39 15.47 1208.16 15.36
Forest land 6312.65 80.27 6470.33 82.28 6447.18 81.98
Grassland 45.95 0.58 17.42 0.22 5.39 0.07

Built-up land 101.54 1.29 121.09 1.54 161.19 2.05
Water 36.00 0.46 38.78 0.49 42.08 0.54
Total 7864.00 100 7864.00 100 7864.00 100

4. Methods
4.1. HEC-HMS Model

According to the analysis of the USCs presented in Section 3, forest land is the pre-
dominant land-use type in the Taojiang River Basin, which exceeds 80% of the total area.
In fact, in the mid-1980s, extensive deforestation occurred in the Taojiang Basin. Subse-
quently, afforestation projects were implemented from 1993 to 2007 to restore forest cover,
followed by a phase of forest regeneration. Therefore, we divided the period from 1981 to
2020 into three distinct sub-periods: the baseline period (1981–1992), the transition period
(1993–2007), and the change period (2008–2020). The underlying surface conditions in 1985
were incorporated to simulate the floods during the baseline period, while those in 2000
and 2015 were used to represent the transition period and the change period, respectively.
HEC-HMS models were constructed for the different periods, including ten typical floods
and their corresponding rainfall events in each period.

The HEC-HMS model consists of a basin module, a meteorological module, a control
module, and a time series module [36]. The main function of the basin module is to
generalize the process of rainfall-induced runoff using the HEC-GeoHMS model in ArcGIS
10.2, which involves extracting the scope of the basin and the river network through DEM
analysis, dividing the sub-basins, and calculating the characteristic parameters for both
the sub-basins and river channels. In this study, the Taojiang River Basin was divided
into 16 sub-basins, and 12 river channels were subsequently generated (Figure 3). The
main function of the meteorological module is to determine the meteorological boundary
conditions of the basin. The rainfall process in each sub-basin was computed using gage
weights and Thiessen polygons based on the locations of the rainfall stations. The control
module mainly determines the starting and stopping times of the model run and the time
step, which was set to 1 h in this study. The time series module is primarily responsible for
storing the input observation data for the rainfall and discharge, providing the basic data
for the operation of the model.
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In the basin module, the model divides the process of rainfall-induced runoff into four
parts, namely, a loss model, transform model, base flow model, and routing model, pro-
viding a variety of calculation methods. A detailed description of each model is presented
below.

4.1.1. Loss Model

The loss model is mainly used to calculate the excess rainfall that forms runoff after
the rainfall experiences natural processes such as plant interception, infiltration, and
evaporation [37]. In this study, the Soil Conservation Service curve number (SCS-CN)
method was chosen as the method for the loss model. This method has been widely
used and is characterized by fewer parameters, consistent and reliable results, and strong
physical significance. The calculation formula of this method is as follows:

Pe =
(P − Ia)

2

P − Ia + S
(1)

where Pe is the excess rainfall (mm), P is the rainfall (mm), Ia is the initial rainfall loss (mm),
and S is the potential maximum retention (mm). The following relationship exists between
the initial rainfall loss (Ia) and the potential maximum retention (S):

Ia = λS (2)

where λ is the initial loss coefficient, which has an initial value of 0.05. The S can be
expressed in terms of the curve number (CN):

S =
25400 − 254CN

CN
(3)

where CN is a dimensionless parameter, and it is closely related to the basin soil type
and land use. The soils were divided into four hydrological soil groups according to the
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minimum infiltration rate: Group A (high infiltration rate), Group B (moderate infiltration
rate), Group C (low infiltration rate), and Group D (lowest infiltration rate) [33]. Therefore,
for the different soil types and land-use types in the basin, the table of CN values (Table 2)
can be queried according to the land-use types and soil hydrological groups. Subsequently,
the composite CN of each sub-basin can be calculated using the area weighting method
and the following formula:

CNcom =

n
∑

i=1
AiCNi

n
∑

i=1
Ai

(4)

where CNcom is the composite CN of the sub-basin, CNi is the ith CN of the sub-basin, and
Ai is the area of the ith CN in the sub-basin.

Table 2. The CNs of the different land-use types and soil hydrological groups.

Land-Use Types
Soil Hydrological Groups

A B C D

Farmland 65 75 82 86
Forest land 25 55 70 77
Grassland 30 58 71 78

Built-up land 69 80 86 90
Water 92 92 92 92

In addition, imperviousness is an important parameter in the SCS-CN method, which is
usually determined by the area weight of the built-up land in the basin [38]. The CN and
imperviousness of each sub-basin in the Taojiang River Basin during the different periods
are listed in Table 3.

Table 3. CN and imperviousness values for the sub-basins in 1985, 2000, and 2015.

Sub-Basin
Number

CN of Sub-Basin Imperviousness of Sub-Basin (%)

1985 2000 2015 1985 2000 2015

W490 57.66 57.74 58.71 0.29 0.57 1.49
W480 59.20 58.48 59.85 0.63 1.04 2.69
W470 57.74 57.47 57.64 0.71 0.82 0.93
W450 56.45 56.14 56.41 0.10 0.13 0.19
W440 57.29 57.25 57.71 0.27 0.39 0.96
W430 60.62 59.77 59.57 0.76 0.99 1.32
W410 66.41 65.01 64.31 2.48 2.87 3.26
W370 73.00 71.39 70.57 11.40 13.13 14.84
W360 56.78 56.72 57.01 0.28 0.32 0.49
W350 66.50 65.4 64.79 2.04 2.75 3.75
W340 64.31 63.72 62.92 6.62 7.31 7.64
W330 61.37 60.98 60.86 1.02 1.23 2.22
W320 57.71 58.06 58.08 0.29 0.41 0.60
W540 57.87 57.38 57.64 0.40 0.50 0.98
W510 57.07 56.94 56.97 0.19 0.27 0.41
W280 57.48 57.25 57.3 0.32 0.34 0.48

4.1.2. Transform Model

The transform model was used to calculate the direct runoff formed at the outlet of the
basin by the excess rainfall [39]. The Snyder unit line method was chosen as the transform
model in this study, which has fewer parameters and easy calculations. The Snyder unit
line method has defined standard unit lines, and the flood peak, lag time, and rainfall
durations are used as the characteristic values of the watershed. The main parameters
of the Snyder unit line method are the lag time (tp) and the peaking coefficient (Cp). In
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practical applications, the tp can usually be calculated according to the formula derived
from the relationship between the watershed parameters such as the longest catchment
path, basin slope, and hydrological characteristics of the basin:

tp = CCt(LLc)
0.3 (5)

where C is the conversion coefficient (set as 2 in this study); Ct is the basin coefficient,
ranging from 1.8 to 2.2, with an initial value of 2; L is the length of the main river (km);
and Lc is the length from the center of mass of the basin to the outlet of the basin (km).
Due to the fact that Ct and Cp are not physically based parameters, tp and Cp need to be
determined by parameter optimization.

4.1.3. Base Flow Model

The recession model was selected as the base flow model. It is an exponential decay
model based on the existence of a certain relationship between the base flow at any time
and the base flow at the initial time:

Qt = Q0kt (6)

where Qt is the base flow at time t (m3/s), Q0 is the base flow at the initial time (m3/s), and
k is the recession constant.

4.1.4. Routing Model

The Muskingum method was chosen for the routing model. It is a river routing
calculation method based on the water balance equation and the tank storage equation,
with few parameters and high accuracy [40]. The formulas are as follows:

Qt = C1 It + C2 It−1 + C3Qt−1 (7)
C1 = ∆t−2KX

2K(1−X)+∆t
C2 = ∆t+2KX

2K(1−X)+∆t

C3 = 2K(1−X)−∆t
2K(1−X)+∆t

(8)

where Qt and Qt−1 are the outflow from the river cross-section at time t and time t − 1,
respectively; It and It−1 are the inflow from the river cross-section at time t and time
t − 1, respectively; K is the movement time of the flood in the river channel; X is the flow
specificity factor, which is generally within the range of 0–0.5; and ∆t is the time step of
the calculation.

4.2. Model Evaluation

To improve the simulation results, the model parameters were optimized using the
built-in univariate gradient of the model as an optimization method and the peak-weighted
root mean square error as the objective function. This approach was complemented by a
manual trial-and-error method. When assessing the model effect, according to the Standard
for hydrological information and hydrological forecasting (GB/T22482-2008) [41], four evaluation
indexes, namely the flood peak relative error (REP), flood volume relative error (REV),
peak present time error (∆t), and deterministic coefficient (DC), were used to evaluate the
single-field flood. The formulas for each of the evaluation indexes are as follows:

REP =
(Pc − Po)

Po
× 100% (9)

REV =
(Vc − Vo)

Vo
× 100% (10)

∆t = Tc − To (11)
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DC = 1 −

n
∑

i=1
[yc(i)− yo(i)]

2

n
∑

i=1
[yo(i)− yo]

2
(12)

where Pc and Po are the simulated and observed flood peaks (m3/s), respectively; Vc and
Vo are the simulated and observed flood volumes (mm), respectively; Tc and To are the
peak occurrence times of the simulated and observed flood processes, respectively; yc(i)
and yo(i) are the simulated and observed discharges at moment i (m3/s), respectively; and
yo is the average observed discharge (m3/s). For a single flood event, according to the
specification, the forecast error is considered acceptable if it falls within the permissible
range. Specifically, both REP and REV should be within 20%, and ∆t must not exceed
three hours. The multiple forecasts were evaluated using the qualification rate (QR), which
is the ratio of the number of qualified forecasts to the total number of forecasts. The
flood forecasting accuracy of the model can be determined according to the QR or the DC
(Table 4).

Table 4. Flood forecasting accuracy level.

Accuracy Level A B C

QR (%) QR ≥ 85 85 > QR ≥ 70 70 > QR ≥ 60
DC DC > 0.9 0.9 ≥ DC ≥ 0.7 0.7 > DC ≥ 0.5

4.3. Flood Simulation Methods for Various Underlying Surface Scenarios

To mitigate the influences of the spatiotemporal distribution and magnitude of the
rainfall on the results, a total of 30 rainfall events were chosen for flood simulation in this
study, including various underlying surface conditions. The differences observed in the
flood simulation results across the various scenarios can be attributed to the impacts of
the USCs, with the flood peak and the maximum 72 h flood volume as two indexes for
quantifying the impacts. It should be noted that the objective of this study was to analyze
the impacts of the USCs, and the input historical rainfall events were kept constant across
the various USC scenarios.

In this study, the USCs were considered the results of the combined effects of the
LUCs and SWCMs. The three sets of parameter scenarios obtained using the HEC-HMS
model to simulate the floods during the three periods, namely, the baseline, transition, and
change periods, reflect the underlying surface conditions during the three periods. The
model parameters CN and imperviousness can effectively capture the land-use conditions,
and both can be directly determined, enabling separation of the impacts of the LUCs and
SWCMs on the floods. Therefore, the parameters can be adjusted to establish various
underlying surface scenarios. According to the land use and soil erosion conditions during
the different periods, nine distinct scenarios representing the underlying surface variations
were established (Table 5). Among them, the impact of the USCs on the floods can be
expressed as follows:

I2000USCs = S5 − S1 (13)

I2015USCs = S9 − S1 (14)

where I2000USCs and I2015USCs indicate the impacts of the USCs on the floods during the
transition and change periods compared with the baseline period, respectively. The impact
of the LUCs on the floods can be expressed as follows:

I2000LUCs = (S2 − S1) + (S5 − S4) + (S8 − S7) (15)

I2015LUCs = (S3 − S1) + (S6 − S4) + (S9 − S7) (16)

where I2000LUCs and I2015LUCs are the impacts of the LUCs on the floods during the transition
and the change periods compared with the baseline period, respectively. Notably, LUCs
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simulation scenarios S1, S5, and S9 only included ten flood events during the corresponding
period. However, the model parameters could not directly reflect the changes during the
periods before and after the SWCMs were implemented due to the various effects of the
different SWCMs. Therefore, in this study, the difference between the impacts of the USCs
and LUCs on the floods was calculated and used to determine the impact of the SWCMs
on the floods:

I2000SWCMs = I2000USCs − I2000LUCs (17)

I2015SWCMs = I2015USCs − I2015LUCs (18)

where I2000SWCMs is the impact of the SWCMs on the floods between the transition period
and the baseline period, and I2015SWCMs is the impact of the SWCMs on the floods between
the change period and the baseline period.

Table 5. The different settings of the underlying surface scenarios.

Scenario Name Scenario Settings Participation during Simulated Flood Events

S1 Soil erosion conditions in 1985 + land-use conditions in 1985 All thirty events
S2 Soil erosion conditions in 1985 + land-use conditions in 2000 Ten events during the baseline period
S3 Soil erosion conditions in 1985 + land-use conditions in 2015 Ten events during the baseline period
S4 Soil erosion conditions in 2000 + land-use conditions in 1985 Ten events during the transition period
S5 Soil erosion conditions in 2000 + land-use conditions in 2000 All thirty events
S6 Soil erosion conditions in 2000 + land-use conditions in 2015 Ten events during the transition period
S7 Soil erosion conditions in 2015 + land-use conditions in 1985 Ten events during the change period
S8 Soil erosion conditions in 2015 + land-use conditions in 2000 Ten events during the change period
S9 Soil erosion conditions in 2015 + land-use conditions in 2015 All thirty events

5. Results and Analysis
5.1. Evaluation and Analysis of Flood Simulation

In this study, the calibration process involved six floods selected from each period,
while the remaining four floods were used for the verification. According to the simulation
results (Table 6), the overall simulation results for all three periods are relatively satisfactory.
Among the 30 simulated floods, only two floods had REP values of >20%, while seven
floods had ∆t values of greater than three hours. Conversely, the REV values of all of
the floods remained within 20%. Notably, the simulated peak of flood No. 19870517 (the
flood events are named based on their occurrence date of the flood peak, including the
day, month, and year) was smaller due to a preceding rainfall event, which resulted in an
increased initial soil moisture content and subsequently reduced the amount of rainfall
loss, leading to a lower simulated value. The simulated ∆t value of flood No. 19920328 was
excessively large due to its nature as a double-peak flood, with the first peak being slightly
larger than the second peak. However, it should be noted that the simulated flood peak
aligned more closely with the observed second peak. In addition, the HEC-HMS model
had limited efficacy in simulating multi-peak floods (Figures 4 and 5). This is attributed to
the utilization of the Snyder unit line method in the transform model, which is primarily
designed for standard single-peak flood scenarios and thus is inadequate for accurately
representing multi-peak floods [42]. The QR values of the flood simulations during these
three periods were 80%, 70%, and 70%, and the average DC value was greater than 0.7,
resulting in a Grade B forecasting accuracy. This suggests that the HEC-HMS model is well
suited for application in the Taojiang River Basin.
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Table 6. Flood simulation results in the baseline, transition, and change periods.

Simulation Periods Flood
Number

REP
(%)

REV
(%)

∆t
(h) DC Qualified (Q)/

Failed (F)

Baseline
period

Calibration

19810606 18.44 −9.89 −1 0.71 Q
19840428 −12.60 −15.05 1 0.91 Q
19850627 9.24 2.98 −2 0.97 Q
19850925 3.14 13.06 −1 0.94 Q
19860606 8.95 8.87 −2 0.79 Q
19870517 −26.68 −19.18 1 0.84 F

Verification

19880526 1.27 −16.19 −1 0.84 Q
19890523 −16.38 −13.36 −2 0.93 Q
19900412 −15.45 −13.97 −1 0.89 Q
19920328 17.53 0.02 26 0.92 F

Transition
period

Calibration

19940621 28.06 8.81 −8 0.90 F
19950618 −0.96 6.81 −8 0.93 F
19960803 12.89 12.42 0 0.79 Q
19980310 4.56 −5.32 −2 0.82 Q
20010511 −11.89 −15.68 −1 0.88 Q
20020807 2.04 9.87 −1 0.80 Q

Verification

20030519 −5.95 −10.27 −5 0.90 F
20040408 8.18 14.71 −1 0.85 Q
20050623 10.42 −3.73 1 0.85 Q
20060523 −12.56 −15.09 0 0.85 Q

Change
period

Calibration

20080614 −5.84 6.50 1 0.90 Q
20090704 13.65 12.69 5 0.92 F
20100616 −5.55 2.44 −2 0.90 Q
20110517 14.70 9.56 3 0.92 Q
20120317 −10.49 −10.20 1 0.90 Q
20150521 −1.37 5.12 5 0.82 F

Verification

20160321 9.67 9.18 3 0.84 Q
20190310 8.04 2.12 2 0.61 Q
20190611 −9.96 16.29 3 0.60 Q
20200404 6.52 15.83 6 0.78 F

Note: Positive values of the peak present time error indicate that the simulated flood peak was later than the
observed flood time, while negative values indicate that the simulated flood peak was earlier than the observed
flood time.

5.2. Response of Floods to USCs

The sensitivities to the parameters of the model vary among different floods [40,43].
Using a small sample size of flood events to investigate the impact of USCs on floods
may potentially introduce bias and distort the research results. The method described
above was employed to utilize the different model parameters to represent the different
underlying surface conditions. All 30 flood events were incorporated into the various
scenario simulations, and the resulting simulations were averaged to obtain final results
that more realistically reflected the impact of the USCs on the floods. The two indexes,
i.e., the flood peak and the maximum 72 h flood volume, were used to illustrate the
difference between the various scenarios. Table 7 displays the average values of the flood
peak and maximum 72 h flood volume for the 30 simulated floods obtained under scenarios
S1, S5, and S9 (some simulation results are shown in Table A1). From 1981 to 2020, the
USCs resulted in decreasing trends for both the flood peak and the maximum 72 h flood
volume in the Taojiang River Basin. Compared with the baseline period, the peak and
maximum 72 h flood volume decreased by 3.06% and 4.00% in the transition period and by
5.92% and 7.58% in the change period, respectively.
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Table 7. The impact of the USCs on floods.

Simulation
Periods

Average Flood
Peak

(m3/s)

Average
Maximum 72 h
Flood Volume

(mm)

Relative Change
in Flood Peak

(%)

Relative Change
in Maximum

72 h Flood
Volume (%)

Baseline period 2240 52.13 - -
Transition

period 2178 50.27 −3.06 −4.00

Change period 2122 48.72 −5.92 −7.58

Table 8 presents the impact of the LUCs on floods by simulating ten flood events
during the corresponding periods under scenarios S1–S9 (some simulation results are
shown in Table A2). The trends of the impacts of the LUCs on the flood peak and maximum
72 h flood volume initially decreased and then increased. The flood peak and maximum
72 h flood volume decreased by 0.66% and 0.59% during the transition period, respectively,
and increased by 0.11% and 0.20% during the change period. A comparison was made
between the land use in 1985 and 2000. The primary differences occurred in the large
area of the returning farmland to forest project, and the forest land had a lower CN value
compared with the farmland. Given the positive correlations between the CN and flood
peak and flood volume, the transition period resulted in decreases in the flood peaks and
maximum 72 h flood volume [44]. The LUCs observed between 2000 and 2015 primarily
involved the conversion of farmland, forest land, and grassland into higher CN built-up
land and water, with a significant increase in the area of built-up land. This process was
accompanied by an increase in the imperviousness value of the basin, which was positively
correlated with the flood peak and volume [45]. Therefore, there were increases in the
flood peak and maximum 72 h flood volume during the change period compared with the
transition period.

Table 8. The impacts of the LUCs and the SWCMs on floods.

Simulation
Periods

LUCs SWCMs

Average Flood
Peak

(m3/s)

Average Maximum
72 h Flood Volume

(mm)

Relative Change
in Flood Peak

(%)

Relative Change
in Maximum 72 h

Flood Volume
(%)

Relative Change
in Flood Peak

(%)

Relative Change in
Maximum 72 h Flood

Volume
(%)

Baseline
period 2186 50.48 - - - -

Transition
period 2172 50.18 −0.66 −0.59 −2.40 −3.41

Change
period 2187 50.54 0.11 0.20 −6.03 −7.78

According to the method outlined in Section 4.3, we determined the impact of the
SWCMs on the floods (Table 8). The flood peak and maximum 72 h flood volume con-
sistently decreased due to the SWCMs. Compared with the baseline period, during the
transition period, these two indexes decreased by 2.40% and 3.41%, respectively, and they
decreased by 6.03% and 7.78% during the change period, respectively. Based on the impacts
of the USCs and the LUCs, it was concluded that the SWCMs were the primary factors
contributing to the reductions in the flood peak and volume in the basin, and they played a
dominant role in the USCs in the basin. In addition, the SWCMs had a more significant
impact on the flood volume than the flood peak. This is attributed to their ability to reduce
the surface runoff and enhance the soil permeability within the treated areas, all of which
had significant impacts on the flood volume.
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5.3. Analysis of the Response of Floods of Different Magnitudes to USCs

Scatter plots were generated and fitted based on the relationship between the relative
changes in the flood peak and maximum 72 h flood volume and their own magnitudes
(Figure 6). The impacts of the USCs, the LUCs, and the SWCMs on the floods gradually
decreased with increasing flood magnitude. Generally, the magnitude of the floods was
closely correlated with the magnitude of the rainfall [46]. In the loss model, Ia of each
rainfall event was kept constant under the same underlying surface conditions. The amount
of rainfall loss is influenced by the USCs. Consequently, the small rainfall events exhibited a
higher proportion of rainfall loss compared with the large events, and thus the small events
had a greater overall impact. The phenomenon was also reflected in the flood process,
which was embodied in the relative change in flood peak and flood volume. However, the
relationship between the impact of the LUCs on the floods and flood magnitude remained
very small during the transition period, which could be attributed to the minor changes in
the imperviousness values observed within the context of overall limited LUCs. Compared
with 1985, the increase in the built-up land in 2000 was relatively small, resulting in a
smaller imperviousness value and an insignificant relationship between the impact of the
LUCs on the floods and the flood magnitude. By contrast, there was a significant increase
in the built-up land in 2015, resulting in a corresponding increase in the imperviousness
value. Consequently, the impact of the LUCs on the floods decreased with increasing flood
magnitude. However, the limited extent of the LUCs and the instability of their impact on
the floods contributed to this result.

To further quantify the impact of the USCs on the floods of different magnitudes,
based on their flood peak discharges, the 30 historical flood events used in this study were
classified into three magnitude levels: eight large floods (peak discharges of >2700 m3/s),
ten medium floods (peak discharges of 2000-2700 m3/s), and twelve small floods (peak
discharges of <2000 m3/s). As can be seen from Figure 7 and Table A3, the USCs resulted
in flood peak decreases of 4.03%, 2.75%, and 2.00% for the small, medium, and large floods
during the transition period compared with the baseline period, respectively, and decreases
of 5.19%, 3.48%, and 2.87% in the maximum 72 h flood volume, respectively. Similarly,
during the change period the flood peaks decreased by 8.15%, 5.06%, and 3.64%, and the
maximum 72 h flood volume decreased by 10.47%, 6.27%, and 4.89%.

During the transition period, for the small, medium, and large floods, the LUCs
resulted in decreases in the flood peaks of 0.67%, 0.68%, and 0.61%, respectively, and
decreases in the maximum 72 h flood volume of 0.59%, 0.60%, and 0.59%, respectively.
During the change period, the flood peaks of small floods increased by 0.40%, while
the flood peaks of the medium and large floods slightly decreased by 0.13% and 0.03%,
respectively. However, the maximum 72 h flood volume increased by 0.49% for the small
floods, increased by only 0.03% for the medium floods, and slightly decreased by 0.02% for
the large floods.

The implementation of SWCMs led to reductions of 3.36%, 2.07%, and 1.38% in the
flood peaks of the small, medium, and large floods during the transition period, respectively,
and decreases of 4.60%, 2.87%, and 2.29% in the maximum 72 h flood volume, respectively.
During the change period, the flood peaks decreased by 8.55%, 4.93%, and 3.61%, and the
maximum 72 h flood volume decreased by 10.96%, 6.29%, and 4.87%.
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6. Conclusions

In this study, HEC-HMS models were constructed using DEM, soil, land use, rainfall,
and hydrological data for the Taojiang River Basin for three periods, namely, 1981–1992
(baseline period), 1993–2007 (transition period), and 2008–2020 (change period), to ana-
lyze the impacts of the USCs, LUCs, and SWCMs on floods in this basin. The primary
conclusions of this study are as follows.

(1) By combining automatic and manual calibration models to optimize the parameters,
the QR of the flood simulation results reached 70% for each period, with an average DC of
greater than 0.7, resulting in a Grade B forecasting accuracy, indicating that the HEC-HMS
model has an excellent applicability within the Taojiang River Basin.

(2) By adjusting the model parameters, the historical flood processes were simulated
under different scenarios, and comparisons of the flood peak and maximum 72 h flood
volume were conducted under the different scenarios. The results revealed that the USCs
led to decreases in both the flood peak and the maximum 72 h flood volume from 1981
to 2020. Specifically, compared with the baseline period, during the transition period, the
flood peak maximum 72 h flood volume decreased by 3.06% and 4.00%. During the change
period, these values decreased by 5.92% and 7.58%. The contribution of the LUCs to these
changes was relatively minor. This is primarily attributed to the SWCMs, which played a
dominant role in the USCs in the Taojiang River Basin.

(3) We analyzed and quantified the relationship between the impacts of the USCs,
LUCs, and SWCMs on the floods and their magnitudes. The results show that compared
with the baseline period, during the transition period, the USCs led to decreases of 4.03%,
2.75%, and 2.00% in flood peaks of the small, medium, and large floods, respectively, and
decreases of 5.19%, 3.48%, and 2.87% in the maximum 72 h flood volume, respectively.
Similarly, during the change period, the flood peaks decreased by 8.15%, 5.06%, and 3.64%,
and the maximum 72 h flood volume decreased by 10.47%, 6.27%, and 4.89%. Except for
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the impacts of the LUCs on the floods during the transition period compared with the
baseline period, which were not related to the magnitude of the floods, under the other
scenarios, the impacts tended to decrease with increasing flood magnitude.
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Appendix A

Table A1. The impact of the USCs on partial floods.

Flood
Number

Flood Peak (m3/s) Maximum 72 h Flood Volume (mm)

Baseline
Period

Transition
Period

Relative
Change (%)

Change
Period

Relative
Change (%)

Baseline
Period

Transition
Period

Relative
Change (%)

Change
Period

Relative
Change (%)

19810606 2250.4 2213.9 −1.62 2209.2 −1.83 54.03 52.45 −2.92 52.16 −3.46
19840428 1276 1215 −4.78 1142.5 −10.46 29.49 27.92 −5.32 26.19 −11.19
19850627 2304.9 2233.6 −3.09 2129.3 −7.62 43.34 41.36 −4.57 39.41 −9.07
19850925 1681.2 1632.1 −2.92 1554.6 −7.53 33.06 31.18 −5.69 29.23 −11.58
19860606 2026.5 1964.5 −3.06 1914.1 −5.55 54.01 52.32 −3.13 51.03 −5.52
19940621 4590 4495 −2.07 4472.9 −2.55 104.87 102.44 −2.32 101.5 −3.21
19950618 2753 2703.7 −1.79 2660.1 −3.37 65.02 62.74 −3.51 61 −6.18
19960803 2342.7 2269 −3.15 2191.4 −6.46 52.31 50.23 −3.98 47.91 −8.41
19980310 3039.3 3011.3 −0.92 2989.7 −1.63 80.32 77.73 −3.22 75.75 −5.69
20010511 1303.5 1227.6 −5.82 1213.5 −6.90 28.53 27.02 −5.29 25.48 −10.69
20080614 2333.5 2260.2 −3.14 2203.4 −5.58 52.34 50.24 −4.01 48.37 −7.59
20090704 2612.2 2530.3 −3.14 2443.4 −6.46 42.72 40.7 −4.73 39.19 −8.26
20100616 2292.6 2221.3 −3.11 2172.3 −5.25 61.14 59.64 −2.45 58.68 −4.02
20110517 2702.5 2652.8 −1.84 2638 −2.39 63.93 62.02 −2.99 60.68 −5.08
20120317 2028.8 1958.7 −3.46 1915.6 −5.58 47.94 46.2 −3.63 44.74 −6.68

Table A2. The impact of the LUCs on partial floods.

Flood
Number

Flood Peak (m3/s) Maximum 72 h Flood Volume (mm)

Baseline
Period

Transition
Period

Relative
Change (%)

Change
Period

Relative
Change (%)

Baseline
Period

Transition
Period

Relative
Change (%)

Change
Period

Relative
Change (%)

19810606 2250.4 2238.1 −0.55 2248.7 −0.08 54.03 53.74 −0.54 53.96 −0.13
19840428 1276 1268.6 −0.58 1285.2 0.72 29.49 29.34 −0.51 29.72 0.78
19850627 2304.9 2292.4 −0.54 2317.9 0.56 43.34 43.14 −0.46 43.64 0.69
19850925 1681.2 1670.9 −0.61 1695 0.82 33.06 32.86 −0.60 33.3 0.73
19860606 2026.5 2010.6 −0.78 2021.2 −0.26 54.01 53.65 −0.67 54.04 0.06
19940621 4517.5 4495 −0.50 4512.9 −0.10 102.92 102.44 −0.47 102.85 −0.07
19950618 2720.7 2703.7 −0.62 2724.2 0.13 63.12 62.74 −0.60 63.16 0.06
19960803 2278.1 2269 −0.40 2291.5 0.59 50.42 50.23 −0.38 50.69 0.54
19980310 3028.3 3011.3 −0.56 3028.3 0.00 78.21 77.73 −0.61 78.14 −0.09
20010511 1284.9 1277.6 −0.57 1292.9 0.62 27.16 27.02 −0.52 27.33 0.63
20080614 2203.7 2187 −0.76 2203.7 0.00% 48.35 48.01 −0.70 48.37 0.04
20090704 2467.1 2444.9 −0.90 2443.4 −0.96% 39.43 39.12 −0.79 39.19 −0.61
20100616 2180.2 2163.1 −0.78 2172.3 −0.36% 58.71 58.35 −0.61 58.68 −0.05
20110517 2643 2625.2 −0.67 2638 −0.19% 60.71 60.32 −0.64 60.68 −0.05
20120317 1923.4 1908.8 −0.76 1915.6 −0.41% 44.81 44.52 −0.65 44.74 −0.16
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Table A3. The impacts of the various USC scenarios on the floods of different magnitudes.

Flood
Types

USCs LUCs SWCMs

Relative Change in
Flood Peak (%)

Relative Change in
Maximum 72 h

Flood Volume (%)

Relative Change in
Flood Peak (%)

Relative change in
Maximum 72 h

Flood Volume (%)

Relative Change in
Flood Peak (%)

Relative Change in
Maximum 72 h

Flood Volume (%)

Transition
Period

Change
Period

Transition
Period

Change
Period

Transition
Period

Change
Period

Transition
Period

Change
Period

Transition
Period

Change
Period

Transition
Period

Change
Period

Small
flood −4.03 −8.15 −5.19 −10.47 −0.67 0.40 0.59 0.49 −3.36 −8.55 −4.60 −10.96

Medium
flood −2.75 −5.06 −3.48 −6.27 −0.68 −0.13 −0.60 0.03 −2.07 −4.93 −2.87 −6.29

Large
flood −2.00 −3.64 −2.87 −4.89 −0.61 −0.03 −0.59 −0.02 −1.38 −3.61 −2.29 −4.87
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