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Abstract: Climate variability is strongly influencing hydrological processes under complex
weather conditions, and it should be considered to forecast reservoir inflow for efficient dam
operation strategies. Large-scale climate indices can provide potential information about climate
variability, as they usually have a direct or indirect correlation with hydrologic variables. This study
aims to use large-scale climate indices in monthly reservoir inflow forecasting for considering
climate variability. For this purpose, time series and artificial intelligence models, such as
Seasonal AutoRegressive Integrated Moving Average (SARIMA), SARIMA with eXogenous variables
(SARIMAX), Artificial Neural Network (ANN), Adaptive Neural-based Fuzzy Inference System
(ANFIS), and Random Forest (RF) models were employed with two types of input variables,
autoregressive variables (AR-) and a combination of autoregressive and exogenous variables (ARX-).
Several statistical methods, including ensemble empirical mode decomposition (EEMD), were used
to select the lagged climate indices. Finally, monthly reservoir inflow was forecasted by SARIMA,
SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF models. As a result,
the use of climate indices in artificial intelligence models showed a potential to improve the model
performance, and the ARX-ANN and AR-RF models generally showed the best performance among
the employed models.

Keywords: Climate variability; Large-scale climate indices; Reservoir inflow forecasting;
Ensemble empirical mode decomposition; Time series model; Artificial intelligence model

1. Introduction

Reservoir inflow forecasting is an essential task in dam operation and is strongly linked to water
resource planning and management. Reservoir inflow forecasting has become increasingly complex
and important due to changes in the frequency and magnitude of water-related disasters under climate
change. To better understand the responses to climate change, a large number of models have been
developed for more accurate and reliable inflow forecasting [1–9].

In the hydrological field, time series models are widely used to analyze the linear stochastic
progress of observed time series and forecast future time series. Based on AutoRegressive Integrated
Moving Average (ARIMA) family models proposed by [10], Seasonal ARIMA (SARIMA) and Seasonal
ARIMA with eXogenous variables (SARIMAX) models have been widely applied to model hydrological
time series considering seasonality [11–15]. Previous studies have successfully proved the applicability
of the SARIMA model following the Box and Jenkins procedures, because of the simple mathematical
structure, ideal representation of the statistical and correlation structures, and relatively small number

Water 2019, 11, 374; doi:10.3390/w11020374 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-8689-1112
https://orcid.org/0000-0002-1520-3965
http://www.mdpi.com/2073-4441/11/2/374?type=check_update&version=1
http://dx.doi.org/10.3390/w11020374
http://www.mdpi.com/journal/water


Water 2019, 11, 374 2 of 25

of parameters [16]. In addition, hydrological variable forecasting has been performed using artificial
intelligence models since the artificial intelligence technique began to be increasingly developed
in the 1990s. The Artificial Neural Network (ANN) and Adaptive Neural-based Fuzzy Inference
System (ANFIS) models have been frequently used and showed good performance in hydrological
variable forecasting [1,17–23]. Since the ANN and ANFIS models consider both linear and nonlinear
processes of the observed time series, they were suggested as alternatives to traditional time series
models for the complex practice of hydrological variable forecasting. In addition to the above two
classic artificial intelligence models, a new type of machine learning method, i.e., Random Forest (RF)
model, has been recently introduced as a state-of-art artificial intelligence model in the hydrologic
field. The RF model has produced more accurate and stable predictions with the additional advantage
of handling nonlinear and non-Gaussian data series; therefore, it has been widely used in reservoir
operations [24–26].

Many studies have focused on comparing the forecasting performances of time series and artificial
intelligence models as numerous forecasting models begin to propose in recent decades [27–29].
Wang et al. [1] compared several artificial intelligence methods such as ANN, ANFIS, genetic
programming and support vector machine models for monthly river flow discharges. They concluded
that the best model differed depending on the evaluation criteria. Valipour et al. [4] compared
AutoRegressive Moving Average (ARMA), ARIMA, and autoregressive ANN models for forecasting
monthly inflow while increasing the number of parameters to improve accuracy. They concluded that
the ARIMA model is more appropriate to forecast over 12 months while the autoregressive ANN model
showed a better forecasting performance over five years. Emamgholizadeh et al. [30] compared the
ANN and ANFIS models for forecasting the groundwater level at the Bastam Plain in Iran. The results
showed that the ANFIS model leads to better performance than the ANN model. Li et al. [25] applied
the RF model to compare the predictability of water level variations with various artificial intelligence
models such as ANN, support vector regressions, and a linear model. They concluded that the
RF model can be calibrated to provide information for water management and decision-making by
providing efficient forecasting performance. They also stated that the lagged variables are important
predictors, and the meteorological indices should be included in the future study.

Recently, large-scale climate indices have been employed in hydrological processes because it
was proved that the climate indices can provide potential information about climate variability in
the global climate system. Kashid et al. [31] predicted weekly rainfall using a genetic programming
model with El Niño Southern Oscillation (ENSO) indices, Equatorial Indian Ocean Oscillation indices,
outgoing longwave radiation, and lagged rainfall. They suggested that information about large-scale
atmospheric circulation patterns can be successfully used for prediction of weekly rainfall with
reasonable accuracy. Schepen et al. [32] provided evidence that lagged oceanic and atmospheric
climate indices are potentially useful predictors of Australian seasonal rainfall by quantifying the
pseudo-Bayes factor based on cross-validation predictive densities. Mekanik et al. [33] applied the
ANN model and multiple linear regression analysis to forecast long-term rainfall using lagged ENSO
and Indian Ocean Dipole (IOD) indices as potential predictors of spring rainfall. They suggested the
use of combined lagged ENSO-IOD in ANN models can provide more reliable forecasting results,
therefore, contributing significant positive impacts to water resource management. Abbot and
Marohasy [34] evaluated the utility of climate indices in rainfall forecasting using the ANN model
in Queensland, Australia. They focused on the selection of input variables including climate indices
and concluded that the optimization of input variable selection could provide better performance
in monthly rainfall forecasting. Li et al. [35] investigated teleconnections between large-scale
ocean-atmosphere patterns as potential sources of nonstationarity in annual maximum flood series
in the Wangkuai Reservoir watershed, China. They found that the North Pacific Oscillation (NPO),
North Atlantic Oscillation (NAO), and Atlantic Oscillation (AO) indices all had significant correlations
with flood peak.
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To identify information on climate variability and trends due to the effects of climate change on
hydro-climatic variables, a decomposition method named ensemble empirical mode decomposition
(EEMD) was applied in recent studies. Wu et al. [36] suggested that empirical mode decomposition
(EMD) can reveal intrinsic properties, i.e., trend and variability, in nonlinear and nonstationary
data. Lee and Ouarda [37] predicted future precipitation and extreme hydrological variables by
modeling a nonstationary oscillation process using the EMD process. Breaker and Ruzmaikin [38]
used the EEMD to analyze a 154-year record of monthly sea level data. They identified that the
extracted long-term trend modes contain variabilities on time scales consistent with the Pacific Decadal
Oscillation (PDO). Shi et al. [39] applied EEMD to past temperature and precipitation data and
found that the extracted low-frequency signals in temperature data significantly correlated with
Northern Hemisphere temperatures. Castino et al. [40] analyzed the trend and oscillatory modes of
river discharge in the southern Central Andes of northwestern Argentina using EEMD to find the
statistically significant climate indices and time intervals. They determined the time intervals according
to the mean period of the intrinsic mode functions (IMFs) extracted via EEMD and found the significant
climate indices for each IMF. Kim et al. [41] suggested a procedure to select climate indices that affect
long-term precipitation using EEMD to identify the relationship between long-term precipitation and
climate indices. They found that the lagged NINO 1+2 and the Atlantic Multidecadal Oscillation
(AMO) index should be preferentially considered as predictive indicators used to forecast monthly
precipitation in South Korea. As these studies demonstrate, climate indices can be used as input
variables because they provide predictive information on large-scale climate modes for long-term
forecasting based on the global climate system under complex weather conditions. The EEMD
can also be employed as an effective tool for reservoir inflow forecasting. Yu et al. [42] proposed
three decomposition methods—Fourier transformation, EEMD, and singular spectrum analysis—for
pre-processing, and used autoregressive input variables to support the vector regression model.
They showed that this decomposition method is an effective method for reservoir inflow forecasting.
Therefore, the use of large-scale climate indices and the EEMD for long-term forecasting is increased to
utilize the predictive information provided by large-scale climate modes.

Two critical research questions for reservoir inflow forecasting are to identify highly-correlated
climate indices, and to find a model which provides the best performance through applications. So far,
many studies have a limited focus primarily on examining the relationship between climate indices and
hydrologic variables. One of the important needs for today in monthly reservoir forecasting is not only
identifying potential indicators, but also increasing their applicability for efficient water management
strategies and operation. This study aims to apply and compare the model performance with highly
correlated input variables including lagged inflow and lagged climate indices. For this purpose,
time series and artificial intelligence models—i.e., SARIMA, SARIMA with eXogenous variables
(SARIMAX), ANN, ANFIS, and RF models—were used to forecast the monthly reservoir inflow at the
Soyanggang (SY), Chungju (CJ), and Goesan (GS) dams in South Korea. Two types of input variables,
autoregressive variables (AR-) and a combination of autoregressive and exogenous variables (ARX-),
were constructed to examine the impacts of climate indices for reservoir inflow. To select appropriate
climate indices and construct input variables for monthly reservoir inflow, several statistical methods
consisting of partial autocorrelation function (PACF), EEMD, cross-correlation analysis, and the
backward elimination method were employed. The EEMD was applied to extract the oscillatory
modes inherent in the reservoir inflow for selecting the climate indices with a significant correlation.
Consequently, a total of eight models including time series and artificial intelligence models with two
types of input variables (e.g., SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS,
AR-RF, ARX-RF) were constructed to forecast the monthly reservoir inflow. Model performance was
compared using the correlation coefficient (r), root mean square error (RMSE), and Nash–Sutcliffe
Efficiency (NSE).

The rest of this paper is organized as follows. Section 2 presents the employed forecasting models
such as time series and artificial intelligence models. Section 3 presents data and study area, including



Water 2019, 11, 374 4 of 25

monthly reservoir inflow and large-scale climate indices used in this study. Section 4 presents a process
of input variable selection and explains the detailed methods. Application and results including model
input variables, model parameters and setting, and the model performance are described in Section 5,
and discussions are presented in Section 6. Section 7 concludes the paper.

2. Time Series and Artificial Intelligence Models

2.1. Seasonal AutoRegressive Integrated Moving Average (SARIMA) Model

The Box–Jenkins approach using the ARIMA family of models is widely used to forecast future
values based on an observed time series. The ARIMA model parsimoniously interprets a stochastic
process with autoregressive (AR) and moving average (MA) operators. If there is seasonality in the
time series, the SARIMA model is more useful for modeling as it considers seasonality through a
differencing procedure [10]. The SARIMA model is defined in Equation (1):

φ(B)pΦs(B)P
(

1 − Bd
)(

1 − BD
)

yt = θ(B)qΘs(B)Qεt (1)

where yt is a given time series, φ(B)p and θ(B)q are the non-seasonal AR and MA operators, and Φs(B)P

and Θs(B)Q are the seasonal AR and MA operators with seasonal period, s, d and D are non-seasonal
and seasonal differencing orders, εt represents white noise with zero mean and standard deviation σ2

ε ,
and B is the backshift operator. The operators are defined in Equations (2)–(5), respectively.

φ(B) = 1 − φ1B − φ2B2 − · · · − φpBp (2)

θ(B) = 1 − θ1B − θ2B2 − · · · − θqBq (3)

Φs(B) = 1 − Φ1BS − Φ2B2S − · · · − ΦPBPS (4)

Θs(B) = 1 − Θ1BS − Θ2B2S − · · · − ΘQBQS (5)

2.2. SARIMA with eXogenous Variables (SARIMAX) Model

The SARIMAX model is a multivariate time series model extended from the SARIMA model to
consider the effect of the exogenous variables in a time series [43]. SARIMAX is useful in modeling a
time series that has a dominating variable. The SARIMAX model is an advanced model of the ARIMA
family because it can consider trends, seasonality, and exogenous variables. The SARIMAX model
with exogenous variable (xt) is defined in Equation (6):

φ(B)pΦs(B)P
[(

1 − Bd
)(

1 − BD
)

yt − cxt

]
= θ(B)qΘs(B)Qεt (6)

where c is the regression coefficient of the exogenous variable, and all other parameters are described
in Section 2.1.

2.3. Artificial Neural Network (ANN) Model

The ANN model is a powerful machine learning technique that is designed to mimic the structure
of the brain [44]. It has been widely applied in hydrology to improve the predictability of future
hydrologic variables because it considers both linear and nonlinear structures. In general, the basic
structure of the ANN model is three layers (input, hidden, and output) as shown in Figure 1.
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Consider there are n number of input variables in the input node (xi, i = 1, 2, . . . , n), the p
number of nodes in the hidden layer (zj, j = 1, 2, . . . , p), and the k number of output variables in the
output node (ym, m = 1, 2, . . . , k). The ANN model can be described in Equations (7) and (8):

ŷm = fy

(
p

∑
j=1

zjWkj + bk

)
(7)

zj = fz

(
n

∑
i=1

xiWji + cj

)
(8)

where the weight parameters Wkj and Wji indicate the strength of the connections between the nodes,
bk and cj are the bias, fy and fz are the activation functions that are connected to each other with
weight parameters.

The key purpose of the ANN model is to find the best weight parameters using a training
algorithm. The backpropagation algorithm is most commonly used for ANN training by adjusting the
weight parameters between the hidden and output layers to reduce the margin of error in the output.
The optimal number of hidden nodes can be determined by trial-and-error approaches because there
is no exact way to decide the number of hidden nodes. However, it was found that better results
can be obtained when the number of hidden nodes is smaller than or equal to the number of input
nodes [4,45]. In addition, there are several types of activation functions such as the sigmoid function,
hyperbolic tangent function, and sign function that can learn nonlinear relationships between the input
and output. The general process of ANN modeling is to construct a model which reduces errors in the
training set and then applying this model to the test set.

Figure 1. The basic structure of the Artificial Neural Network (ANN) model (input, hidden,
and output layers).

2.4. Adaptive Neural-Based Fuzzy Inference System (ANFIS) Model

The ANFIS model is a multilayer feed-forward network that combines the ANN model and fuzzy
logic based on the Takagi–Sugeno fuzzy inference system [46]. It is a powerful tool for hydrological
forecasting because it integrates the advantages of both the ANN and fuzzy inference systems.
The fuzzy reasoning system for a first-order Sugeno fuzzy model has the following two if-then rules:

• Rule 1: if x is A1 and y is B1 then f1 = p1x + q1y + r1

• Rule 2: if x is A2 and y is B2 then f2 = p2x + q2y + r2 where A1, A2 and B1, B2 are the membership
functions of each input x and y, f1 and f2 are the output functions and p1, q1, r1 and p2, q2, r2

are linear parameters. The ANFIS model consists of five layers as shown in Figure 2.



Water 2019, 11, 374 6 of 25

Figure 2. The basic structure of the Adaptive Neural-based Fuzzy Inference System (ANFIS) model.

Layer 1: The fuzzy membership grade for each node is generated by the fuzzy membership
function (MF). An MF is an indicator function that defines how a point in the input space is mapped to
a membership value between 0 to 1. The output of node i is defined in Equations (9) and (10):

Q1,i = µAi (x), i = 1, 2 (9)

Q1,i = µBi−2(y), i = 3, 4. (10)

where x and y are the input for node i, and µAi (or µBi−2 ) is the degree of MF for a fuzzy set Ai (or Bi−2).
The fuzzy set Ai (or Bi−2) is a linguistic label for a MF that could be given by appropriate functions
such as Gaussian, generalized Bell shaped, trapezoidal shaped, and triangular shaped functions [1].

Layer 2: The incoming signals are multiplied to generate the output that represents the firing
strength of the rules, as described in Equation (11).

Q2,i = wi = µAi (x)× µBi (x), i = 1, 2 (11)

Layer 3: The firming strength is normalized. The normalized firming strength for node i as
described in Equation (12).

Q3,i = wi =
wi

(w1 + w2)
, i = 1, 2 (12)

Layer 4: Consequent parameters {pi, qi, ri} at node i compute the contribution of the ith rule to
the overall output. It can be described by Equation (13) using the output obtained from layer 3 (wi).

Q4,i = wi fi = wi(pix + qiy + ri) (13)

Layer 5: Finally, the overall output is calculated from a single node by summation of all rules as
described in Equation (14).

Q5,i = ∑
i

wi fi =
∑i wi fi

∑i wi
(14)

In this study, the ANFIS model used hybrid learning that was a combination of descent gradient for
precedents and least squares estimation for consequents. The normalized Gaussian MF and Bell-shaped
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MF are popular, with the advantage of being smooth and nonzero at all points. The linguistic term of
the normalized Gaussian MF and the Bell-shaped MF are given by Equations (15) and (16):

µAi (x) = exp

(
− (x − ci)

2

2σ2
i

)
(15)

µAi (x) =
1

1 +
[(

x−ci
ai

)2
]

bi

(16)

where σi, ai, bi, and ci are the parameters of the membership function (i.e., ci and σi are the center
and width of the fuzzy set).

2.5. Random Forest (RF) Model

The RF model is a state-of-art machine learning technique which is a nonparametric white-box
regression model [24]. For the regression, the RF model employs an ensemble-learning algorithm
which operates by constructing a multitude of decision trees based on bootstrap samples from the
training dataset. Unlike linear regression models, RF is the most robust technique for handling a
combination of nonlinear interactions between the input variables and the output. The basic structure
of the RF is shown in Figure 3.

The RF begins with many bootstrap samples that are randomly selected from the original input
variables. A decision tree is built for each of the bootstrap samples. For each node of a decision
tree, proper input variables are selected by binary partitioning. Finally, the forecasting result can be
obtained by combining the results over all trees [47]. Therefore, three parameters need to be specified:
(1) the number of trees; (2) number of variables in each node (default value is 5 for regression random
forest); and (3) the number of input variables per node (default value is one third of the total number
of variables).

Figure 3. The basic structure of the Random Forest (RF) model.

3. Data and Study Area

Monthly reservoir inflow in the SY, CJ, and GS dams was employed in this study. The three dams
are located in the Han River basin, and they are totally separate reservoirs on different branches of the
Han River. The three dams have only natural reservoir inflow that is not affected by artificial control
in their upstream areas. The Han River basin in South Korea plays an important role in supplying
water to the capital, Seoul, and other metropolitan cities. Therefore, the three dams should be carefully
operated to provide effective long-term water management.
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The SY dam is a multi-objective dam located in the upstream section of the North Han River,
which has a basin area of 2783 km2. The CJ dam is the largest multi-objective dam in South Korea
and is located on the South Han River, which has the basin area of 6705 km2. The GS dam is
a small hydropower dam located on the Dalcheon, a tributary of the South Han River, with a
basin area of 671 km2. There are seasonal characteristics to the inflow, with the monthly reservoir
inflow concentrated during the flood season from June to September, since more than 70% of annual
precipitation occurs in this season. The geographical locations of the three dams and basin areas are
shown in Figure 4. Further detailed information about the three dams is presented in Table 1.

Figure 4. Locations of the Soyangang (SY), Chungju (CJ), and Goesan (GS) dams and their basins.

Table 1. Detailed information about the SY, CJ and GS dams.

Station Type Data Period
Basin
Area
(km2)

Volume
(×103 m3)

Water
Supply

Capacity
(×103 m3)

Mean Inflow
(m3/s)

Annual Seasonal
(JJAS)

Soyangang
dam

Multi-purpose
(E.C.R.Da)

January
1974–December 2016 2703 9600 1,900,000 68.28 221.99

Chungju
dam

Multi-purpose
(C.G.Db)

January
1986–December 2016 6705 902 1,789,000 162.39 359.22

Goesan
dam

Hydro-power
(C.G.Db)

January
1982–December 2016 671 19.6 5700 13.72 30.18

a Earth Core Rock Fill Dam. b Concrete Gravity Dam.

A total of 24 large-scale climate indices from the National Oceanic & Atmospheric
Administration/Earth System Research Laboratory (NOAA/ESRL) were used in this study.
The climate indices represent the atmospheric-oceanic circulation patterns, therefore, it can be
possible to consider the impact of large-scale climate variability directly or indirectly on the monthly
reservoir inflow series. Each index indicates an aspect of the geophysical system based on different
measurements, and they are provided by the form of the monthly time series. Table 2 presents a list of
the climate indices used in this study.
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Table 2. List of the climate indices used in this study.

Climate Index Classification Climate Index Classification

NINO 1+2 (NINO12) ENSO/SST:Pacific Tropical Northern Atlantic Index (TNA) SST:Atlantic
NINO 3 (NINO3) ENSO/SST:Pacific Tropical Southern Atlantic Index (TSA) SST:Atlantic
NINO 4 (NINO4) ENSO/SST:Pacific Carribbean SST Index (CAR) SST:Atlantic

NINO 3.4 (NINO34) ENSO/SST:Pacific Pacific Decadal Oscillation (PDO) Teleconnections
Bivariate ENSO Timeseries (BEST) ENSO Northern Oscillation Index (NOI) Teleconnections

Multivariate ENSO Index (MEI) ENSO Pacific North American Index (PNA) Teleconnections
Trans-Nino Index (TNI) SST:Pacific Western Pacific Index (WP) Teleconnections

Western Hemisphere Warm Pool (WHWP) SST:Pacific/SST:Atlantic Eastern Atlantic/Western Russia (EAWR) Teleconnections
Oceanic Nino Index (ONI) SST:Pacific North Atlantic Oscillation (NAO) Teleconnections

Atlantic Multidecadal Oscillation (AMO) SST:Atlantic Southern Oscillation Index (SOI) Atmosphere
Atlantic Meridional Mode (AMM) SST:Atlantic Quasi-Biennial Oscillation (QBO) Atmosphere

North Tropical Atlantic SST Index (NTA) SST:Atlantic Artic Oscillation (AO) Atmosphere

4. Input Variable Selection

The time series and artificial intelligence models were conducted by two types of input variables
to compare the impacts of the climate indices. The first type of input variable only includes the
autoregressive variables (AR-) such as the lagged inflow. The lag time was determined by the PACF.
The second type of input variable includes the combination of autoregressive and exogenous variables
(ARX-) composed of lagged inflow and lagged climate indices. To select the candidate climate indices
for the second type of input variables, the EEMD method was employed to the monthly reservoir
inflow series. A finite number of decomposed components, which are the IMFs, were extracted
by the EEMD. Cross-correlation analysis was performed between the IMFs and the climate indices
considering lag times from 1 to 12 months. The lagged climate indices with the highest correlation
coefficient with each IMF were selected as the candidate climate indices. Therefore, the candidate
variables include: (1) the lagged inflow obtained via PACF; and (2) the lagged climate indices obtained
via EEMD. Finally, the backward elimination method was performed on the candidate variables to
select the second type of input variables. Figure 5 shows the procedure followed to select the two types
of input variables. Detailed methodologies are explained in the subsections.

Figure 5. Procedure to select the two types of input variables: (1) Autoregressive variables (AR-);
(2) a combination of autoregressive and exogenous variables (ARX-).
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4.1. Partial Autocorrelation Function (PACF)

PACF is a statistic that measures the strength of relationships in a time series considering a time
lag, after removing the presence of all other time lags. The range of PACF is between −1 and 1.
In a PACF plot, it is able to identify the relationship between a time series and its lagged time series
through the spikes and confidence intervals. For example, a significant spike at lag 12 in the PACF plot
means that there is a strong correlation between a time series and the same time series with twelve
intervals apart. PACF also provides useful information for selecting the autoregressive parameters in
the time series models.

4.2. Ensemble Empirical Mode Decomposition (EEMD)

EMD has been recently introduced in the hydrology as an innovative analysis method to
decompose statistically significant cycles and trends inherent in time series data [36,40,48]. EMD is a
data-driven method that decomposes an original data series into a set of IMFs. IMFs indicate oscillatory
modes that reflect the cycles and trends in the data series and should satisfy two conditions: (1) the
number of extrema and zero crossings must either be equal or differ at most by one in the whole data
series; (2) the mean value of the upper envelope defined by connecting all of the local maxima, and the
lower envelope defined by connecting all of the local minima, must be zero at any point [47]. EEMD is
a modified version of EMD proposed by Wu and Huang [49] to overcome the drawbacks of EMD due
to the mode mixing problem. EEMD performs a sifting algorithm by adding an ensemble of white
noise signals to the original data series, and the final result is obtained from the mean of the data series.

We will briefly introduce the sifting algorithm which is carried out to decompose a set of IMFs
from an original data series y(t), t = 1, 2, . . . , n [36]. At first, the upper and lower envelopes are found by
connecting the local maxima (yu(t)) and local minima yl(t)) using a cubic spline method. Second, the mean
value between the local maxima and local minima is calculated, i.e., ymean(t) = (yu(t) + yl(t))/2.
Third, the ymean(t) is extracted from the original time series y(t), i.e., h(t) = y(t)− ymean(t). If h(t)
satisfies the two conditions of IMFs, then h(t) is the first IMF; else h(t) is treated as y(t) and the steps
are repeated until h(t) becomes the IMF. Fourth, a new data series is defined by extracting the IMF from
y(t) and repeating the steps until no more IMF can be extracted. The last IMF becomes the residue r(t).
Finally, y(t) is defined as the sum of the IMFs and the residue as follows:

y(t) =
k

∑
i=1

IMFi(t) + r(t) (17)

where k is the number of IMFs.

4.3. Cross-Correlation Analysis

Cross-correlation function is a measure of the strength of a linear correlation between two different
time series considering a range of time lags. The range of the correlation coefficient (r) is between −1
and 1. If the two different time series are positively correlated, r is close to 1; if they are negatively
correlated, r is close to −1; if they have no correlation, r is 0.

4.4. Backward Elimination Method

Backward elimination method is a kind of variable selection method beginning with all candidate
input variables for a model. From the initially selected candidate input variables, the least significant
variables are eliminated one by one until only one variable remains. The input variable showing
the smallest contribution to the model performance is deleted at each step according to the model
selection criteria. The relative importance of the input variable may be determined by removing the
input variable [50]. The backward elimination method is useful for improving the model’s performance
with an iterative procedure, although it requires significant computational time.
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5. Application and Results

5.1. Model Input Variables

To determine the autoregressive variables, the PACF was used to identify the lag time of the
monthly reservoir inflow series. Figure 6 shows the PACF of the three dams with 95% confidence
intervals. At all three dams, the spikes are mainly prominent at 1, 12, 24, and 36 months (lag1, lag12,
lag24, lag36; yt−1, yt−12, yt−24, yt−36). Therefore, the first type of input variables for all the three dams
includes the four cases of lagged inflows as shown in the second column of Table 3.

Figure 6. Partial Autocorrelation Function (PACF) of the three dams with 95% confidence intervals
(dotted line): (a) SY dam, (b) CJ dam, (c) GS dam.

To determine the exogenous variables for the second type of input variables, the monthly reservoir
inflow series was decomposed by EEMD to extract the IMFs. The IMFs indicate the different inherent
frequencies of the reservoir inflow series. Lagged climate indices which have the highest correlation
coefficient for each IMF were selected as the candidate exogenous variables. Figure 7 shows the IMFs
(solid black line) of the three dams and the lagged climate indices which have the highest correlation
coefficient for each IMF (blue dotted line). The reservoir inflow of the SY dam was decomposed
into eight IMFs and a residue, and the reservoir inflow of the CJ and GS dams were decomposed
into seven IMFs and a residue. For all three dams, the NINO12 index was mainly selected in the
low-frequency IMF, the NTA and QBO indices were mainly selected in the middle frequency IMF,
and the AMO index was mainly selected in the high-frequency IMF or residue. Table 4 shows the
correlation coefficients (r) between the IMFs and the lagged climate indices in the SY, CJ, and GS dams.
In the SY dam, the 4-month lagged NINO12 index had the highest correlation coefficient (r = 0.76)
with the third IMF and the 6-month lagged AMO index has the second highest correlation coefficient
(r = −0.57) with the eighth IMF. In the CJ dam, the 5-month lagged NINO12 index had the highest
correlation coefficient (r = 0.75) with the third IMF, and the 12-month lagged AMO index had the
second highest correlation coefficient (r = 0.49) with the seventh IMF. In the GS dam, the 5-month
lagged NINO12 index had the highest and the second highest correlation coefficients (r = 0.75, r = 0.45)
with the third and second IMFs, respectively. The 12-month lagged NTA index had the third highest
correlation coefficient (r = −0.40) with the fifth IMF.
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Figure 7. IMFs resulted from ensemble empirical mode decomposition (EEMD) (solid black line) and
the lagged climate indices (blue dotted line) which have the highest correlation coefficient for each IMF.
(a) SY dam, (b) CJ dam, (c) GS dam.

Table 3. The two types of input variables for the three dams.

Station Autoregressive Variables (AR-) A Combination of Autoregressive and Exogenous Variables (ARX-)

SY dam
Lag1, Lag12, Lag24, Lag36

Lag12, Lag36, NTA(12), AMO(6), NINO4(12), NINO12(10), AMM(12)
CJ dam Lag36, TNI(12), AMO(12), NINO12(11), NTA(11), NINO12(5)
GS dam Lag12, Lag36, NINO12(5), QBO(9), AMO(1)

To determine the second type of input variables for each dam, the backward elimination method
was applied to the candidate variables, including the lagged inflows and the lagged climate indices.
The backward elimination method results were shown in the third column in Table 3, which are
the second type of input variables for each dam composed of a combination of autoregressive and
exogenous variables. Therefore, a total of seven, six, and five input variables were finally selected for
the SY, CJ, and GS dams. Notably, the 36-month lagged inflow, lagged NINO12 index, and lagged
AMO index were identically selected as the second type of input variables at all the three dams.

Table 4. Correlation coefficients (r) between the intrinsic mode functions (IMFs) and the lagged climate
indices in the SY, CJ, and GS dams.

SY Dam CJ Dam GS Dam
IMFs CI Lag r IMFs CI Lag r IMFs CI Lag r

IMF1 NINO12 10 0.21 IMF1 NINO12 11 0.22 IMF1 NINO12 11 0.19
IMF2 NINO12 5 0.42 IMF2 NINO12 5 0.48 IMF2 NINO12 5 0.45
IMF3 NINO12 4 0.76 IMF3 NINO12 5 0.75 IMF3 NINO12 5 0.75
IMF4 QBO 7 −0.32 IMF4 QBO 8 −0.33 IMF4 QBO 9 −0.29
IMF5 NTA 12 −0.21 IMF5 NTA 11 −0.42 IMF5 NTA 12 −0.40
IMF6 AMM 12 −0.29 IMF6 NINO4 12 −0.38 IMF6 TNI 12 0.32
IMF7 NINO4 12 −0.15 IMF7 AMO 12 0.49 IMF7 AMO 1 0.30
IMF8 AMO 6 −0.57 RES TNI 12 −0.21 RES AMO 1 0.25
RES AMO 1 0.47

5.2. Model Parameters and Setting

A total of eight models including time series and artificial intelligence models with the two types
of input variables (SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF,
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and ARX-RF) were constructed. To calibrate and validate the time series models, the monthly reservoir
inflow series was divided into train and test periods. The training period was set from the start of
the data record to December 2012 and the test periods were set to the last four years (January 2013 to
December 2016). In the artificial intelligence models, the monthly reservoir inflow series was divided
into three parts, training, validation, and test periods to avoid overfitting problem. The training period
was set from the start of the data record to December 2008 and the validation period was set to the
next four years (January 2009 to December 2012). The test periods were set to the last four years
(January 2013 to December 2016). Detailed descriptions of the model parameters and architectures are
presented in the subsections.

5.2.1. SARIMA and SARIMAX Models

The SARIMA model is a conventional statistical model used to forecast future values. It is
composed of autoregressive terms. The SARIMAX model, which is very similar to the SARIMA model,
extends into the SARIMA model with an exogenous variable. Both the SARIMA and SARIMAX
models consist of the parameters (p, d, q)(P, D, Q)[s]. In general, it is sufficient to consider up to
two non-seasonal AR and MA parameters (p,q) and seasonal AR and MA parameters (P, Q) [51].
In this study, the SARIMA and SARIMAX models were composed of the non-seasonal AR and MA
parameters (p,q) and the seasonal AR and MA parameters (P, Q) up to three (from 0 to 3) for more
flexible model construction. Depending on the behavior of the reservoir inflow, non-seasonal and
seasonal differencing orders were respectively set to 0 and 1 (d = 0, D = 1), and the seasonal
periods were set to 12 (s = 12)) reflecting seasonality with 12-month intervals in the reservoir inflow
(in Figure 5).

A total of 256 (4 × 1 × 4 × 4 × 1 × 4) SARIMA models were respectively constructed for the SY,
CJ, and GS dams. The number of constructed SARIMAX models was the number of SARIMA models
multiplied by the number of combination autoregressive and exogenous variables in Table 3, because
the SARIMAX model is able to consider one exogenous variable. The rest of the parameters were
identical to the structure of the SARIMA model. A total of 1792 (256 × 7), 1536 (256 × 6), 1280 (256 × 5)
SARIMAX models were respectively constructed for the SY, CJ, and GS dams. The best SARIMA and
SARIMAX models were selected based on the minimum Akaike information criterion (AIC) value,
which is commonly used for model selection. Table 5 shows the parameters of best SARIMA and
SARIMAX models for the SY, CJ, and GS dams. For both model types, the best models were selected
when the non-seasonal parameters had little effect (p = 0). In addition, the lagged inflow was selected
as the exogenous variable for the SARIMAX models for all the three dams.

Table 5. Parameters of best SARIMA and SARIMAX models for the SY, CJ, and GS dams.

Station SARIMA (p, d, q)(P, D, Q)[s] SARIMAX (p, d, q)(P, D, Q)[s]

SY dam
SARIMA(0,0,0)(2,1,2)[12] SARIMAX(0,0,0)(3,1,1)[12]. × Lag12

Φ1−0.926, Φ2−0.271, Θ1−0.155,
Θ2−0.732

Φ1−0.117, Φ2−0.202, Φ30.148,
Θ1−0.954, c0.326

CJ dam
SARIMA(0,0,0)(1,1,3)[12] SARIMAX(0,0,0)(2,1,1)[12] × Lag36

Φ1−0.758, Θ1−0.147, Θ2−0.887,
Θ30.148

Φ1−0.071, Φ2 0.052, Θ1−0.949,
c0.133

GS dam
SARIMA(0,0,1)(1,1,1)[12] SARIMAX(0,0,0)(1,1,1)[12] × Lag12

θ10.171, Φ1−0.066, Θ1−0.888 Φ10.152, Θ1−0.937, c−0.254

5.2.2. ANN Models

For the AR-ANN and ARX-ANN models, a number of hidden nodes ranging from 1 to 10 were
considered in all three dams. The sigmoid activation function was used because of its superiority [4].
The optimal number of the hidden nodes for each dam was determined by considering the performance
during the validation period. The correlation coefficient (r) and root mean square error (RMSE) of
the AR-ANN and ARX-ANN models according to the number of the hidden nodes in the validation
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periods are shown in Figure 8. The optimal number of the hidden nodes was determined based on
the highest r and the lowest RMSE. In cases of two criteria were different, the RMSE was preferred.
Table 6 shows the optimal number of the hidden nodes of the AR-ANN and ARX-ANN models for the
three dams.

Figure 8. Correlation coefficients (r) and root mean square error (RMSE) of the AR-ANN and ARX-ANN
models according to the number of nodes in the validation period for the SY, CJ, and GS dams. The blue
line is the r-value in the validation period and the red line is the RMSE in the validation period.

Table 6. The optimal number of the hidden nodes of the AR-ANN and ARX-ANN models for the
three dams.

Station AR-ANN ARX-ANN

SY dam 3 5
CJ dam 4 4
GS dam 2 2

5.2.3. ANFIS Models

For the AR-ANFIS and ARX-ANFIS models, two MFs were built on the normalized Gaussian
MF (ci = −5, σi = 2 and ci = + 5, σi = 2) and Bell-shaped MF (a = 4, b = 1, c = −5 and a = 4, b = 1,
c = +5), and 20 epochs based on trial and error [52]. The optimal MF was determined by considering
the performance during the validation period. The correlation coefficient (r) and root mean square
error (RMSE) of the AR-ANFIS and ARX-ANFIS models according to the MF in the validation periods
are shown in Figure 9. The optimal MF was determined based on the highest r and the lowest
RMSE. In cases where two criteria were different, the RMSE was preferred. For the AR-ANFIS model,
there were eight input MFs and 16 rules in the three dams because there are four cases of lagged
inflow in the autoregressive input variable set. For the ARX-ANFIS model, the number of input MFs
according to the number of input nodes was 14, 12, and 10 for the SY, CJ, and GS dams, respectively.
Therefore, the number of rules were 128, 64, and 32. Table 7 shows the optimal MF, the number of
input MFs and rules of the AR-ANFIS and ARX-ANFIS models for the three dams.
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Figure 9. Correlation coefficients (r) and root mean square error (RMSE) of the AR-ANFIS and
ARX-ANFIS models according to the MF in the validation period for the SY, CJ, and GS dams. The NS
is normalized Gaussian MF and the BS is the Bell-shaped MF. The blue line is the r-value in the
validation period and the red line is the RMSE in the validation period.

Table 7. A number of input MFs and rules of the AR-ANFIS and ARX-ANFIS models for the three dams.

Station

AR-ANFIS ARX-ANFIS

Optimal MF
Number of
Input MF
(Layer2)

Number of
Rules

(Layer3)
Optimal MF

Number of
Input MF
(Layer2)

Number of
Rules

(Layer3)

SY dam BS 8 16 BS 14 128
CJ dam BS 8 16 BS 12 64
GS dam BS 8 16 NG 10 32

5.2.4. RF Models

For the AR-RF and ARX-RF models, the number of trees ranging from 100 to 1000 (in 100 units)
were considered in all the three dams. The optimal number of trees was determined by considering
the performance during the validation period. The correlation coefficient (r) and root mean square
error (RMSE) of the AR-RF and ARX-RF models according to the number of trees in the validation
periods are shown in Figure 10. The optimal MF was determined based on the highest r and the lowest
RMSE. In the case of two criteria were different, the RMSE was preferred. Table 8 shows the optimal
number of trees of the AR-RF and ARX-RF models for the three dams.
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Figure 10. Correlation coefficients (r) and root mean square error (RMSE) of the AR-RF and ARX-RF
models according to the number of trees in the validation period for the SY, CJ, and GS dams. The blue
line is the r-value in the validation period and the red line is the RMSE in the validation period.

Table 8. The optimal number of trees of the AR-RF and ARX-RF models for the three dams.

Station AR-RF ARX-RF

SY dam 200 500
CJ dam 200 300
GS dam 100 200

5.3. Model Performance

Model performance can be evaluated based on different statistical measures. Two statistical
criteria were used to estimate the model performance in this study. The correlation coefficient (r) is
widely used to identify the linear relationship between observed and forecasted data. The value of r
has a range of –1 to 1 that indicates either a negative or positive correlation. The root mean square
error (RMSE) is used to measure the difference between observed and forecasted data. The value of
RMSE indicates the magnitude of the error. The Nash–Sutcliffe Efficiency (NSE) is used to assess the
predictive power of hydrological models. The value of NSE has a range from −∞ to 1. The r, RMSE,
NSE are defined in Equations (18), (19), and (20), respectively.

r =
∑T

t=1
(
Y(t)− Y(t)

)(
X(t)− X(t)

)√
∑T

t=1
(
Y(t)− Y(t)

)2
√

∑T
t=1
(
X(t)− X(t)

)2
(18)

RMSE =

√√√√ 1
T

T

∑
t=1

(Y(t)− X(t))2 (19)

NSE = 1 − ∑T
t=1(Y(t)− X(t))2

∑T
t=1
(
X(t)− X(t)

)2 (20)

where T is data length, Y(t) and X(t) are the forecasted and observed data series, and Y (t) and X (t)
are the mean of the forecasted and observed data series, respectively.

The calculated r, RMSE, and NSE during the training, validation, and test periods of SARIMA,
SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF models for the SY,
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CJ, and GS dams were presented in Table 9. The underlined values indicate the best statistics among
the employed models in the training, validation, and test periods. In the SY dam, the result shows
that the ARX-RF and AR-RF models are very competitive and have good performance in the training
and validation periods, respectively. On the other hand, in the test period, the AR-ANN or ARX-ANN
models shows the best performance although it is slightly different according to the statistical criteria.
In CJ dam, the ARX-RF model shows the best performance in the training and validation periods.
On the other hand, the ARX-ANN model outperforms in the test period. In the GS dam, the ARX-RF
model shows the best performance in the training period while the AR-ANN model shows the best
performance in the validation period. The SARIMA and AR-RF models achieve the best performance
in the test period depending on the statistical criteria. Overall, the ARX-RF model outperforms in
the training period. Focusing on the test period, the ARX-ANN model generally provided better
predictions, except for the GS dam. In summary, the time series model does not prove that the use
of climate indices as an exogenous variable is more efficient. However, the use of climate indices
generally tends to produce better performance in the ANN and RF models.

Table 9. Model performance of the SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS,
ARX-ANFIS, AR-RF, and ARX-RF models during the training, validation, and test periods for the SY,
CJ, and GS dams.

Station Model
r RMSE NSE

Train. Vali. Test Train. Vali. Test Train. Vali. Test

SY dam

SARIMA 0.65 0.53 84.17 83.69 0.42 −0.04
SARIMAX 0.65 0.38 84.52 93.82 0.42 −0.31
AR-ANN 0.66 0.70 0.58 82.89 89.18 72.28 0.44 0.49 0.22

ARX-ANN 0.64 0.68 0.63 85.56 91.63 80.64 0.40 0.46 0.03
AR-ANFIS 0.65 0.73 0.53 84.54 88.49 74.97 0.42 0.49 0.16

ARX-ANFIS 0.61 0.71 0.41 87.93 89.53 86.96 0.37 0.48 −0.13
AR-RF 0.94 0.83 0.47 42.61 75.33 77.78 0.85 0.63 0.10

ARX-RF 0.95 0.66 0.50 42.45 93.76 75.71 0.85 0.43 0.15

CJ dam

SARIMA 0.65 0.57 203.35 179.26 0.41 −0.93
SARIMAX 0.63 0.57 205.62 180.51 0.40 −0.96
AR-ANN 0.64 0.71 0.52 204.71 202.42 162.32 0.40 0.48 −0.58

ARX-ANN 0.61 0.74 0.67 209.49 191.73 151.26 0.37 0.53 −0.37
AR-ANFIS 0.63 0.70 0.46 205.29 208.25 162.20 0.40 0.45 −0.58

ARX-ANFIS 0.64 0.76 0.41 203.89 186.34 203.91 0.41 0.56 −1.50
AR-RF 0.93 0.68 0.42 110.41 207.17 157.52 0.83 0.46 −0.49

ARX-RF 0.93 0.79 0.40 108.83 174.11 169.53 0.83 0.62 −0.73

GS dam

SARIMA 0.65 0.52 17.44 15.55 0.42 −1.56
SARIMAX 0.67 0.51 17.14 17.86 0.44 −2.38
AR-ANN 0.62 0.72 0.37 17.88 15.37 13.67 0.39 0.51 −0.98

ARX-ANN 0.69 0.63 0.51 16.48 17.41 14.21 0.48 0.37 −1.14
AR-ANFIS 0.65 0.71 0.35 17.31 15.58 14.37 0.43 0.50 −1.19

ARX-ANFIS 0.77 0.68 0.42 14.77 16.69 19.40 0.58 0.42 −2.99
AR-RF 0.93 0.59 0.38 9.13 18.02 13.45 0.84 0.33 −0.92

ARX-RF 0.94 0.68 0.46 8.69 16.35 16.76 0.86 0.45 −1.98

The reservoir inflow forecasting results from the SARIMA, SARIMAX, AR-ANN, ARX-ANN,
AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF models for the SY, CJ, and GS dams are shown in
Figures 11–13, respectively. The training periods for the SY, CJ, and GS dams were respectively
started in 1981, 1992, and 1987 considering the order of the time series models. In Figures 11–13,
a part of forecasting results in the training period of the SARIMA and SARIMAX models were
illustrated to the validation period. The general results of the time series models showed that they
forecast only seasonal patterns even in both training, validation, and test periods. In addition,
there were no significant differences between the SARIMA and SARIMAX models depending on
the exogenous variables. The forecasted reservoir inflows of the SARIMA and SARIMAX models were
very close, and were unable to forecast the extreme inflow during the flood season in both the training
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and test periods. This indicates the impact of the climate index was insufficient in the time series
model. On the other hand, the exogenous variables have an impact on the performance of artificial
intelligence models. The general results of the ARX-RF models showed that they forecast well not
only seasonal patterns, but also peak flows during the flood season in the training and validation
periods for all three dams. During the test period, the ARX-ANN model matched the seasonal patterns
of inflow better than the other employed models, although it showed less accuracy in the volume.
Although the ARX-ANN model showed lower forecasting performance in the training period than the
ARX-RF model, the ARX-ANN model was able to make better forecasts of low and medium reservoir
inflows than the ARX-RF model in the test period. By adding the validation period, we could avoid
the overfitting problem. With regard to unsatisfactory performance in the test period captured by the
NSE, this will be discussed further in the discussion section.

Figure 11. Forecasting results from the eight models in the SY dam during the training, validation,
and test periods (a part of the forecasting results in the training period of the SARIMA and SARIMAX
models were illustrated for the validation period).
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Figure 12. Forecasting results from the eight models in the CJ dam during the training, validation,
and test periods (a part of the forecasting results in the training period of the SARIMA and SARIMAX
models were illustrated for the validation period).

Figure 13. Forecasting results from the eight models in the GS dam during the training, validation,
and test periods (a part of the forecasting results in the training period of the SARIMA and SARIMAX
models were illustrated for the validation period).
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6. Discussion

In this study, the statistical methods (e.g., PACF and EEMD) were employed to select the two types
of input variables including lagged inflow and lagged climate indices. The PACF for all three dams
mainly resulted in prominent spikes at 1, 12, 24, and 36 months. The EEMD showed that the third IMF
had the highest correlation coefficient with the four or five-month lagged NINO12 index and residues,
and the last IMF also had a considerably high correlation coefficient with the 1- or 12-month lagged
AMO index. It was found that the EEMD can obtain the inherent climate variability and long-term
trend in the reservoir inflow. Therefore, the statistical relationship between the reservoir inflow and
the climate indices can be deeply examined through EEMD.

From the results of the backward elimination method, the 36-month lagged inflow, NINO12 index,
and the AMO index were selected as a combination of autoregressive and exogenous variables for
the three dams in Table 3. Consequently, we found that the three variables mainly affect reservoir
inflow and play an important role as input variables. This finding supported the results obtained by
Kim et al. [41] that identified the four-month lagged NINO12 and AMO indices as effective indicators
for long-term precipitation in South Korea, as the precipitation is causally related to reservoir inflow.
In addition, this result also agrees with previous studies [36,38,40,53,54] that showed the IMFs
identified through EEMD include the cyclical variabilities and overall trends of time series data.

The comparison of model performance proved that the impact of the climate index was insufficient
in the time series model while the exogenous variables have an impact on the performance of
artificial intelligence models. The ARX-RF models generally forecasted well not only seasonal
patterns, but also peak flows during the flood season in the training and validation periods for
all the three dams. On the other hand, the ARX-ANN model generally showed better performance
in the test period by matching the seasonal patterns of inflow although it showed less accuracy in
the volume. However, the unsatisfactory performance in the test period captured by the NSE was due
to severe weather conditions that rarely occurred in the observation period. To further understand
the model performance under extreme weather conditions, the test period (2013–2016) was divided
into each year, and the inflow characteristics were examined in each year. Figure 14(a) shows the
percentage of the inflow rate of the year compared to the mean annual inflow in the 2013 to 2016 years
for each dam. Figure 14(b) shows the percentage of the variation rate of the year compared to the
mean annual variation in the 2013 to 2016 years for each dam. For example, the percentage of the
inflow rate of 2013 year is calculated by (the mean annual inflow in 2013/the mean annual inflow in
the training period) × 100(%). The percentage of the variation rate is calculated in the same way.

Figure 14. Percentages of (a) the inflow rate of the year compared to the mean annual inflow in the
2013 to 2016 years and (b) the variation rate of the year compared to the mean annual variation in the
2013 to 2016 years.

Notably, extreme weather conditions occurred during the test period. The dam inflow in 2013
approximated the mean annual inflow, however, there was a large difference in annual variation
compared to the mean variation for the three dams. The annual inflow of the three dams was less than
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half the mean annual inflow in 2014 and decreased further in 2015 because a severe drought occurred
in these two years. Due to the severe drought, the annual variation in inflow was also lower than
average and there was minor difference in variation between the three dams. Inflow slightly increased
in 2016 reaching half the mean annual inflow. In this study, the years of test period are defined as an
ordinary year (2013), a drought year (2014), a severe drought year (2015), and a restored year (2016).
Table 10 presents the model performances in the 2013 to 2016 years for the three dams.

In the ordinary year (2013), the time series models generally showed better performance than
the artificial intelligence models. When the percentage of the annual variation was similar or smaller
than the mean annual variation, such as was observed in GS dam, the AR-RF model generally showed
the best forecasting accuracy based on both the RMSE and NSE. There were no significant differences
according to the exogenous variables.

In the drought year (2014), the time series model performance was significantly poorer than
during the ordinary year. The forecasting accuracy of the ARX-ANN and AR-RF models was generally
better than other models based on the r and RMSE. The NSE captured poor performance at all dams
because the mean inflows had been lowered due to drought effects. This result indicates that exogenous
variables in the ANN model can improve forecasting accuracy during drought years, although there
are limitations to forecasting the inflow volume.

In the severe drought year (2015), when the annual inflow was close to 50% of the mean annual
inflow such as in the SY dam, all models showed improved forecasting accuracy. The ARX-ANFIS
model showed the best forecasting accuracy based on the RMSE and NSE while the AR-RF model
showed the best forecasting accuracy based on the r. However, when the annual inflow was lower than
40% of the mean annual inflow such as in the CJ and GS dams, the forecasting accuracy showed the
worst performance, especially based on the NSE. This result shows a limitation of the use of exogenous
variables in forecasting extreme weather conditions such as severe droughts, since the lagged climate
indices mainly reflect the inherent climate variabilities and long-term trends.

In the restored year (2016), the ARX-RF and ARX-ANN models usually had the best forecasting
accuracy for the SY and GS dams. Although the AR-ANN model showed better forecasting accuracy
than the ARX-ANN model for the CJ dam based on the RMSE and NSE, the ARX-ANN model
showed best forecasting accuracy based on the r. This result implies that the exogenous variables in
the artificial intelligence models play an important role in forecasting accuracy under the restored
climate conditions.

It was observed that the time series models have quite similarly forecasted inflow in the test
period for the three dams. Mainly in the drought and severe drought years, the results generally
described a limitation of the time series and artificial intelligence models, because the models are based
on the observed data series. They only forecasted ordinary patterns of the observed inflow series. The r
of the time series models decreased in the drought and severe drought years and slightly increased in
the restored year because the time series models maintain seasonal patterns regardless of changing
weather characteristics. The model performance in the artificial intelligence models was slightly
different depending on the dam, period, climate conditions, and input variables. This also implies a
difficulty to forecast events that have not been previously observed, although the model was trained
very well. Among them, the AR-RF and ARX-ANN models generally showed better forecasting
accuracy under drought conditions in our case study. Therefore, we can conclude that the use of
artificial intelligence model and climate indices as exogenous variables has the potential to provide a
suitable forecasting performance under the changing climatic conditions.

Reservoir inflow forecasting is still a challenge for reservoir managers all over the world.
Reservoir managers should strive to operate the reservoir considering the various results from
statistical, artificial intelligence, and dynamic models. In light of this decision-making, our study
can be useful in making decisions for reservoir operation, because they showed good performance
in forecasting inflow patterns by using lagged inflows and lagged climate indices. Finally, we also
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agree with Zhang et al. [55] that future studies should be ongoing by applying a new type of machine
learning algorithm, i.e., deep learning, derived from the ANN model.

Table 10. Model performance of the SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS,
ARX-ANFIS, AR-RF, and ARX-RF models by year during test period for the three dams.

Station Model
r RMSE NSE

2013 2014 2015 2016 2013 2014 2015 2016 2013 2014 2015 2016

SY dam

SARIMA 0.62 0.43 0.78 0.75 102.18 99.57 59.86 63.84 0.38 −9.02 −2.31 0.38
SARIMAX 0.53 0.10 0.67 0.69 110.61 131.76 43.73 60.81 0.28 −16.54 −0.77 0.44
AR-ANN 0.53 0.18 0.75 0.93 110.56 75.68 43.94 31.80 0.28 −4.79 −0.79 0.85
ARX-ANN 0.50 0.58 0.71 0.99 114.18 80.57 49.75 63.31 0.23 −5.56 −1.29 0.39
AR-ANFIS 0.50 0.23 0.80 0.90 112.66 80.56 44.31 36.59 0.25 −5.56 −0.82 0.80
ARX-ANFIS 0.27 0.14 0.75 0.96 130.77 104.71 39.43 25.02 −0.01 −10.08 −0.44 0.91

AR-RF 0.41 0.29 0.82 0.68 121.48 58.62 49.12 59.95 0.13 −2.47 −1.23 0.45
ARX-RF 0.36 0.21 0.69 0.97 122.78 72.36 45.84 22.66 0.11 −4.29 −0.94 0.92

CJ dam

SARIMA 0.81 0.45 0.58 0.76 115.63 227.95 189.39 165.34 0.64 −7.96 −28.82 −0.52
SARIMAX 0.75 0.40 0.59 0.78 140.97 221.25 204.75 139.94 0.47 −7.45 −33.85 −0.09
AR-ANN 0.58 0.38 0.64 0.83 181.56 210.36 147.21 80.67 0.12 −6.63 −17.02 0.64
ARX-ANN 0.62 0.83 0.42 0.99 169.29 137.67 190.67 86.89 0.23 −2.27 −29.22 0.58
AR-ANFIS 0.54 0.30 0.68 0.76 182.45 214.87 131.65 91.90 0.11 −6.96 −13.41 0.53
ARX-ANFIS 0.39 0.50 0.45 0.74 212.50 237.39 211.93 141.02 −0.21 −8.72 −36.34 −0.10

AR-RF 0.43 0.36 0.66 0.78 182.52 167.42 172.71 89.85 0.11 −3.84 −23.80 0.55
ARX-RF 0.35 0.47 0.61 0.69 230.87 162.34 153.13 108.92 −0.43 −3.55 −18.49 0.34

GS dam

SARIMA 0.87 0.47 0.05 0.62 9.52 16.66 19.43 14.87 −0.02 −4.11 −49.30 −0.16
SARIMAX 0.88 0.48 0.10 0.62 9.32 18.26 22.81 18.30 0.02 −5.14 −68.31 −0.75
AR-ANN 0.82 0.50 −0.21 0.01 10.10 15.14 13.00 15.70 −0.15 −3.22 −21.52 −0.29
ARX-ANN 0.82 0.79 −0.39 0.71 8.89 15.67 18.74 11.49 0.11 −3.52 −45.80 0.31
AR-ANFIS 0.79 0.44 −0.20 0.10 10.11 17.06 14.50 14.90 −0.15 −4.36 −27.00 −0.16
ARX-ANFIS 0.77 0.58 −0.33 0.57 8.11 24.36 21.03 20.11 0.26 −9.93 −57.96 −1.12

AR-RF 0.85 0.46 0.02 0.11 7.63 14.51 13.74 16.29 0.34 −2.88 −24.17 −0.39
ARX-RF 0.80 0.61 -0.16 0.59 7.98 18.23 20.88 17.07 0.28 −5.12 −57.10 −0.52

7. Conclusions

In this study, the use of large-scale climatic indices as exogenous input variables to hydrologic
forecasting models was considered to reflect climate variability due to climate change. To do this, a total
of eight models including time series and artificial intelligence models (SARIMA, SARIMAX, AR-ANN,
ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF) were applied to monthly reservoir inflow
forecasting. The results of this study led to the following conclusions:

(1) For input variable selection, the PACF and EEMD can be used to find lagged inflow and
lagged climate indices that have a significant relationship with dam inflow. As a result, four lagged
inflows (lag1, lag12, lag24, lag36) were selected as the autoregressive variables, and the 36-month
lagged inflow, the lagged NINO12 index, and the lagged AMO index were commonly selected as the
combinations of autoregressive and exogenous variables for the three dams. Therefore, the procedure
for input variable selection using the PACF, EEMD, cross-correlation analysis, and backward
elimination in this study is a suitable method for input variable selection.

(2) The ARX-RF model generally showed the highest forecasting accuracy in the training period,
which proves that a combination of autoregressive and exogenous variables is useful for constructing
an RF model for the three dams. In the test period, the ARX-ANN model generally showed the highest
forecasting accuracy by capturing the seasonal patterns of reservoir inflow well, although there are
limitations to its ability to accurately forecast inflow volume.

(3) The model performance in the test period (from 2013 to 2016) was examined according
to the inflow characteristics of each year. The inflow of the three dams maintained the seasonal
patterns in 2013. Drought occurred in 2014, and it worsened in 2015. The ordinary pattern was slightly
restored in 2016. Although the model performance was not consistent in each year of the test period,
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the ARX-ANN and the AR-RF models generally matched the seasonal patterns well, especially during
the drought and restored years.

Based on this study, the results prove that the use of large-scale climate indices as exogenous
variables has the potential to provide more efficient forecasting performance for water resource
management and planning. Furthermore, there is a possibility to provide better forecasting results
by using a state-of-art artificial intelligence models such as RF. Future studies should be required to
identify the best forecasting models through many applications considering local weather conditions
and inflow characteristics under the changing climate conditions for effective water management
and planning.
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