
����������
�������

Citation: Nair, A.; Hykkerud, A.;

Ratnaweera, H. Estimating

Phosphorus and COD

Concentrations Using a Hybrid Soft

Sensor: A Case Study in a Norwegian

Municipal Wastewater Treatment

Plant. Water 2022, 14, 332. https://

doi.org/10.3390/w14030332

Academic Editor: Dimitrios

E. Alexakis

Received: 21 December 2021

Accepted: 22 January 2022

Published: 24 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Estimating Phosphorus and COD Concentrations Using a
Hybrid Soft Sensor: A Case Study in a Norwegian Municipal
Wastewater Treatment Plant
Abhilash Nair 1,* , Aleksander Hykkerud 1 and Harsha Ratnaweera 1,2

1 DOSCON AS, Østre Aker vei 19, 0581 Oslo, Norway; aleksander@doscon.no (A.H.);
harsha.ratnaweera@nmbu.no (H.R.)

2 Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway
* Correspondence: abhilash@doscon.no; Tel.: +47-48409183

Abstract: Online monitoring of wastewater quality parameters is vital for an efficient and stable
operation of wastewater treatment plants (WWTP). Several WWTPs rely on daily/weekly analysis of
water samples rather than online automated wet-analyzers due to their high capital and maintenance
costs. Soft-sensors are emerging as a viable alternative for real-time monitoring of parameters that
either lack a reliable measuring principle or are measured using expensive online sensors. This paper
presents the development, implementation, and validation of a hybrid soft sensor used to estimate
Total Phosphorus (TP) and Chemical Oxygen Demand (COD) in the influent and effluent streams
of a full-scale WWTP. A systematic method for cleaning and processing sensor data, identifying
statistically significant correlations, and developing a mathematical model, is discussed. A non-
intrusive Industrial Internet of Things (IIoT) infrastructure for soft-sensor deployment and a web-
based GUI for data visualization are also presented in this work. The values of TP and COD estimated
by the soft sensor are validated by comparing the estimated values to the daily average of their
corresponding lab measurements. The data validation results demonstrate the potential of soft
sensors in providing real-time values of essential wastewater quality parameters with an acceptable
degree of accuracy.

Keywords: hybrid soft-sensors; online monitoring; IIoT; digitalization

1. Introduction

The chemical wastewater treatment process, which includes coagulation and floccu-
lation followed by sedimentation, is one of the most commonly used wastewater treat-
ment processes in Norway [1]. The operational efficiency of Wastewater Treatment Plants
(WWTPs) based on chemical treatment is maintained by ensuring an optimal dosage of
coagulants and flocculants. Several control strategies varying from simple flow propor-
tional to sophisticated multi-parameter-based dosing control strategies [2] can be found in
the literature. The growing number of users of the multi-parameter-based dosing control
strategies provide impetus to monitor additional wastewater quality parameters in WWTPs.

WWTPs use several methods to monitor essential wastewater quality parameters.
These methods vary from the offline analysis of water samples using standardized lab
tests [3] to online sensors that can relay real-time data to the Supervisory Control And
Data Acquisition (SCADA) system of the treatment plant. Standardized lab measurements
provide information on the overall efficiencies of the treatment plant. However, the delay
in obtaining the measurement results and the relatively large timescale (once every day
or 2 days) associated with sample collection limits their utility in automation and process
control algorithms or decision support systems. Adoption of new technologies such as
ballasted flocculation and separation [4] or the potential use of nano-material [5] has
further encouraged the use of automation, process control, and advanced monitoring
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in WWTPs. A rapid growth in sensor technology in the past decade has resulted in
several new online measuring techniques and a significant drop in the prices of online
sensors. The current market provides sensors to monitor several parameters in wastewater
that are otherwise measured offline using standardized lab tests. However, the high
installation costs of these online sensors and the regular maintenance costs associated with
the replacement of calibration solutions and reagents, cleaning of source lamps/lenses
often make it economically infeasible, especially for small to medium-sized WWTPs [6]. A
comprehensive review of online monitoring systems used in the coagulation/flocculation
process presented in [7] shows that most wastewater quality parameters such as Total
Phosphates (TP), Chemical Oxygen Demand (COD), and Total Nitrogen (TN) are measured
offline using standardized lab analysis. However, parameters such as pH, Dissolved
Oxygen (DO), conductivity, Oxidation-Reduction Potential (ORP), water level, and flowrate,
that can be measured using reliable, inexpensive, and low maintenance sensors are often
measured online in most treatment facilities including small to medium WWTPs [8].

Software sensors, also known as soft sensors or virtual software sensors are viable
alternatives that are being actively explored [9]. Soft sensors are mathematical models
implemented in software that can use real-time data from easy to measure physical sensors
to estimate essential wastewater quality parameters that are either difficult to measure
or are measured offline using lab analysis. A detailed review of different soft sensor
algorithms used in WWTPs is presented in [10]. Several case studies presenting both
simulator-based evaluations [11] and pilot-scale implementations [12] of soft sensors can
be found in the literature. However, we found hardly any full-scale implementations of
soft sensors especially in wastewater treatment processes using coagulation/flocculation
and sedimentation.

The primary aim of this work is to design, test, and validate a hybrid soft sensor
to estimate influent and effluent concentrations of TP and COD in a full-scale municipal
wastewater treatment facility located in Norway. The real-time data from easy to measure
online sensors installed in a full-scale WWTP are correlated to the data obtained from
periodic lab-analysis of raw and treated water samples. A concise data-analysis tool for
cleaning and transforming online data, comparison between various soft sensor models,
state-of-the-art algorithm deployment strategy, and practical issues encountered during
soft sensor deployment are investigated.

2. Materials and Methods
2.1. Søndre Follo Wastewater Treatment Plant (SFR)

SFR is a municipal wastewater treatment facility located in Vestby municipality, Nor-
way. The treatment plant has a treatment capacity of 29,000 p.e and uses a conventional co-
agulation/flocculation process to remove colloids, particles, and soluble ortho-phosphates
from municipal wastewater. The wastewater initially passes through a grit removal unit,
removing larger particles, and enters a fat and sand removal unit. The coagulant is dosed
at the entry point of the sand removal unit due to the high mixing rates achieved in this
process. Flocculants are dosed to the wastewater at the entry point of the flocculation units,
equipped with paddle mixers for slow mixing to ensure the formation of flocs. Wastewater
with sufficiently developed flocs is distributed to six rectangular sedimentation tanks that
provide adequate residence time for the flocs (sludge) to settle down in the bottom. The
treated wastewater passes over weirs to the effluent channel. Sludge, which is removed
from the bottom of the sedimentation unit is sent to anaerobic digestion after dewatering,
thickening, and sludge stabilization.

The treatment plant is equipped with online pH, TSS, conductivity, ORP, level, and
flow sensors that relay real-time information to a SCADA system provided by GUARD
Automation (https://guard.no/) assessed on 15 December 2021. A multi-parameter-based
dosing control system [13], provided by DOSCON, ensures an optimal dosing of coagulant
and polymer in the treatment plant. The layout of the treatment process, the location of

https://guard.no/
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online sensors, dosing points for coagulants and flocculants, and the flow distribution of
wastewater along the WWTP are presented in Figure 1.
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Figure 1. Plant layout and location of online sensors in SFR wastewater treatment plant.

In addition to the online sensors located in several sections of the WWTP, auto-
samplers are installed at raw and treated wastewater sampling points to collect composite
samples. The auto-samplers are programmed to collect 50 mL samples when the cumulative
wastewater flow reaches 200 m3. The composite samples are then analyzed for TP and COD
using standardized methods as described in [3]. TP is analyzed as a daily average (from
8:00 a.m. of every working day to 7:00 a.m. of the next working day) and COD is analyzed
once every week as weekly averages (on Fridays). The mean and standard deviation of the
influent and effluent TPI and COD along with the removal rates are presented in Table 1.
The distribution of data obtained from online sensors (pH, TSS, Flowrate, conductivity,
ORP, PAX and Polymer dose flow-meters) and the values measured using standardized
lab measurements (TP and COD) for the year 2020–2021 are presented in Figure 2a,b. The
x-axis shows the range of the data used to calibrate the soft-sensor, and the y-axis shows
the percentage of data corresponding to the value presented in the x-axis.
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Table 1. Average values of influent, effluent, removal rates of TP and COD in SFR WWTP.

Parameter Influent Effluent Removal (%)

TP 7.1 ± 2.4 0.49 ± 0.19 93 ± 3.2
COD 399 ± 184 80 ± 25 81 ± 7.9
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2.2. Mathematical Modelling

Mathematical models based on a mechanistic understanding of the coagulation-
flocculation process can be found in the literature [14]. The increase in data availability
caused by the recent adoption of online monitoring in most WWTP resulted in the in-
creased use of data-driven models to describe the coagulation-flocculation process. The
basic structure of these models varies from easily interpretable statistical models such as
PCA/PCR to complex models such as Artificial Neural Network (ANN), Support Vector
Machines (SVM) or Ensemble Tree (ET). Multiple Linear Regression (MLR) is a commonly
used data-driven modelling technique used to predict output variables using multiple
independent predictors. Instances of MLR implementation to predict effluent wastewater
quality are found in the literature [15]. The mathematical representation of the MLR model
is presented in Equations (1)–(3).

Ŷ = f (x1, x2, .. xn) = β0 + β1x1 + β2x2 + . . . + βnxn + ε (1)

Ŷ = β0 +
n

∑
i=0

βix1 +
n

∑
i=0

βiixi
2 +

n

∑
i=0

n

∑
j=i

βijxixj + ε (2)

min
β
‖Y− Ŷ‖2

2 (3)



Water 2022, 14, 332 5 of 16

where Ŷ is the predicted responses corresponding to the measured values Y, xi are the
predictors, β are the model coefficients, and ε is model error. Non-linear dependencies
between the response and the predictors are introduced in the model by including the
square and interaction terms of xi as described in Equation (2). Several algorithms ranging
from simple ordinary least square algorithm presented in Equation (3) to more complex
stochastic algorithms [16] can be used to minimize the error between Y and Ŷ and obtain
the optimal set of the regression coefficients (β).

2.3. Workflow of Soft Sensor Development

The steps involved in the processing of online sensor data and development of mathe-
matical models for estimating TP and COD in the influent and effluent are presented in
Figure 3.
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2.3.1. Step 1—Data Cleaning and Transformation

Data rich does not imply information rich [17]. In this context using noisy data ridden
with outliers would result in inaccurate mathematical models, incapable of generating
meaningful predictions. Therefore, data cleaning and outlier removal is the first and
foremost stage before using online sensor data for model generation. Several outlier
detection methods tailored to detect outliers in wastewater treatment processes can be
found in the literature [18,19]. The moving window approach described in [19] was used to
clean the data before using it for model calibration.

2.3.2. Step 2—Generate Influent TP and COD Model

The sensor layout of WWTP (Figure 1) shows that the flowrate (xQ), level in the
influent channel (xLVL), suspended solids (xSSI), conductivity (xCNI), ORP (xORP), and
pH (xPHI) of the raw wastewater are monitored online. From a mechanistic point of view,
the particulate fraction of TP and COD varies proportionally to the TSS in the wastew-
ater. Inverse dependencies between flowrate/level and TP/COD can be observed by
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comparing the average raw wastewater flowrate with the lab-measured values of TP
and COD. The inverse correlation can be explained by the fact that a sudden increase
in raw wastewater flowrate is often caused by rainfall or snowmelt events that can di-
lute wastewater and reduce TP/COD concentrations. Several prior works found in the
literature indicate a correlation between variations in conductivity [20], pH, ORP [21],
and the soluble fractions of TP/COD. A linear combination of predictors influencing
the soluble and particulate components of TP and COD would be an ideal choice of
predictors for the model. Therefore, the influent raw wastewater quality parameters
xclean, IN =

[
xLVL xQ xCIN xSSI xPHI xORP

]
would be the best choice of indepen-

dent predictors that can be used to correlate influent TP and COD values. An MLR model
was developed for prediction COD and TP. The MLR model coefficients were generated us-
ing several model calibration algorithms as mentioned in [16]. The algorithm that showed
the best fit between the lab-measured data was selected, and the functions were saved to
be used in the next steps.

2.3.3. Step 3—Build Mass Balance Equations for TP and COD

A dynamic model was developed by conducting a material balance of TP and COD in
the coagulation/sedimentation process. A generic form of the material balance equation
used in modelling the effluent parameters is presented in Equation (4).

dŷOUT

dt
=

xQ

V
(ŷIN − ŷOUT)− r ŷk

OUT (4)

In Equation (4), ŷOUT is the effluent COD/TP values and ŷIN is the influent TP/COD
values. An nth order kinetics is used to model the TP/COD removal rates in the process. The
rate constant r and the reaction order n can be determined by fitting the effluent wastewater
quality data to the dynamic model. The holdup volume V for WWTP is calculated by
conducting tracer tests and at different flowrates.

2.3.4. Step 4—Generate TP and COD Removal Models

Dosage of coagulant (xPAX) and dosage of polymer (xPOL) are important control vari-
ables, used to adjust the removal efficiencies of solids and phosphates in WWTPs [13]. A
positive correlation between the dosage of coagulant/flocculant and the removal percent-
ages, substantiated with systematically designed jar tests, can be found in the literature [22].
The results of these jar tests are often used as a basis to determine the optimal dosage of
coagulants and polymer. Most industrial coagulants have an optimal pH range beyond
which a substantial reduction in removal percentages can be observed. Treatment plant
operators also tune dosing control algorithms to ensure that the operating pH range is
not crossed. Therefore, xclean, REM =

[
xPAX xPOL xPHO

]
is chosen as predictor for the

mathematical functions defining the removal rates r. The batch model calibration approach,
involving minimization of a quadratic error function between estimated and lab-measured
value, is a commonly used technique for estimating parameters of dynamic models built us-
ing mass balance and reaction kinetics [23,24]. The parameter estimation method explained
in [15] was used as a basis to construct the dynamic optimization problem.

2.3.5. Step 5—Save MLR Models/Coefficients

The coefficients of the MLR model developed for both the influent and for removal
rates are saved in a structured form which can be later used for real time deployment.

2.4. Software Packages

The open-source programming language Python (www.python.org) accessed on 18
December 2021 was used to process the raw sensor data, generate mathematical models,
and deploy algorithms for real-time estimation. The open-source BSD-licensed library,
pandas, version 1.3 (https://pandas.pydata.org/) accessed on 18 December 2021, was used
to clean and condition raw data and generate concurrent datasets of the same timestamp.

www.python.org
https://pandas.pydata.org/
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Scikit-learn, a free Python library (https://scikit-learn.org/) accessed on 18 December 2021
provides several algorithms to train MLR models and obtain the regression coefficients β
described in Equation (1). The dynamic optimization problem (mentioned in step 4) was
implemented in Python and solved using the optimization algorithms provided as a part
of Python’s open-source SciPy library (https://scipy.org/) accessed on 18 December 2021.
The ‘scipy.optimize’ package provides a multitude of algorithms that can be used for solving
unconstrained optimization problems. In this work, four different optimization solving al-
gorithms, a. Nelder–Mead (NM) [25], b. Trust-region Newton conjugate gradient (TR) [26],
c. Sequential Least Squares Quadratic Programming (SLSQP) [27], and d. Broyden–Fletcher–
Goldfarb–Shanno (BFGS) [28] were used separately, and the results were assessed based on
the regression fit and the time required by the optimization solver to converge to an optimal
solution. A generic version of the script that can be used to calibrate the model can be down-
loaded from the github repository (https://github.com/abhilash2134/MLR-Model.git)
accessed on 21 January 2022.

2.5. Soft Sensor Deployment

A multitude of options for the deployment of soft sensor scripts and control algorithms
are available in the market today. The deployment methods vary from direct implementa-
tion of scripts in a PLC/microcontroller/PC (edge computing) [29], or remote nonintrusive
implementation presented in [30] using either cloud services or own infrastructure. In
this paper, a more secure and robust version of the non-intrusive soft sensor deployment
strategy discussed in [30] was used as a basis to build the IIoT infrastructure of DOSMON.
An overview of the IIoT architecture of DOSMON used to acquire telemetry data from field
devices and deploy the soft sensor algorithms in real-time is presented in Figure 4.
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The backend of DOSMON core mainly consists of two servers. The primary server
is used for the acquisition and storage of data from the IoT devices and Lab Information
Management System (LIMS) software (database server), while the secondary server is
used for running the soft sensor algorithms (algorithm server). The communication and
data exchange between algorithm and data server is established using DOSMON’s REST
API. The algorithm server pulls the raw sensor telemetry from the data server and pushes
algorithm results back to the data server. The software architecture presented in Figure 4
allows us to have reliable and robust IoT communication and dedicated computing power

https://scikit-learn.org/
https://scipy.org/
https://github.com/abhilash2134/MLR-Model.git
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for executing soft sensor algorithms. The IIoT architecture also allows us to manage changes
in the algorithms and tune model parameters a minimal downtime at the plan.

The MLR models developed using the methods described in Section 2.3 are stored
using the ‘pickle’ functionality of Python. The pickled models simplify the model parameter
storage as we do not have to create our own data storage formats. These models can be
created in any Python environment, both offline and online, and can be loaded in the
deployment stage.

3. Results and Discussion
3.1. Model Calibration Results

Real-time data from the online sensors were obtained from the treatment plant’s
SCADA system and lab-measured values of TP and COD were obtained from LIMS soft-
ware. Online and lab-measured data for a period of 12 months (from 10 April 2020 to 10
April 2021) are used to calibrate the model and obtain the MLR model coefficients. The
results of model calibration showing a comparison between the model predicted and lab-
measured values are presented in Figure 5. The plots also show the mean-square error
(MSE) and the Pearson correlation coefficient (R2) for the models calibrated using the
four different calibration algorithms mentioned in Section 2.4. The slope and intercept of
the regression line are also presented in the Figure 2 plots. The scatter plot of a perfect
prediction model would be a 45-degree line with a slope = 1 and intercept = 0 and an
R2 value of 1. A quantitative assessment of different prediction models is conducted by
comparing the values of R2 and regression line equations.
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The plots presented in Figure 5a as well as a comparison between correlation co-
efficients (R2 and MSE) show minimal difference between the results obtained with all
four algorithms. However, the model coefficient obtained by the Ridge algorithm shows
relatively better results with (R2 =0.86 and MSE = 0.81) as compared to an R2 =0.82 for
OLS algorithm, R2 =0.83 for LAR, and R2 =0.84 for BR algorithm. Similar results are
observed in Figure 5b which shows a comparison between predicted and lab measured
values of different algorithms used to obtain MLR model coefficients for influent COD. The
Ridge algorithm showed an R2 of 0.72 compared to a value of 0.70 for LAR, 0.52 for BR,
and 0.71 for OLS. The regression line for the Ridge algorithm (for influent TP) showed a
slope of 0.97 and an intercept of 0.08 which ensures a random distribution of error along
the ideal prediction line. The slope and intercept value close to the ideal prediction line
of y = x also shows that MLR model coefficients obtained using Ridge algorithm has a
comparatively better model fit. Therefore, the model coefficients obtained by the Ridge
algorithm is deployed in DOSMON’s algorithm server for real-time estimation of influent
TP and COD.

The plots presented in 5b as well as the metrics presented in Table 2 show that model
calibration using SLSPQ and NM algorithms provides better results compared to BFGS
and TR algorithms. A faster convergence to an optimal solution is observed in the NM
algorithm compared to the other three algorithms. However, the minima obtained by the
SLSPQ algorithm shows a better fit (R2 = 0.76) compared to the other three algorithms,
with R2 values of 0.35 for TR, 0.71 for NM, and 0.63 for BFGS algorithm. Along with an
R2 value close to 1, the model obtained from the SLSPQ algorithm also presents a slope
and intercept value of 0.79 and 0.01, respectively, which is closer to the ideal prediction line
(with a slope = 1 and intercept = 0) compared to the NM, TR and BFGS algorithms. Slower
convergence of the minimization algorithm implies a higher computational requirement
to solve the optimization problem. The solver time presented in Table 2 also shows a
significant increase in solver time of 18.4 h for the SLSPQ algorithm compared to 9.1 h for
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the NM algorithm. Therefore, the use of the NM algorithm is preferred in situations with
limits in computational resources or circumstances where frequent recursive calibration of
MLR models is required [20]. As computation power and recalibration of the MLR models
were not an issue in this study, the results which provided the lowest values of MSE were
deployed in real-time for estimating effluent TP and COD values.

Table 2. Comparison of TP and COD effluent model calibration using various solver algorithms.

Parameter Algorithm RMSE R2 Solver Time
(Hours)

TP

NM 0.118 0.71 9.1
BFGS 0.109 0.63 8.3

TR 0.184 0.35 10.1
SLSPQ 0.101 0.76 18.4

COD

NM 4.03 0.61 3.14
BFGS 4.37 0.50 2.58

TR 5.20 0.11 3.87
SLSPQ 3.48 0.70 6.44

3.2. GUI for Visualizing Soft Sensor Data in DOSMON

The ‘Dashboard Designer’ provided as a part of the DOSMON core (shown in Figure 4)
can be used to build dashboards for visualizing data on dial-gauge widgets, trend curves,
or layout maps. A user-friendly dashboard was created to visualize the values estimated by
the soft sensor deployed in the algorithm server. DOSMON also provides the possibility of
downloading the raw data from the web interface that can be used for further data analysis
and validations. The interactive interface allows the selection of a desired timescale to
visualize both real-time and historical data. A snapshot of the dashboard’s front-end page
showing both the estimated and the lab-measured data is presented in Figure 6.
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The dashboard designed for visualizing soft sensor data shows real-time estimated
values of TP and COD, and NH (currently in the development stage and is not validated)
as dial-gauge widgets in the bottom right corner. The dashboard also displays three time-
series plots showing the mean real-time estimate (of TP influent, TP effluent and TP removal
percentage) as discrete red circles along with the upper and lower limits of prediction error
as continuous blue lines. The default timescale of the dashboard is three days, which can
be changed manually by the end-user. The lab-measured value of TP influent and TP
effluent obtained daily from the treatment plants LIMS software is also provided as discrete
purple points in the time-series plots. A guest user account, to access and visualize the live
dashboard shown in Figure 6, can be provided on request.

3.3. Soft Sensor Validation Results

The soft sensor estimations of the influent and effluent TP/COD were monitored for
four months (from 15 April 2021 to 18 August 2021). A comparison between the values
estimated by the soft sensor along with the prediction error (calculated according to the
method described in [31]) and the lab-measured values are presented in Figure 7.
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Figure 7. Lab-measured versus estimated values during the validation period for (a) influent TP,
(b) effluent TP, (c) influent COD, (d) effluent COD.

The discrete red points in Figure 7 represent values measured using standardized lab
tests, and the continuous blue lines show daily averages of the values estimated by the
soft sensor. The discrete blue points show the mean estimated values, and the error bar
shows the prediction error of the soft sensor. The plots in Figure 7 show that the soft sensor
estimates follow similar trends compared to the lab-measured values. It can be observed
that about 90% of the actual lab-measured values lie within the prediction limits of the
soft sensor estimates. A few distinct inaccuracies in estimation values are observed in the
influent TP estimation when the lab-measured values are above 12 mg/L. A possible reason
for the reduction in prediction accuracy could be the insufficiency of data points in the
range TP > 12 mg/L used to calibrate the influent MLR model.

The accuracy of the soft sensor estimations can be further substantiated with the plots
presented in Figure 8, where a comparison between estimated and lab-measured values
along with the perfect prediction line and R2 values are presented. An R2 value of 0.81
for TP inlet, 0.73 for TP effluent, 0.76 for COD inlet, and 0.69 for COD effluent shows that
a reasonable estimation of wastewater quality parameters in both influent and effluent
streams can be achieved using the hybrid soft sensor. It can be observed that TP estimations
have a lower prediction error and a better correlation coefficient (R2 = 0.81) compared to
COD (R2 = 0.72). This is most likely due to the difference in the number of data points used
in calibrating the MLR models for TP and COD. The daily measurements of TP provided a
higher number of data points (283 data points) as compared to the weekly average values
(51 data points) available for calibrating the MLR model for COD.

Evaluating a soft-sensor algorithm in a full-scale WWTP is especially challenging
compared to simulator-based evaluation or pilot-scale testing. Full-scale treatment facilities
are subjected to a wide range of unpredicted diurnal and season fluctuations. A better
control (or even prior knowledge) of influent disturbances is available while evaluating
soft sensor algorithms in a simulator or a pilot-scale unit. The uncertainties in influent
disturbances, inherent to a full-scale treatment plant, provide an excellent platform to assess
the robustness of the soft sensor algorithm. A comparison between the lab-measured and
estimated values presented in Figures 6–8 shows the ability of the soft sensor to consistently
deliver reliable estimates of both influent and effluent TP/COD values even in the presence
of the disturbances of a full-scale treatment facility.
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3.4. Benefits of Using a Dynamic Model for Estimating Effluent Wastewater Quality Parameters

The soft sensor development workflow, presented in Section 2.3, shows a difference
between the approaches used to develop influent and effluent estimation models. While a
conventional MLR model correlating the TP/COD values to their corresponding online
sensor data was used for influent wastewater quality parameters, a dynamic model was
used for the effluent wastewater quality parameters. A few case studies presenting the
estimation of effluent wastewater quality parameters using data-driven soft sensors are
found in the literature [32–34]. These case studies show that it is possible to develop
a statistically significant correlation between effluent TP/COD and their corresponding
online sensor data. Correlation coefficients of R2 = 0.72 and MSE = 0.013 for effluent TP and
R2 = 0.62 and MSE = 15.5 for effluent COD were obtained when the daily/weekly averaged
values of flowrate, effluent suspended solids effluent, PAX/Polymer dosage, and pH (after
dosing) were correlated to the lab-measured effluent TP and COD values. However, several
issues were encountered while deploying the effluent MLR models in the algorithm servers
for real-time estimations. The estimation error was particularly visible for effluent TP,
where the soft sensors estimated values that were mechanistically impossible to attain. The
estimated values frequently showed as negative effluent TP values or effluent TP being
higher than influent TP. The frequent extremities of the estimated TP and COD values
can be dealt with by implementing an averaging filter, by imposing min-max limits, or by
integrating conditional loops limiting the TPO to always be below TPI estimates. However,
these constraints failed to achieve a general smoothness in the TP and COD estimations in
the effluent. A comparison between the effluent TP estimated by the conventional MLR
model versus the dynamic model is presented in Figure 9.



Water 2022, 14, 332 14 of 16

Water 2022, 14, x FOR PEER REVIEW 14 of 17 
 

 

the algorithm servers for real-time estimations. The estimation error was particularly vis-

ible for effluent TP, where the soft sensors estimated values that were mechanistically im-

possible to attain. The estimated values frequently showed as negative effluent TP values 

or effluent TP being higher than influent TP. The frequent extremities of the estimated TP 

and COD values can be dealt with by implementing an averaging filter, by imposing min-

max limits, or by integrating conditional loops limiting the TPO to always be below TPI 

estimates. However, these constraints failed to achieve a general smoothness in the TP 

and COD estimations in the effluent. A comparison between the effluent TP estimated by 

the conventional MLR model versus the dynamic model is presented in Figure 9. 

 

Figure 9. Estimated effluent TP values in MLR versus dynamic models. 

The dynamic model used to estimate the effluent wastewater quality parameters are 

based on the mass balance of TP/COD in the coagulation-flocculation process. An n-order 

kinetics is assigned to the removal term to ensure that the TP/COD removal decreases 

significantly when the estimated values reach a value close to 0. This mathematical con-

straint prevents the estimated values of effluent TP and COD from dropping to negative 

values. It should also be noted that the estimated values of influent TP and COD are in-

cluded in the dynamic model, which ensures that the effluent TP and COD values are 

lower than their influent values. The concept of integrating mechanistic and data-driven 

techniques in the soft sensor algorithm has resulted in a significant improvement in the 

estimated effluent values. The improvement in effluent TP estimation can be observed in 

the plots presented in Figure 9, where during the first 15 days (15 April 2021–5 May 2021), 

the soft sensor used the MLR model to estimate TP values, after which (from 5 May 2021 

onwards) the estimator algorithm switched to the dynamic model. The rapid variations 

in the estimated TP values (sudden jumps between the upper limits of 1.6 mg/L and the 

lower limit of 0.1 mg/L) frequently occurring in the first 15 days are non-existent after the 

soft-sensor algorithm switches to the dynamic model. 

3.5. Limitations of Hybrid Estimator and Possible Improvements 

The hybrid soft sensor developed in this work uses the daily average value of TP and 

weekly averages of COD to calibrate the regression models. Although the soft-sensor al-

gorithm has demonstrated a reasonably accurate estimation of the average TP and COD 

values during the validation stage, the estimation accuracies of their diurnal variations 

were not validated. The variations observed in estimated TP and COD values are due to 

the diurnal variations in the predictors (flowrate, suspended solids, conductivity, and pH) 

included in the estimation model. However, the possibility of a mismatch between the 

actual TP/COD values and values estimated by the soft sensor cannot be completely ruled 

out. 

Figure 9. Estimated effluent TP values in MLR versus dynamic models.

The dynamic model used to estimate the effluent wastewater quality parameters are
based on the mass balance of TP/COD in the coagulation-flocculation process. An n-order
kinetics is assigned to the removal term to ensure that the TP/COD removal decreases sig-
nificantly when the estimated values reach a value close to 0. This mathematical constraint
prevents the estimated values of effluent TP and COD from dropping to negative values. It
should also be noted that the estimated values of influent TP and COD are included in the
dynamic model, which ensures that the effluent TP and COD values are lower than their
influent values. The concept of integrating mechanistic and data-driven techniques in the
soft sensor algorithm has resulted in a significant improvement in the estimated effluent
values. The improvement in effluent TP estimation can be observed in the plots presented
in Figure 9, where during the first 15 days (15 April 2021–5 May 2021), the soft sensor used
the MLR model to estimate TP values, after which (from 5 May 2021 onwards) the estimator
algorithm switched to the dynamic model. The rapid variations in the estimated TP values
(sudden jumps between the upper limits of 1.6 mg/L and the lower limit of 0.1 mg/L)
frequently occurring in the first 15 days are non-existent after the soft-sensor algorithm
switches to the dynamic model.

3.5. Limitations of Hybrid Estimator and Possible Improvements

The hybrid soft sensor developed in this work uses the daily average value of TP
and weekly averages of COD to calibrate the regression models. Although the soft-sensor
algorithm has demonstrated a reasonably accurate estimation of the average TP and COD
values during the validation stage, the estimation accuracies of their diurnal variations
were not validated. The variations observed in estimated TP and COD values are due
to the diurnal variations in the predictors (flowrate, suspended solids, conductivity, and
pH) included in the estimation model. However, the possibility of a mismatch between
the actual TP/COD values and values estimated by the soft sensor cannot be completely
ruled out.

A possible solution to improve the soft sensor is to increase the time-resolution of the
lab-measured data used in calibrating the MLR models. A rigorous sampling campaign
should be conducted where composite samples are collected once or twice every hour to
measure TP and COD concentrations. This hourly (or half-hourly) data can provide a better
insight into the diurnal variations in wastewater quality parameters at the influent and the
effluent. The MLR models calibrated using these high time-resolution lab measured data
can better capture diurnal variations and subsequently improve the estimation results.

4. Conclusions

An alternative cost-effective method for monitoring essential wastewater quality
parameters such as TP and COD in a full-scale wastewater treatment plant was tested and
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validated in this work. The secure, non-intrusive, cost-effective system enables the codes
written in scientific programming languages such as Python to be deployed for real-time
estimation. The results presented in this work demonstrates that MLR models can be used
to develop statistically significant correlations between online sensor data and wastewater
quality parameters such as TP and COD. Among various different algorithms used to
calibrate the MLR models, the Ridge algorithm showed the best model fit for the influent
TP/COD, while the SLSQP algorithm provided the best fit for the removal model used to
estimate effluent TP/COD values. Hybrid models combining mechanistic elements with
data-driven techniques have shown better prediction accuracy compared to purely black-
box models. The systematic approach presented in the work can be further expanded to
estimate additional wastewater quality parameters (nitrogen, VFA, etc.) provided adequate
lab-measured values are available. The IIoT architecture described in this work presents a
seamless infrastructure to deploy, modify, and tune soft sensors in a full-scale treatment
plant without causing any operational downtime.
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