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Abstract: This study analyzed the multivariate drought risks for the Wei River basin by characterizing
the interdependence between the standardized precipitation index (SPI) and the standardized precip-
itation evapotranspiration index (SPEI). Both parametric and nonparametric copulas were adopted to
quantify the dependence between the SPI and SPEI. The results indicated that the Gaussian copula
demonstrated the best fit in most cases, while the nonparametric copula method showed superiority
over the parametric models at only one out of eighteen meteorological stations. The joint return
periods (TOR, TAND, and TKendall) were computed through copula modeling, providing valuable
insights into the co-occurrence of extreme drought events. For the SPI and SPEI with a 50-year return
period, the TOR values range from 25.5 to 37.9 years, the TAND values fluctuate between 73.4 and
1233 years, and the TKendall values range from 60.61 to 574.71 years, indicating a high correlation
between the SPI and SPEI in the study area. The spatial analysis revealed varying patterns across the
basin with some regions more prone to experiencing simultaneous drought conditions characterized
by both the SPI and SPEI. Furthermore, our results indicated that the SPEI exhibited more severity in
drought characterization than the SPI due to its consideration of temperature effects. The disparities
in the spatial features of the SPI and SPEI underscore the importance of incorporating multiple
meteorological factors for a comprehensive drought risk analysis. This research contributes to a better
understanding of the drought patterns and their joint risks in the Wei River basin, offering valuable
information for drought preparedness and water resource management.

Keywords: drought risk analysis; parametric and nonparametric copulas; standardized precipitation
index (SPI); standardized precipitation evapotranspiration index (SPEI); Wei River; multivariate
return period

1. Introduction

Drought is a natural disaster that poses significant challenges to societies, economies,
and ecosystems worldwide. In recent years, the increasing frequency and severity of
drought events have raised concerns among researchers and policymakers [1,2]. Moni-
toring and assessing drought risk are crucial for the development of effective mitigation
and adaptation strategies. The standardized precipitation index (SPI) and standardized
precipitation evapotranspiration index (SPEI) are two widely used drought indices in the
fields of hydrology and meteorology [3,4]. The SPI characterizes meteorological drought
by measuring the deviation of precipitation from its long-term average, while the SPEI
incorporates both precipitation and potential evapotranspiration, offering a comprehensive
view of hydrological drought [4,5]. These indices have been proven valuable for drought
monitoring and early warning systems, enabling decision-makers to implement timely
measures to alleviate the impacts of drought [6–9]. However, assessing drought risk based
solely on individual indices may not provide a complete understanding of the complex
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interactions and dependencies between meteorological and hydrological drought events.
This limitation calls for a more integrated approach that considers the joint behavior of the
SPI and SPEI to provide a more comprehensive characterization of drought risk [10].

Copula analysis has emerged as a powerful tool in the fields of hydrology and drought
risk assessment, allowing researchers to model the joint behavior of multiple variables
accurately. The application of copulas in hydrology dates back to the early 1990s, but it
has gained significant traction in recent years due to its ability to capture the complex
dependencies between hydrological processes and climatic variables [11,12]. Copula-based
methods have proven valuable in analyzing extreme events, providing a more comprehen-
sive understanding of droughts and their interactions with other hydroclimatic variables.
In the context of drought risk assessment, copulas have been applied to investigate the
joint behavior of various drought indices, such as the SPI and SPEI, and other relevant
hydroclimatic variables. Wang et al. [13] used a new copula-based standardized precip-
itation evapotranspiration streamflow index (SPESI) to characterize meteorological and
hydrological drought in the Yellow River basin. Their findings highlighted the potential
benefits of considering the joint probabilities of drought events, leading to more effective
drought management strategies. Copula-based approaches have also been employed in the
estimation of drought return periods and frequency analysis, providing valuable insights
into the long-term behavior of drought events [14,15]. Additionally, copula methods have
been used to explore the dependence structure of other correlated variables, such as com-
pound flood risks, climate downscaling, and so on [16–18]. The flexibility of copulas allows
researchers to select suitable copula families based on the data characteristics and research
objectives. Archimedean copulas, such as the Clayton, Gumbel, and Frank copulas, are
commonly used in drought risk analysis due to their simplicity and ability to model tail
dependencies [19]. In addition to Archimedean copulas, Gaussian copulas have also been
widely applied in multivariate modeling of environmental variables and provide greater
flexibility in capturing complex, non-monotonic relationships between variables [20,21].

Despite its many advantages, copula analysis in drought risk assessment faces cer-
tain challenges and limitations. The selection of an appropriate copula function and the
determination of the optimal parameters can be sensitive to the dataset and require care-
ful consideration [19]. Recently, nonparametric copula methods have been proposed for
coastal flood risk analysis to avoid misspecification issues associated with parametric
copula models [22,23]. These studies have demonstrated the applicability of nonparametric
copula methods in capturing the interdependence among flood variables. However, the
demonstration of nonparametric copula methods for drought risk analysis remains limited,
and there is a lack of performance comparison between parametric and nonparametric
copulas for multivariate drought risk inference.

Consequently, the objective of this study is to compare the performances of both
parametric and nonparametric copulas on multivariate drought risk analysis for the Wei
River basin. The drought events will be characterized by the SPI and SPEI values based
on monthly rainfall and temperature observations. The annual minimum SPEI and the
corresponding SPI would be further identified to reflect the most severe drought event
in each year. The interdependence between the SPI and SPEI will be modeled using both
parametric and nonparametric copulas, and their performances will be evaluated based on
goodness-of-fit measures, such as the Akaike information criterion (AIC). Here, the AIC
would be used to identify the most appropriate marginal and copula models since this
method is able to evaluate the fitting effect of different distributions and penalize the model
with more parameters. The best copula models will then be employed to reveal the joint
risks of compound droughts, as reflected by the SPI and SPEI, for the Wei River basin.

This comparative analysis of copula methods for drought risk assessment will con-
tribute to the existing literature by shedding light on the suitability of both parametric and
nonparametric approaches for modeling drought dependencies. The findings of this study
will provide valuable insights for drought management and decision-making in the Wei
River basin and other regions facing similar hydroclimatic challenges.
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2. Methodology
2.1. Copula Method

Copula analysis is a powerful statistical technique used to model the dependence struc-
ture between multivariate random variables while preserving their individual marginal
distributions. Consider d correlated random variables X1, X2, . . ., Xd with their marginals
denoted as F1, . . ., Fd, their joint cumulative distribution function (CDF) F(.) can be con-
structed through a copula function as follows [24]:

F(x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)) (1)

where C(.) is the copula function, which is unique if Fi (i = 1, 2, . . ., d) is continuous.
The multivariate probability density function (PDF) f (.) would also be formulated as
follows [25]:

f (x1, x2, . . . , xd) = c(u1, u2, . . . , ud)∏d
i=1 fi(xi) (2)

where c(u1, u2, . . . , ud) is the copula density function, and ui = Fi(xi). fi(xi) is the marginal
PDF for random variable Xi.

2.2. Parametric Copulas

The Archimedean copulas are a class of copulas that are commonly used due to their
simplicity and tractability. A bivariate Archimedean copula is defined as follows [26]:

C(u1, u2|θ) = ϕ−1(ϕ(u1) + ϕ(u2)) (3)

where ϕ is the copula generator that is a convex decreasing function with ϕ(1) = 0 and
ϕ−1(.) = 0 when u2 ≥ ϕ(0); θ is the parameter hidden in the generating function [26]. The
most commonly used Archimedean copulas include the Clayton, Gumbel, and Frank copulas.

In addition to the Archimedean copulas, the Gaussian copula is also commonly used
when dealing with continuous variables. The joint CDF of the Gaussian copula is given
as follows:

C(u1, u2|Σ) = Φ
(

Φ−1(u1), Φ−1(u2)
∣∣∣Σ) (4)

where Φ denotes the multivariate Gaussian CDF with correlation matrix Σ, and Φ−1 is the
inverse standard Gaussian CDF.

Table 1 presents the formulations for the Gaussian, Frank, Gumbel, and Joe copulas as
well as their basic properties. All the copulas are characterized by specific mathematical
functions with a fixed number of parameters. These copulas assume a predefined functional
form, which simplifies the modeling process and parameter estimation. In parametric
copula modeling, the selection of the appropriate copula function and the estimation
of its parameters play a crucial role in accurately capturing the dependence structure
between variables. Even though there is a large variety of parametric copula models, they
notoriously lack flexibility and bear the risk of misspecification [27].

Table 1. Basic properties of parametric copulas.

Copula Name Function [C(u1, u2)] Parameter Range Generator Functions [ϕ(t)]

Gaussian Φ(Φ−1(u1), Φ−1(u2)|Σ) Σ ∈ (−1, 1)

Joe 1− [(1− u1)
θ + (1− u2)

θ

−(1− u1)
θ(1− u2)

θ ]1/θ θ ∈ [1, ∞) −ln(1− (1− t)θ)

Gumbel exp{−[(−ln(u1))
θ + (−ln(u2)

θ ]1/θ} θ ∈ [1, ∞) −ln(tθ)

Frank − 1
θ ln{1 + (e−θu1−1)(e−θu2−1)

e−θ−1 } θ ∈ [−∞, ∞)\{0} −ln[ e−θt−1
e−θ−1 ]



Water 2023, 15, 3283 4 of 17

2.3. Nonparametric Copulas

A specific class of nonparametric density estimators are kernel estimators, which have
been applied for exploratory data analysis and widely used in many disciplines [27,28].
Consider n observations (Ui1, Ui2), i = 1, . . ., n, from a bivariate copula C, the correspond-
ing density function c(u1, u2) can be estimated through the kernel density estimator as
follows [27]:

ĉn(u1, u2) =
1
n∑n

i=1 Kbn(u1 −Ui1)Kbn(u2 −Ui2), (u1, u2) ∈ [0, 1]2 (5)

where the notation Kb(·) = K(·/b)/b. The kernel function K is typically a symmetric, bounded
probability density function on R2, and bn > 0 is the smoothing or bandwidth parameter.
The estimator in Equation (5) will result in a considerable amount of probability mass
outside the unit square, leading to ĉn(u1, u2) not being a valid density function on [0, 1]2

due to its integral not equaling one [27]. Furthermore, the estimator will also suffer from
severe bias at the boundaries [27]. Some approaches have been developed to tackle the
above challenges, including the mirror-reflection method, the beta kernel method, and
the transformation method [29,30]. The kernel density estimator allows us to estimate the
bivariate copula density function nonparametrically, avoiding the need to assume a specific
functional form and providing a flexible approach to capture the underlying dependence
structure of the data.

2.4. Primary and Secondary Return Periods

If appropriate copula functions are selected to capture the joint probabilistic charac-
teristics among correlated extreme variables, it becomes possible to derive conditional,
primary, and secondary return periods. Specifically, joint (primary) return periods, referred
to as “OR” and “AND” return periods, can be formulated as follows [26,31–33]:

TOR =
µ

1− C(u1, u2)
(6)

TAND =
µ

1− u1 − u2 + C(u1, u2)
(7)

where µ is the mean inter-arrival time of the two consecutive extreme events. Additionally,
the secondary return period, referred to as the Kendall’s return period, is defined as
follows [26,31–33]:

T =
µ

1− KC(t)
(8)

where KC is Kendall’s distribution associated with the theoretical Copula function C(.). For
the Archimedean copulas, KC can be expressed as follows [26,31–33]:

KC(t) = t− ϕ(t)
ϕ′(t+)

(9)

where ϕ′(t+) is the right derivative of the copula generator function ϕ(t).

3. Case Study
3.1. Overview of Wei River Basin

The Wei River basin, as shown in Figure 1, is one of the major river basins in China,
encompassing an extensive area in the central and northwest regions. It is a crucial water
resource for both agricultural and industrial activities in the region. The basin is charac-
terized by a semi-arid to arid climate, experiencing irregular precipitation patterns with
considerable variations in both temporal and spatial distributions. This region is prone to
drought events due to its climate characteristics and limited water resources. Droughts in
the region can have severe impacts on agriculture, water supply, and the ecosystem, posing
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significant challenges for water resource management and drought risk assessment [34].
Over the past few decades, the Wei River basin has experienced varying degrees of drought
severity, ranging from mild to severe drought events [35]. These drought occurrences have
highlighted the need for effective drought risk assessment and management strategies to
mitigate the socio-economic and environmental impacts of drought in the region.
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Figure 1. The location of the Wei River basin.

3.2. Data Collection and Drought Identification

The historical rainfall and temperature data between 1971 and 2016 were collected
from the China Meteorological Data Service Center (http://data.cma.cn/en, accessed on
30 September 2022). The monthly rainfall and temperature data from a total of 18 meteoro-
logical stations located around the Wei River basin were utilized in this study for drought
risk inference. The geographical positions of these stations are indicated in Figure 1 with
the detailed locations and elevations presented in Table 2.

Table 2. Meteorological station information.

ID Lat (◦C) Lon (◦C) Elevation (m)

52986 35.36667 103.8667 1886.6
52996 35.38333 105 2450.6
53738 36.83333 108.1833 1272.6
53817 35.96667 106.75 1753.2
53821 36.58333 107.3 1255.6
53845 36.6 109.5 957.6
53903 35.93333 105.9667 1901.3
53915 35.55 106.6667 1346.6
53923 35.73333 107.6333 1421.9
53929 35.2 107.8 1206.3

http://data.cma.cn/en
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Table 2. Cont.

ID Lat (◦C) Lon (◦C) Elevation (m)

53942 35.81667 109.5 1158.3
56093 34.43333 104.0167 2314.6
57034 34.3 108.0667 505.4
57037 34.93333 108.9833 719
57046 34.48333 110.0833 2064.9
57134 33.53333 107.9833 1179.2
57144 33.43333 109.15 1098.6
57143 33.86667 109.9667 742.2

Both the SPI and SPEI were adopted to characterize the historical drought events. For
the SPI, the gamma probability distribution function was used to calculate the probability
distribution of the precipitation in a specific month as follows [3,36]:

f (x) =
1

βγΓ(γ)
xγ−1e−x/β, x > 0 (10a)

Γ(γ) =
∫ ∞

0
xγ−1e−xdx (10b)

where β > 0 and γ > 0 are scale and shape parameters, respectively, calculated as follows:

γ =
1 +
√

1 + A/3
4A

(10c)

β = x/γ (10d)

A = ln x− 1
n∑n

i=1 ln xi (10e)

where xi is the monthly precipitation, n refers to the sample size, and x is the average of the
precipitation samples. The probability of the random variable x less than x0 can be derived
as follows:

Pr{x < x0} =
∫ x0

0

1
βγΓ(γ)

xγ−1e−x/βdx (11)

The gamma probability distribution in Equation (11) is normalized as follows:

Pr{x < x0} =
1√
2π

∫ x0

0
e−z2/2dx (12)

The gamma function does not include the case of x = 0, and the probability distribution
with the x = 0 cases would be modified as follows:

P(x) = q + (1− q)F(x) (13)

where q is the probability for zero precipitation, and F(x) is the probability from the gamma
distribution. The SPI can finally be derived as follows [37]:

SPI = z = S
c0 + W − c1W − c2W2

1 + d1W + d2W2 + d3W3 (14a)

W =

√
1

H2

{
P = 1− F(x), S = −1 f or F(x) ≤ 0.5

P = 1− P, S = 1, f or F(x) > 0.5
(14b)

where the constants are c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
and d3 = 0.001308. The Gamma distributions for the monthly precipitation were tested with
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the Anderson–Darling test with their p-values provided in Table S1. The results suggest
that the Gamma distributions can pass the statistical test for most months at each station
except that some rejections occurred in December at some stations. However, the Gamma
distributions would still be applicable in this study since only the annual minimum SPI
values were analyzed, which seldom occurred in December.

The SPI has its limitations since it only considers the precipitation in its calculation
process and cannot fully reflect the impact of climate warming on drought [4]. Consequently,
the SPEI has been developed based on the monthly water balance to reflect the impact of
surface evaporation changes in order to compensate for the lack of the SPI [4,36].

In order to obtain the monthly water balance, the potential evapotranspiration (PET)
was first calculated with the Hargreaves model as follows [38,39]:

PET = 0.0023Ra(Tmean + 17.8)×
√

Tmax − Tmin (15)

where Tmean is the average air temperature (◦C); Tmax and Tmin are the maximum and
minimum air temperatures (◦C), respectively; and Ra is the daily net radiation on the land
surface (MJ m−2 d−1). The water balance can then be obtained as follows:

Di = Pi − PETi (16)

where Di, Pi, and PETi respectively denote the water balance, monthly precipitation, and
monthly potential evapotranspiration. In this study, the GEV distribution was employed
to normalize the water balance series (i.e., Di) with the density function expressed as
follows [38]:

f (x) =


1
σ

[
(1 + ξz(x))−

1
ξ

](ξ+1)
·e−[(1+ξz(x))

− 1
ξ ], ξ 6= 0, 1 + ξz(x) > 0(

1
σ

)
e−z(x)−e−z(x)

, ξ = 0,−∞ < x < ∞
(17)

where z(x) = (x − µ)/σ; ξ, σ, and µ are the shape, scale, and location parameters, respec-
tively. Based on the cumulative distribution function F(x) of GEV, the SPEI can be easily
standardized as follows [38]:

SPEI = W − c0 + c1W + c2W2

1 + d1W + d2W2 + d3W3 (18)

where W =
√
−2ln(P) for P ≤ 0.5, and P = 1 − F(x). If P > 0.5, then P is replaced with 1 − P,

and the sign of the resultant SPEI is reversed. The constants are c0 = 2.515517, c1 = 0.802853,
c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308. The GEV distributions were
tested with the Anderson–Darling test with their p-values provided in Table S2 [40]. The
results suggest that the GEV distributions can pass the statistical test for all months at each
station, indicating its applicability to derive the SPEI values.

4. Results Analysis
4.1. Probability Estimation of Individual Drought Index

Figure 2 presents the general procedures to derive the SPI and SPEI values and then
predict the multivariate drought risks. In this study, the one-month SPI and SPEI values
were derived respectively from the Gamma and GEV distributions. The annual minimum
SPEI values as well as the corresponding SPI values were identified for the period of
1971–2016. Table 3 presents some basic statistics of the SPI and SPEI values as well as
their Kendall correlations at the different stations. The results suggest that the droughts
respectively characterized by the SPI and SPEI are highly correlated, which raised the
requirement to reveal the interdependence between these two kinds of drought. Figure 3
presents the temporal variations in the SPI and SPEI at stations 52986 and 52996, which
also indicate the correlation between these two drought indicators.



Water 2023, 15, 3283 8 of 17

Water 2023, 15, 3283 8 of 17 
 

 

4. Results Analysis 
4.1. Probability Estimation of Individual Drought Index 

Figure 2 presents the general procedures to derive the SPI and SPEI values and then 
predict the multivariate drought risks. In this study, the one-month SPI and SPEI values 
were derived respectively from the Gamma and GEV distributions. The annual minimum 
SPEI values as well as the corresponding SPI values were identified for the period of 1971–
2016. Table 3 presents some basic statistics of the SPI and SPEI values as well as their Ken-
dall correlations at the different stations. The results suggest that the droughts respec-
tively characterized by the SPI and SPEI are highly correlated, which raised the require-
ment to reveal the interdependence between these two kinds of drought. Figure 3 presents 
the temporal variations in the SPI and SPEI at stations 52986 and 52996, which also indi-
cate the correlation between these two drought indicators. 

 
Figure 2. The procedures for multivariate drought risk analysis. 

Table 3. Basic statistics of the SPI and SPEI values and their correlations at different stations. 

Station ID 
SPI SPEI Kendall between SPI 

and SPEI Mean Sd Mean Sd 
52986 −1.419 0.624 −1.592 0.505 0.386 
52996 −1.490 0.505 −1.584 0.455 0.472 
53738 −1.384 0.818 −1.657 0.527 0.317 
53817 −1.412 0.568 −1.677 0.489 0.291 
53821 −1.355 0.660 −1.603 0.563 0.535 
53845 −1.377 0.595 −1.590 0.554 0.403 
53903 −1.371 0.643 −1.620 0.524 0.369 
53915 −1.402 0.524 −1.611 0.507 0.432 
53923 −1.445 0.422 −1.551 0.512 0.555 
53929 −1.411 0.532 −1.548 0.496 0.435 
53942 −1.538 0.505 −1.622 0.583 0.584 
56093 −1.309 0.756 −1.592 0.589 0.527 
57034 −1.475 0.465 −1.577 0.467 0.483 
57037 −1.568 0.449 −1.574 0.495 0.370 

Rainfall

Gamma

Temperature

Water balance

GEV

SPI SPEI

marginal marginal

Copula

Joint return 
period

Figure 2. The procedures for multivariate drought risk analysis.

Table 3. Basic statistics of the SPI and SPEI values and their correlations at different stations.

Station ID
SPI SPEI Kendall between

SPI and SPEIMean Sd Mean Sd

52986 −1.419 0.624 −1.592 0.505 0.386
52996 −1.490 0.505 −1.584 0.455 0.472
53738 −1.384 0.818 −1.657 0.527 0.317
53817 −1.412 0.568 −1.677 0.489 0.291
53821 −1.355 0.660 −1.603 0.563 0.535
53845 −1.377 0.595 −1.590 0.554 0.403
53903 −1.371 0.643 −1.620 0.524 0.369
53915 −1.402 0.524 −1.611 0.507 0.432
53923 −1.445 0.422 −1.551 0.512 0.555
53929 −1.411 0.532 −1.548 0.496 0.435
53942 −1.538 0.505 −1.622 0.583 0.584
56093 −1.309 0.756 −1.592 0.589 0.527
57034 −1.475 0.465 −1.577 0.467 0.483
57037 −1.568 0.449 −1.574 0.495 0.370
57046 −1.486 0.454 −1.546 0.462 0.698
57134 −1.427 0.485 −1.629 0.384 0.391
57144 −1.446 0.539 −1.546 0.537 0.418
57143 −1.500 0.468 −1.601 0.514 0.515

One of the major advantages of copula methods for multivariate drought risk analysis
is that they allow for the quantification of marginal distributions of individual variables
and their dependence structures in separate processes. In this study, multiple distribution
methods were employed to quantify the random features of the annual minimum SPEI and
SPI values. The goal was to identify the most appropriate distribution models for these
two indices at different stations.

In detail, five distributions, namely the Gumbel, generalized extreme value (GEV),
Gamma, lognormal, and Weibull distributions, were employed to quantify the distribution
features of the SPI and SPEI. The performance of each distribution model was further
evaluated using both the Kolmogorov–Smirnov (KS) test and the Akaike information
criterion (AIC) to identify the most appropriate distributions for the SPI and SPEI. The
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KS test was used to assess how well each distribution fits the empirical data, while the
AIC provided a measure to balance goodness-of-fit and model complexity, aiding in the
selection of the best-fitting distributions for the drought indices.
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Figure 3. Temporal variations in the SPI and SPEI at stations 52986 and 52996.

Table 4 presents the marginal distribution selections for the SPI and SPEI at various
stations within the Wei River basin. For the SPI, the generalized extreme value (GEV)
distribution was predominantly identified as the most suitable model, which presented
the lowest AIC values among the five candidate distributions for most stations. Also, the
p-values from the KS test are all larger than 0.05, showing the statistical applicability of the
selected GEV models. Additionally, the Weibull distribution was chosen for three stations
due to the lowest AIC values and high p-values at these stations. Similarly, for the SPEI, the
GEV distribution was the primary choice, being deemed most appropriate for 13 out of the
18 stations. The Weibull distribution was the second option, considered suitable for three
stations, while the choices for the remaining two stations were the Gamma and Gumbel
distributions, respectively.

Table 4. Selection of marginal distribution at different stations.

Station ID
SPI SPEI

Distribution p-Value (KS) AIC Distribution p-Value (KS) AIC

52986 GEV 0.9948 −278.27 Gamma 1.0000 −336.81
52996 GEV 0.9942 −310.82 Weibull 0.9944 −305.30
53738 GEV 0.9933 −278.37 Weibull 0.9936 −291.65
53817 GEV 0.9959 −288.31 Gumbel 1.0000 −363.26
53821 GEV 0.9942 −319.34 GEV 1.0000 −327.56
53845 GEV 0.9950 −304.78 GEV 1.0000 −327.82
53903 GEV 0.9942 −301.65 Weibull 0.9944 −293.43
53915 Weibull 1.0000 −348.92 GEV 1.0000 −342.69
53923 Weibull 1.0000 −305.77 GEV 0.9952 −309.03
53929 GEV 0.9479 −293.35 GEV 0.9952 −319.24
53942 GEV 0.9950 −311.08 GEV 1.0000 −357.52
56093 GEV 0.9933 −268.81 GEV 0.9377 −267.38
57034 GEV 1.0000 −345.67 GEV 0.9959 −306.45
57037 GEV 0.9493 −282.44 GEV 0.9523 −301.61
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Table 4. Cont.

Station ID
SPI SPEI

Distribution p-Value (KS) AIC Distribution p-Value (KS) AIC

57046 Weibull 0.9513 −299.15 GEV 1.0000 −339.08
57134 GEV 1.0000 −331.43 GEV 0.9959 −324.45
57144 GEV 0.9468 −270.23 GEV 1.0000 −337.80
57143 GEV 1.0000 −333.67 GEV 1.0000 −347.42

Overall, the findings demonstrate that the GEV distribution serves as a robust choice
for characterizing the marginal distributions of both the SPI and SPEI across the Wei River
basin. However, it is evident that certain stations exhibited slight variations in their optimal
distribution models, highlighting the spatial variability in drought characteristics within
the basin.

4.2. Quantification of Interdependence between SPI and SPEI through Both Parametric and
Nonparametric Copulas

As presented in Table 3, the SPI and SPEI are highly correlated with their Kendall’s
correlation larger than 0.3 for most stations and highest correlation approaching 0.7. In
order to quantify the interdependence between the SPI and SPEI, both parametric copula
models, as listed in Table 1, and nonparametric copula models were utilized. Similar to the
selection process of marginal distributions, we employed the Kolmogorov–Smirnov (KS)
test and the Akaike information criterion (AIC) to identify the most appropriate copula
model at each station. For the nonparametric copula models, we calculated the effective
number of parameters using the R package “kdecopula” [27], which helped us compute
the AIC values for these models. Additionally, we used the root-mean-square error (RMSE)
as an additional metric to evaluate the performance of the different copula models.

Table 5 presents the performance of both the best parametric copula and nonparametric
copula models at different stations in the Wei River basin for multivariate drought risk
analysis. The parametric copulas include the Gaussian, Gumbel, Frank, and Joe copulas,
as shown in Table 1, in which the best parametric copulas with the lowest AIC values are
presented in Table 5. In comparison, the nonparametric copula is expressed in Equation (5),
and its performances at all stations are presented in Table 5.

Table 5. Performances of the best parametric copula and nonparametric copula at each station.

Station ID
Parametric Copula Nonparametric Copula

Option p-Value (KS) RMSE AIC p-Value (KS) RMSE AIC

52986 Gumbel 0.9357 0.0316 −309.03 0.9395 0.0322 −290.72
52996 Gumbel 0.8041 0.0281 −312.21 0.9999 0.0255 −292.88
53738 Gaussian 0.9903 0.0333 −290.58 0.9901 0.0341 −271.71
53817 Gaussian 0.9942 0.0348 −306.83 0.9945 0.0282 −310.41
53821 Frank 0.9925 0.0268 −316.37 0.9920 0.0263 −302.81
53845 Gaussian 0.9373 0.0296 −314.85 0.9389 0.0284 −303.40
53903 Gaussian 0.9999 0.0244 −324.92 0.9928 0.0261 −302.56
53915 Frank 0.9921 0.0227 −338.76 0.9414 0.0210 −326.53
53923 Gaussian 0.9401 0.0275 −321.57 0.9401 0.0276 −305.10
53929 Gaussian 0.9999 0.0338 −302.91 0.9389 0.0316 −292.81
53942 Gumbel 0.9935 0.0219 −341.91 0.9939 0.0318 −304.00
56093 Gumbel 0.9295 0.0415 −271.63 0.9910 0.0491 −253.37
57034 Joe 1.0000 0.0227 −346.27 1.0000 0.0255 −321.08
57037 Joe 0.8196 0.0271 −330.07 0.6459 0.0356 −302.80
57046 Joe 0.9947 0.0247 −338.62 0.9424 0.0257 −317.68
57134 Frank 0.8116 0.0274 −329.08 0.9441 0.0241 −326.43
57144 Joe 0.9936 0.0315 −309.24 0.9933 0.0442 −275.99
57143 Gumbel 1.0000 0.0292 −323.20 1.0000 0.0259 −318.21
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The performance of the parametric copula models varied across the stations with
different copula functions showing better fits in different cases. In general, the Gaussian
copula was primarily selected, being deemed most appropriate for six out of the eighteen
stations, followed by the Gumbel, Joe, and Frank copulas.

Regarding the nonparametric copula methods, they demonstrated competitive per-
formance compared to the parametric models. However, it is important to note that the
nonparametric model does not necessarily outperform the parametric copulas in quanti-
fying the interdependence between the SPI and SPEI in the Wei River basin. Specifically,
the nonparametric copula generated lower RMSE values at eight out of eighteen stations.
Nevertheless, due to the inclusion of more effective parameters in the nonparametric cop-
ula, this model showed the least AIC value only at Station 53817. In other words, the
nonparametric copula exhibited the best performance at only one station in this area.

4.3. Primary and Joint Return Period of SPI and SPEI

Table 6 presents the SPI and SPEI values with a 50-year return period (RP) and their
corresponding joint return periods across the Wei River basin. Here, the 50-year return
period is considered since (i) this RP would generally show severe drought events, and
(ii) this RP has been analyzed in most drought research studies. Drought events with other
RPs can be similarly generated with the proposed modelling method.

Table 6. SPI and SPEI values with a 50-year RP and their corresponding joint return periods.

Station ID SPI SPEI TOR (Year) TAND (Year) TKendall (Year)

52986 −2.30 −2.86 33.18 101.43 78.62
52996 −2.35 −2.48 34.30 92.21 76.22
53738 −2.64 −2.68 28.54 201.35 120.48
53817 −2.25 −3.00 26.88 357.73 170.65
53821 −2.15 −2.89 26.97 341.57 187.97
53845 −2.35 −2.77 28.50 203.35 121.07
53903 −2.40 −2.70 27.63 262.44 173.61
53915 −2.32 −2.66 26.18 555.44 264.55
53923 −2.14 −2.60 30.46 139.40 97.28
53929 −2.31 −2.48 29.16 175.15 126.26
53942 −2.31 −2.78 37.33 75.67 67.84
56093 −2.29 −2.58 36.99 77.14 62.58
57034 −2.61 −2.69 25.68 948.29 458.72
57037 −2.21 −2.52 25.52 1233.03 574.71
57046 −2.39 −2.55 26.31 501.76 273.22
57134 −2.35 −2.56 25.99 656.36 362.32
57144 −2.34 −2.57 37.92 73.39 60.61
57143 −2.45 −2.53 27.92 238.92 147.93

The analysis of the results reveals the severity of drought conditions in the region
based on the SPI and SPEI values with a 50-year RP at various meteorological stations. The
SPI values range from −2.14 to −2.64, while the SPEI values vary from −2.48 to −3.00,
indicating the presence of significant and prolonged drought conditions across the basin.

Furthermore, the joint return periods, including TOR, TAND, and TKendall, obtained through
copula modeling provide valuable insights into the co-occurrence of extreme drought events.
TOR represents the time of occurrence for droughts when either the SPI or SPEI falls below
their respective 50-year RP thresholds. As shown in Equation (6), u1 = u2 = 0.98 since both
the SPI and SPEI have an RP of 50 years. TOR can then be derived from the obtained copula
model based on Equation (6). For instance, at station 52986, the Gumbel copula was selected;

thus, we can have TOR = 1/[1− exp {−[(−ln(u1))
θ + (−ln(u2)

θ ]
1/θ
}] = 33.18 years, where

u1 = u2 = 0.98 and θ = 1.669, obtained in Section 4.2. In summary, the TOR values range
from 25.5 to 37.9 years, indicating the timing of individual drought events below the SPI or
SPEI with a 50-year RP. On the other hand, the TAND values fluctuate between 73.4 and
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1233 years, representing the time of occurrence for droughts when both the SPI and SPEI
are simultaneously below their 50-year RP thresholds.

Additionally, the TKendall values, ranging from 60.61 to 574.71, indicate the likelihood of
compound drought occurrences where both the SPI and SPEI experience extreme droughts
simultaneously. These joint return periods emphasize the importance of considering the
interdependence between the SPI and SPEI for a comprehensive understanding of drought
risks in the Wei River basin.

Figure 4 illustrates the spatial variations of the SPI and SPEI values with a 50-year RP
in the Wei River basin, which were interpolated with the Kriging method based on station
results. The results indicate that the SPEI appears to show more severity than the SPI as
it takes into account the influence of temperature on drought conditions in addition to
precipitation. Moreover, the SPI and SPEI exhibit different spatial features across the basin.
In particular, the northwest region experiences the most severe droughts according to the
SPEI, while the SPI identifies relatively milder drought severity in this area. Conversely,
the central-south area exhibits the most severe droughts according to the SPI with drought
severity characterized by the SPEI ranging between −2.6 and −2.7, approaching the least
drought severity regions (i.e., central and southeast) as identified by the SPEI.
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Figure 5 displays the spatial variations in the joint return periods in AND, OR, and
Kendall for the SPI and SPEI with a 50-year RP in the Wei River basin, which are also
interpolated with the Kriging method. Due to the distinct dependence patterns between
the SPI and SPEI across the basin, the joint return periods in AND, OR, and Kendall
exhibit different spatial variation features. As observed in Figure 5, the western and
central-northern regions are more prone to experiencing simultaneous severe droughts
characterized by both the SPI and SPEI with the TAND return periods less than 400 years.
In contrast, the central-southeastern part has relatively fewer chances of experiencing
simultaneous SPI- and SPEI-based droughts with the TAND return period potentially
exceeding 800 years. The spatial variations in TOR present a different feature compared
to TAND. It indicates that the western, northeastern, and southeastern regions are less
likely to encounter a 50-year drought represented solely by either the SPI or SPEI, while the
central-southeastern and northwestern regions are more likely to experience a 50-year SPI
or SPEI drought. Regarding TKendall, as shown in Figure 5c, its spatial variations are similar
to those of TAND but with relatively shorter return periods. This suggests that the basin
may experience compound drought events with shorter recurrence intervals, highlighting
the possibility of concurrent extreme drought occurrences based on the interdependence
between the SPI and SPEI.
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These spatial variation features of the joint return periods emphasize the complex
and region-specific nature of drought risks in the Wei River basin. Understanding these
variations is crucial for developing targeted drought management strategies and imple-
menting adaptive measures in different regions to enhance the basin’s resilience to drought
events. Policymakers and water resource managers can utilize this information to prioritize
drought mitigation efforts and allocate resources effectively, considering both individual
and joint drought occurrences in the region.

5. Conclusions

In this study, we conducted a comprehensive multivariate drought risk analysis in
the Wei River basin using copula methods, specifically comparing the performances of
parametric and nonparametric copulas. Our findings shed light on the interdependence
between the standardized precipitation index (SPI) and the standardized precipitation
evapotranspiration index (SPEI) and their implications for drought risk assessment in
the region.

Through the selection of appropriate copula functions and marginal distributions,
we quantified the joint probabilistic characteristics of the SPI and SPEI, enabling us to
identify the most suitable copula models for each station. Our results demonstrated that
the generalized extreme value (GEV) distribution was predominantly identified as the
most appropriate marginal model for both the SPI and SPEI. The Gaussian copula emerged
as the primary selection among the parametric copula models, while the nonparametric
copulas only showed better performance at one out of eighteen meteorological stations in
capturing the interdependence between the variables.

The joint return periods, including TOR, TAND, and Kendall’s return period (TKendall),
provided valuable insights into the co-occurrence of extreme drought events. We observed
varying spatial patterns in the basin with certain regions more prone to experiencing
concurrent drought conditions characterized by both the SPI and SPEI. Our spatial analysis
also revealed that the SPEI exhibited more severity in drought characterization than the SPI,
highlighting the significance of considering both precipitation and temperature factors in
drought assessments. The disparities in the spatial features of the SPI and SPEI underscore
the need for a comprehensive approach that incorporates multiple meteorological variables
to enhance drought risk analysis accuracy. Overall, our study contributes to a better
understanding of the drought patterns and their joint risks in the Wei River basin. The
copula-based approach demonstrated its effectiveness in quantifying the interdependence
between the SPI and SPEI, providing valuable information for water resource management
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and drought resilience planning in the region. The insights gained from this research can
serve as a basis for informed decision-making and the development of targeted drought
mitigation and adaptation strategies. Policymakers and water resource managers can
utilize this knowledge to implement region-specific measures and policies to combat the
increasing drought risks in the basin effectively.

In conclusion, our study showcases the value of copula methods, including both para-
metric and nonparametric copulas, in multivariate drought risk analysis and emphasizes
the importance of considering joint drought occurrences to enhance drought preparedness
and water management strategies in the Wei River basin. Moreover, parametric copulas
would be sufficient to analyze multivariate drought risks in the Wei River basin for most
cases. Additionally, the comparison of parametric and nonparametric copulas for quan-
tifying the interdependence between the 3-month SPI and SPEI is presented in Table S3.
The results also demonstrated the applicability of the parametric copulas on investigating
long-term multivariate drought risks. As climate change continues to influence hydrolog-
ical patterns, non-stationarity may exist in both the SPI and SPEI series. Consequently,
more studies are required to explore whether parametric copulas would still have better
performances than nonparametric models under nonstationary conditions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/w15183283/s1, Table S1: The p-values of AD test for
Gamma distribution for SPI; Table S2: The p-values of AD test for GEV distribution for SPEI; Table S3:
Performances of the best parametric copula and nonparametric copula for 3-month SPI and SPEI at
each station.
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