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Abstract: Air pollution remains a significant issue, particularly in urban areas. This study explored the
prediction of hourly point-based PM10 concentrations using the XGBoost algorithm to assimilate them
into a geostatistical land use regression model for spatially and temporally high-resolution prediction
maps. The model configuration and training incorporated meteorological data, station metadata,
and time variables based on statistical values and expert knowledge. Hourly measurements from
approximately 400 stations from 2009 to 2017 were used for training. The selected model performed
with a mean absolute error (MAE) of 6.88 µg m−3, root mean squared error (RMSE) of 9.95 µg m−3,
and an R² of 0.65, with variations depending on the siting type and surrounding area. The model
achieved a high accuracy of 98.54% and a precision of 73.96% in predicting exceedances of the
current EU-limit value for the daily mean of 50 µg m−3. Despite identified limitations, the model can
effectively predict hourly values for assimilation into a geostatistical land use regression model.

Keywords: air pollution; machine learning; XGBoost; COSMO-REA6

1. Introduction

Air pollution poses one of the most significant environmental risks to human health,
contributing to a myriad of adverse health effects, such as stroke, heart disease, lung
cancer, and respiratory diseases, including asthma. Despite efforts to mitigate its impact,
air pollution remains a pressing global concern. In 2019, a staggering 99% of the world’s
population resided in areas where air quality fell below the guidelines set by the World
Health Organization (WHO). Tragically, ambient air pollution was responsible for an
estimated 4.2 million premature deaths worldwide that year, with a disproportionately
high burden observed in low- and middle-income countries, particularly within the WHO
South-East Asia and Western Pacific Regions [1].

In 2021 in the European Union, 253,000 deaths were attributable to exposure to particulate
matter (PM2.5) above WHO’s guideline level of 5 µg m−3, 52,000 deaths were attributable to
exposure to NO2 concentrations above WHO’s guideline level of 10 µg m−3, and 22,000 deaths
were attributable to short-term exposure to O3 concentrations above 70 µg m−3. Particulate
matter (PM) is of significant interest because of its widespread presence in the atmosphere
and its detrimental effects on human health and the environment [2].

Addressing this conjuncture requires comprehensive policies and investments aimed
at reducing key sources of outdoor air pollution, such as transportation, energy production,
industrial processes, and waste management. Moreover, promoting access to clean house-
hold energy sources can significantly alleviate air pollution in certain regions [1]. Legal
frameworks and international agreements, including WHO Air Quality Guidelines [3], the
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United Nations Economic Commission for Europe (UNECE) Convention on Long-range
Transboundary Air Pollution (CLRTAP) [4], including its protocols, and the EU Ambient
Air Quality Directive [5], which is to be revised at present, play a crucial role in guiding
these efforts. Recognising the heightened vulnerability of certain populations, such as
children, elderly persons, and those with chronic illnesses, underscores the urgency of
implementing effective air quality management strategies.

Moreover, accurate forecasting of particulate matter (PM) concentrations on urban,
local, and regional scales is essential for informing public health interventions and mitigat-
ing exposure risks. While existing forecasting models, such as the Copernicus Atmosphere
Monitoring Service (CAMS), provide valuable insights, they often lack the necessary spatial
and temporal resolution required for precise predictions, particularly in urban areas where
PM concentrations tend to be highest.

Pappa and Kioutsioukis [6] assessed the accuracy of PM forecasts generated by CAMS
at a local scale, comparing them against actual in situ measurements gathered over a two-
year period from a network of monitoring stations situated in an urban coastal Mediter-
ranean city in Greece. Their evaluation focused on forecasting PM2.5 and PM10 concen-
trations over four consecutive days at intervals of 6 h at individual monitoring stations.
The findings revealed that CAMS forecasts tend to underestimate PM2.5 and PM10 concen-
trations by a factor of two during the winter season, suggesting a deficiency in capturing
anthropogenic particulate emissions like those from wood-burning activities. Conversely,
an overestimation of concentrations was observed during other seasons.

Bailey et al. [7] utilised the Copernicus Atmospheric Monitoring Service (CAMS)
reanalysis data as a critical component in estimating PM2.5 levels for both city and national
scales, as required by Sustainable Development Goal (SDG) Indicator 11.6.2. Leveraging
CAMS data, which incorporates in situ and remote sensing information at a resolution
of 0.1°, their approach provided a robust framework for assessing air quality across Europe.
By integrating this comprehensive dataset into their methodology, they aimed to enhance
the granularity and accuracy of PM2.5 estimations, addressing the limitations posed by
sparse monitoring networks.

A huge variety of techniques and algorithms exist to predict PM concentration.
Choubin et al. [8] introduced a hybrid model that combines air mass trajectory analy-
sis and wavelet transformation to enhance the accuracy of artificial neural network (ANN)
forecasts for daily average concentrations of PM2.5 two days in advance. Developed using
data from 13 air pollution monitoring stations in the Jing-Jin-Ji area, China (Beijing, Tianjin,
and Hebei province), the model leverages air mass trajectories to identify distinct transport
corridors for “dirty” and “clean” air. By decomposing the original time series of PM2.5 con-
centrations using wavelet transformation and integrating meteorological forecast variables,
the model achieves a significant reduction in root mean squared error (RMSE) of up to 40%,
with a detection rate for high PM2.5 days reaching an average of 90%.

The study from Kowalski et al. [9] noted the significant impact of air pollution in
Poland. Focusing on PM10 concentration caused by adverse weather conditions and human
activities, the study aimed to evaluate the efficacy of modern neural networks in predicting
PM10 levels for the hours of the subsequent day. The model is based on data from the Polish
sensor network Airly composed of 2458 stations. Employing machine learning algorithms,
including convolutional and deep learning neural networks, the research demonstrated
the effectiveness of a proposed convergent neural network model in providing detailed air
quality forecasts for the next 24 h.

Czernecki et al. [10] addressed the persistent issue of air pollution in European urban
areas, particularly highlighting the impact of elevated PM levels on premature deaths,
predominantly due to heart disease and stroke. With Poland being identified as one of the
most polluted countries in Europe, especially during winter months, the study emphasised
the need for accurate PM forecasting alongside municipal mitigation efforts. By analysing
10 years of hourly winter PM10 and PM2.5 concentrations from 11 urban air quality moni-
toring stations across four major Polish agglomerations, the research assessed the feasibility
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of short-term PM forecasting using machine learning (ML) techniques. Among the tested
ML models, Extreme Gradient Boosting (XGBoost) emerged as the most effective, followed
by random forests and neural networks, while stepwise regression exhibited the lowest
performance. These findings underscore the significant potential of ML in short-term air
quality prediction.

Furthermore, the work of Park et al. [11] demonstrated strong performance in captur-
ing spatial contrasts and temporal variability in PM10 concentrations using ML techniques
and propounded that these models offer reliable PM10 concentration values for pollution
management, prevention, and mitigation. For future improvements, they suggested the
inclusion of additional variables related to spatial and seasonal characteristics to enhance
model accuracy.

Gilik et al. [12] trained models based on hybrid deep learning architecture to predict
concentrations of different pollutants with publicly available data in the cities of Barcelona,
Spain, Kocaeli, Turkey, and Istanbul, Turkey. They also observed an effect of meteorological
conditions on the prediction. However, the study acknowledged several limitations. Firstly,
there was a significant number of missing or poor-quality data in the publicly available
sources for the selected cities. Consequently, the training dataset for the model was
constrained by the scarcity of usable data collected from all sensors within the cities. This
resulted in small samples used as input for the model, making it challenging for the model
to extract meaningful relationships from the data. The authors additionally indicated that
the transferability of local models of individual cities to other cities is not easily guaranteed
and does not make sense if they are too far apart.

While previous studies have explored machine learning (ML) models for predicting
PM concentrations, Feng et al. [13] stated that spatial hazard modelling remains limited.
Their study addressed this gap by developing new ML models for predicting PM10 hazard
in the Barcelona province of Spain. Using data from 75 stations, healthy and unhealthy
locations were identified, and ML models were calibrated and validated, achieving accuracy
and precision of >87% and >86%, respectively. Spatial hazard maps generated by the models
highlighted high-risk areas primarily situated in the middle of the Barcelona province rather
than in the metropolitan area.

For the high-resolution spatial–temporal distribution of point information on PM10
concentrations, we have developed a geostatistical model using land-use regression [14].
This study aims to investigate the potential of augmenting this model with predicted hourly
PM10 concentrations using the XGBoost approach to create a spatially and temporally high-
resolution prediction model. This is intended to depict pollution situations in urban
areas more realistically than can be achieved by regional models such as CAMS. If more
precise and comprehensive information on future pollution situations is available at a high
resolution, especially high-risk groups can benefit, as they can immediately and effectively
reduce their exposure to air pollution through appropriate planning of their activities.
In situations relevant to the general population, city administrations can issue warnings
or take measures to proactively mitigate the severity of pollution, thereby reducing the
disease burden on the population as a whole. This work builds upon previous findings,
particularly regarding the use of meteorological predictors and the utilisation of machine
learning algorithms for modelling PM concentrations, and extends them.

2. Materials and Methods
2.1. Study Area

The study area encompasses the Federal Republic of Germany, offering a diverse
range of geographical and climatic conditions that influence air pollution dynamics. From
the mountainous terrain of the Bavarian Alps to the coastal plains along the North Sea
and Baltic Sea, Germany’s geography is characterised by a mix of landscapes, including
forests, agricultural areas, urban centres, and industrial zones. The climate is influenced
by its location in central Europe, with distinct seasonal variations and weather patterns.
Coastal areas experience maritime influences, while inland regions are subject to continental
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climatic conditions. These climatic variations, coupled with topographical features, such as
valleys, hills, and plateaus, create microclimates that can significantly impact air pollutant
dispersion and transport. Germany’s dense population centres, including major cities, such
as Berlin, Munich, Hamburg, Frankfurt, and the Ruhr area, are hubs of economic activity
and transportation networks. Industrial activities, vehicular emissions, and residential
heating contribute to localised air pollution hotspots, particularly in urban areas with high
population densities and traffic congestion. With a robust network of air quality monitoring
stations, Germany offers rich and extensive datasets for conducting detailed air pollution
studies in a broader context. This includes data on particulate matter concentrations as
well as meteorological parameters crucial for understanding pollutant dispersion patterns.
Figure 1 shows a terrain map of Germany and used stations categorised by siting type.

Figure 1. Terrain map of Germany and used stations categorised by siting type. Background
stations may overlap with traffic or industrial stations, especially in urban areas. Data sources:
State and federal air quality monitoring networks, Federal Agency for Cartography and Geodesy,
OpenStreetMap Contributors.

2.2. Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) [15] is a powerful and widely-used machine
learning algorithm known for its efficiency and effectiveness in predictive modelling tasks.
It belongs to the family of ensemble learning methods, specifically boosting algorithms,
which combine multiple weak learners (typically decision trees) to create a strong learner
capable of making accurate predictions. XGBoost builds upon the traditional gradient
boosting framework by introducing several enhancements to improve performance and
scalability. One key innovation is the integration of a regularisation term into the objective
function, which helps prevent overfitting and improves generalisation of unseen data.
Additionally, XGBoost employs a highly optimised implementation, leveraging parallel
processing and distributed computing to achieve faster training and inference times. The
algorithm’s success can be attributed to its ability to handle diverse data types, including
numerical, categorical, and missing values, without the need for extensive preprocessing.
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Moreover, XGBoost offers flexibility in model tuning through a wide range of hyperparam-
eters, allowing users to fine-tune the algorithm to suit specific datasets and prediction tasks
in their domain. XGBoost has been widely adopted across various domains, including
finance, healthcare, marketing, and environmental science, for tasks such as regression,
classification, and ranking. Its robust performance, ease of use, and interpretability make it
a preferred choice for both academic research and real-world applications.

2.3. Dataset and Model Configuration

Hourly data of PM10 concentrations (capped at the 99.99% percentile) from state and
federal air quality monitoring stations were used as target variables. The measurements
meet the requirements specified for compliance with the obligations arising from the EU
Ambient Air Quality Directive [5]. Hourly measurements from 2009 to 2018 from a total
of 429 stations were used in this study. However, the number and distribution of active
stations are subject to change because of continuous adjustments to the networks. Table 1
shows the summary statistics for measured PM10 concentrations and the number of active
stations per year.

Table 1. Summary statistics for measured PM10 concentrations and the number of active stations per
year. Min, max, mean, and standard deviation (SD) are in µg m−3.

Year Min Max Mean SD Stations

2009 0 1062.85 22.09 17.31 347
2010 0 16,142.50 23.06 25.71 356
2011 0 1966.63 23.08 18.87 370
2012 0 3617.21 19.93 16.41 357
2013 0 1409.69 20.26 15.22 355
2014 0 3014.80 20.23 15.85 345
2015 0 3407.47 18.89 15.13 347
2016 0 2737.70 17.65 13.96 345
2017 0 1860.08 17.50 14.91 349
2018 0 1330.84 18.69 13.50 360

Additionally, meteorological variables from COSMO-REA6 [16–19], along with time
variables (day of the week, day of the year), and station metadata (latitude, longitude,
altitude) served as predictor variables. The COSMO-REA6 dataset is a high-resolution
reanalysis system developed based on the numeric weather prediction model COSMO and
provides detailed atmospheric simulations over Continental Europe at a resolution of 0.055°
(6 km). Incorporating observational data assimilation through COSMO’s nudging scheme
and specialised modules for snow, sea surface temperature, and soil moisture analysis,
it utilises ERA-Interim data for lateral boundary conditions. Covering the period from
1995 to August 2019, COSMO-REA6 serves as a valuable resource for regional weather
forecasting, climate modelling, and research, facilitating the study of local climate patterns,
the assessment of climate change impacts, and support for various applications, such as
agriculture and disaster management. The full model output of COSMO-REA6 comprises
a set of 150 variables. We focused on the 35 available 2D parameters and chose 9 of them to
use as features to build the model.

The selection of variables was carried out iteratively and was based, in the first step,
on the correlation with the target variable and the other variables. We selected variables
with strong correlation coefficients with the target variables. Some terms could be grouped
together, which themselves exhibited high multicollinearity, such as the group of radiation
terms, which were divided into 6 variables depending on direction and wavelength. If
variables had a high degree of multicollinearity and were part of a group such as radiation, a
term from this group was selected as a representative. In the second step, the variables were
selected based on expert knowledge. The selected variables served as proxies for various
physical processes and interactions in emission, transmission, and ambient concentration.
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In addition to variables such as planetary boundary layer height or wind speed and
direction, which characterise the mixing potential and magnitude of exchange processes
within the troposphere, the specific surface humidity was also included to better describe
the process of particle resuspension. This process is of particular importance in urban
areas [20]. The hourly PM10 concentrations were aggregated to daily arithmetic averages
and added as predictor variables for each 1, 2, and 3 days in the past. The dataset spanned
from 2009 to 2018, with the training data covering the period from 2009 to 2017 and the
test data from 2018. The year 2018 was selected as the test dataset because it was the most
recent year fully covered by the COSMO-REA6 dataset and was also interesting because of
its meteorology.

Various aggregated models were trained using R [21] in combination with the caret
package [22]. Different sets of variables were used, including all selected variables as
described above, a subset of them, and only the 5 most important variables. The hyper-
parameters of the XGBoost algorithm were optimised using tune grids to find suitable
values for training the final model. Model selection was based on the lowest root mean
squared error (RMSE) resulting from the internal 5-fold cross-validation performed during
the training process with a training/test ratio of 75/25.

3. Results

The selection criterion for the final model was the lowest RMSE value of the internal 5-
fold cross-validation. The selected model was configured with the following hyperparameters:
the number of iterations (nrounds) was configured to 100 boosting rounds to balance model
complexity and training time; the maximum tree depth (max_depth) was set to 20 to control
the depth of each decision tree; the learning rate (eta) was chosen as 0.1 to moderate the step
size during optimisations for smoother convergence; the gamma value was set to zero to
enforce minimum loss reduction for further node partitioning; the fraction of features to be
sampled for each tree (colsample_bytree) was maintained at one; to impose minimum instance
weight requirements in child nodes, the hyperparameter min_child_weight was set to one;
and the subsample value was set to one, indicating the fraction of training data samples used
for each boosting iteration. These parameter values were selected to strike a balance between
model complexity and generalisation performance.

The internal 5-fold cross-validation resulted in an MAE of 4.32 µg m−3, an RMSE
of 6.62 µg m−3, and an R² of 0.82. Figure 2 depicts the variation of RMSE as a function of
maximum tree depth and the number of boosting iterations (left), as well as the importance
of each predictor variable (right). RMSE values decrease with increasing tree depth and
boosting iterations. Table 2 provides an overview of used predictor variables with their
name, unit, and importance.

The most important independent variable by far is the mean PM10 concentration
from the previous day. Mean PM10 concentrations from 2 or 3 days prior follow later and
with less importance. The second most important variable of the model is the day of the
year, which serves as a proxy for both seasonal variation and associated meteorological
conditions, as well as anthropogenic activities related to these seasons. The third most
important variable is the height of the planetary boundary layer, the first variable from
the COSMO-REA6 dataset, serving as a crucial proxy for potential dynamic exchange
processes within the troposphere. Subsequent to this are variables directly related to it,
such as wind direction and air pressure. Interrupted by metadata on station latitude and
longitude, the variable of the specific surface humidity, serving as a proxy for resuspension,
follows. Meteorological variables, such as cloud cover and total precipitation, have the
least importance. In all preliminary modelling attempts, the station type variable was
explicitly included but consistently demonstrated the least importance; thus, it was not
further considered in subsequent runs.
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Table 2. Overview of used predictor variables with their name, unit, and importance.

Variable Name Unit Importance

PM10_M1DB Mean PM10 concentration 1 day before µg m−3 0.438
DOY Day of year day 0.077
H_PBL Height of planetary boundary layer m 0.074
WINDDIR_10M Wind direction 10 m above ground degree 0.040
PS Surface pressure Pa 0.037
LAT Geographical latitude degree 0.036
LON Geographical longitude degree 0.035
QV_S Surface specific humidity kg kg−1 0.035
PM10_M3DB Mean PM10 concentration 2 days before µg m−3 0.033
T_2M Air temperature 2 m above ground K 0.033
PM10_M2DB Mean PM10 concentration 3 days before µg m−3 0.031
DOW Day of week day 0.028
RELHUM_2M Relative humidity 2 m above ground % 0.022
WIND_10M Wind speed 10 m above ground m s−1 0.021
ALT Height above mean sea level m 0.021
ASOB_S Avg. surface net downward shortwave radiation W m−2 0.021
CLCT Total cloud cover % 0.009
TOT_PRECIP Total precipitation kg m−2 0.009

Figure 2. RMSE values of the internal 5-fold cross-validation depending on the hyperparameter
maximum tree depth and number of boosting iterations (left) and the variable importance of the final
model with the lowest RMSE (right.)

Using this model, predictions were made for the test set comprising hourly values
for the year 2018. The selected model performed with an MAE of 6.88 µg m−3, an RMSE
of 9.95 µg m−3, and an R² of 0.65. The mean bias value (predicted minus observed) of
−0.86 µg m−3 indicates a slight underestimation. The bias median is −1.73 µg m−3 with a
standard deviation of 9.35 µg m−3.

In addition, Figures 3 and 4 show Q–Q plots with different value ranges. Both show
the line of best fit in magenta as well as the 95% and 99% percentiles of measured values
as blue dotted and dashed lines, respectively. Figure 3 displays the entire range of val-
ues and illustrates that the model underestimates values above the 95% percentile, with
the underestimation increasing significantly as values rise, reaching deviations of up to
100 µg m−3. Figure 4 focuses on the value range up to 70 µg m−3 and demonstrates that
overestimation begins at values above approximately 25 µg m−3. Conversely, in the range
from 0 to 25 µg m−3, there is a systematic overestimation of values. Around 25 µg m−3, the
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points align closely with the line of best fit. Figure 5 provides a histogram of measured
PM10 values corresponding to the Q–Q plot in Figure 4.

Figure 3. Q–Q plot of predicted and observed PM10 values in µg m−3 of the test dataset (2018)
containing the full value range with the line of best fit (magenta) as well as the 95% and 99%
percentiles of measured values as blue dotted and dashed lines, respectively.

Figure 4. Q–Q plot of predicted and observed PM10 values in µg m−3 of the test dataset (2018)
containing only the 99% percentile of values with the line of best fit (magenta) as well as the 95% and
99% percentiles of measured values as blue dotted and dashed lines, respectively.

Figure 5. Histogram of observed PM10 values in µg m−3 of the test dataset (2018) corresponding to
the Q–Q plot in Figure 4.

Figure 6 displays the observed PM10 concentrations in 2018 and exhibits their temporal
variations, as reflected in the model performance metric RMSE shown in Figure 7. The year
2018 was characterised by notably dry conditions, featuring numerous stable high-pressure



Atmosphere 2024, 15, 525 9 of 18

weather systems, which led to reduced heights of the planetary boundary layer shown in
Figure 8. Additionally, in 2018, several instances occurred where dust originating from the
Sahara was transported to Germany.

Figure 6. Calendar plot of observed PM10 concentrations in µg m−3 of the test dataset (2018).

Figure 7. Calendar plot of RMSE values in µg m−3 from the validation process of the test dataset (2018).
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Figure 8. Calendar plot of the planetary boundary layer height in metres of the test dataset (2018).

Excluding days with a Sahara Dust Index (SDI) [23] greater than 0.4, along with
the days immediately preceding and following (due to the singular observation station
in Bavaria, Hohenpeißenberg, rendering it non-representative for the entire study area),
results in a slight improvement of the error metrics MAE and RMSE, as shown in Table 3.

Table 3. Metrics of the model evaluation with training (2009–2017) and test (2018) datasets including
and excluding days (±1) with Sahara Dust Index (SDI) > 0.4. All metrics except R² are in µg m−3.

SDI > 0.4 MAE RMSE R² Bias (Mean) Bias (Median) Bias (SD)

included 6.88 9.95 0.65 –0.86 –1.73 9.35
excluded 6.61 9.53 0.65 –1.03 –1.84 9.03

The occurrence of several multi-day events posed a challenge, with the model exhibit-
ing underestimation at the onset and overestimation towards the conclusion of such events.
These trends are also evident in the calendar plots and apply to the above-mentioned
Sahara dust events, which are predicted with a time lag.

Model performance also varies in terms of the classification of the siting type and the
surrounding area of the station. The respective values of the evaluation process are shown
in Table 4. As anticipated, model performance is poorer at traffic stations because of the
inherently greater magnitude and variability in values. The best evaluation metrics are
those from rural background stations, and the worst model performance is observed at
industrial stations in urban areas (based on RMSE).

For the month of March 2018, which experienced the highest pollution levels, a
separate analysis was conducted for each exemplarily chosen station representing the most
frequent combinations of station type and environment. The hourly values were aggregated
into rolling 3 h means for better visualisation. Figures 9–12 depict the measured values
(black) compared to the modelled values (red).
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Table 4. Evaluation metrics by pairs of siting type and classification of the surrounding area of the
station according to Annex III of the directive 2008/50/EC on ambient air quality and cleaner air for
Europe [5]. MAE and RMSE are in µg m−3.

Siting Type Area MAE RMSE R²

Background Rural 5.83 8.49 0.65
Background Suburban 6.53 9.45 0.63
Background Urban 6.82 9.73 0.63
Industrial Rural 8.23 12.10 0.58
Industrial Suburban 6.87 9.70 0.66
Industrial Urban 8.19 11.60 0.58
Traffic Rural 6.66 9.89 0.63
Traffic Suburban 7.64 11.10 0.61
Traffic Urban 7.53 10.90 0.64

Representing urban industry, the station in Warstein (DENW181) was selected. The
station is situated on a paved area at the eastern edge of the town. Approximately 6 m west
lies a two-lane road primarily used as access to quarries. The quarries begin about 400 m
southeast of the station and extend south. A federal highway is approximately 450 m from
the station. Modelled values often exceed the mostly moderate measured values, exhibiting
slight peaks, although the trend of measured values remains relatively constant. Individual
events with particularly high concentrations cannot be accurately modelled. The R² value
between the measured and modelled values is 0.58.

Figure 9. Comparison of observed and predicted PM10 values in µg m−3 during March 2018 for
Warstein as an example of the siting type urban industry.

Figure 10. Comparison of observed and predicted PM10 values in µg m−3 during March 2018 for
Stuttgart Am Neckartor as an example of the siting type urban traffic.
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Similarly, for urban traffic stations, the selected station Stuttgart Am Neckartor
(DEBW118) exhibits comparable behaviour. Situated in the capital city of Baden-Württemberg,
the station is located on a five-lane (plus one bus lane) road with heavy traffic flow between
dense urban development and a green area. Peaks occur more frequently here and are also
not accurately reflected by the model. Apart from the peaks, the model follows the general
trend of concentration levels throughout the month with an R² of 0.62.

Figure 11. Comparison of observed and predicted PM10 values in µg m−3 during March 2018 for
Berlin-Neukölln as an example of the siting type urban background.

Figure 12. Comparison of observed and predicted PM10 values in µg m−3 during March 2018 for
Waldhof as an example of the siting type rural background.

This observation is also evident when considering values for the urban background
station Berlin-Neukölln (DEBE034). With few exceptions, the line of modelled values
closely follows the line of measured values throughout March 2018, reaching a correlation
of R² = 0.75. The measurement station is located in a densely populated residential area in
the city centre with moderate traffic flow near a daycare centre.

For the category of rural background, the station Waldhof (DEUB005) was selected.
It is located in the eastern part of the Lüneburg Heath on Lower Saxony territory. The
nearest settlement is located approximately 3 km to the west. Here, concentrations fluctuate
relatively strongly at the beginning of the month, and the model values do not follow those
of the measurements. As the month progresses, both values remain mostly low and close
to each other. In the last third of the month, the variability of measured concentrations
increases again, and the model tends to overestimate them. The correlation of measured
and predicted values for this station in March 2018 reaches an R² of 0.68.

The exemplary examination of a selection of representatives for most station-type
combinations illustrates the various typical trends and variations for each station type. In
most cases, the model could capture these characteristic trends well, achieving correlation
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coefficients of up to 0.75. However, the peaks that commonly occur at traffic stations could
not be captured by the model, resulting in lower coefficients of determination.

The model was not specifically trained to detect exceedances of the currently ap-
plicable daily EU-limit value for PM10 of 50 µg m−3. However, for better comparison
with similar models, the model’s ability to fulfil this task was still investigated. For this
purpose, daily mean concentrations were calculated from the measured and modelled
hourly concentration values for all stations in 2018. The model achieved a high accuracy
of 98.54%, indicating its overall effectiveness in making correct predictions. However, a
closer examination of precision and recall metrics unveiled areas for improvement. While
precision was relatively high at 73.96%, suggesting that the model’s positive predictions
were generally reliable, the recall value was lower at 27.81%. This indicates that the model
might be missing a significant portion of instances where PM10 concentrations exceed the
limit value.

4. Discussion
4.1. Sampling

Model training began with a 70/30 train/test split of the entire dataset spanning from
2009 to 2018. The results obtained from this initial setup closely mirrored the outcomes
of the internal 5-fold cross-validation performed during the XGBoost training process.
However, it is important to note that such a configuration lacks the characteristics of a true
forecast model; rather, it operates more as a gap-filling model. In an effort to imbue the
model with a more pronounced forecast character, subsequent training sessions utilised
data from 2009 to 2017 for training, while the model’s performance was evaluated against
data from 2018. This approach yielded the results presented above. However, it is worth
mentioning that a rolling-point-forecast model would have been even more optimal in this
scenario. It is crucial to acknowledge that samples in the internal 5-fold cross-validation of
the model training were not independent, primarily because of the temporal component.
The interdependence between samples introduced a certain level of autocorrelation, par-
ticularly concerning time-based variables. Ignoring temporal dependencies in time-series
data during XGBoost modelling and hyperparameter tuning could lead to violations of
assumptions, data leakage, and misleading feature importance. This consideration is es-
sential for understanding the limitations of the model and has to be kept in mind when it
comes to validation and application.

4.2. Model Architecture

The model architecture presents opportunities for enhancement through ensemble
techniques employing multiple algorithms, which have the potential to increase overall
model performance. Additionally, the implementation of one aggregated model for each
siting type could mitigate unwanted interference, particularly in cases where stations of
different types are in close vicinity. This effect is partly attenuated when coupled with
the land use regression model from our previous research [14], leveraging functions for
de-trending and re-trending based on emission/land-use coefficients. Notably, in the
context of station-type consideration, urban backgrounds, such as Berlin, exhibit promising
performance, likely attributable to the dense network of air monitoring stations in the
vicinity. Moreover, the selected meteorological variables contribute significantly to the
model, warranting their pre-selection based on expert knowledge. Despite this, metadata
such as station latitude and longitude also hold significance, presumed to reflect spatial
patterns within the study area.

The importance of the station-type variable ranked last in all preliminary modelling
attempts and was subsequently excluded. This could be justified by the fact that the
mean concentration of the previous day already implicitly contained this information, as
distributions of the measurements follow characteristic patterns depending on the siting
type. For example, mean values and measures of dispersion for values from an urban traffic
station significantly differ from those of a station in a rural background. The mean PM10
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concentration from the preceding day emerges as the most crucial variable, with subsequent
days’ concentrations showing diminished importance, possibly because autocorrelation
decreases the more time elapses between the points. However, there is potential for
refinement in the treatment of this variable; while the model currently considers mean
PM10 concentration from one, two, or three days prior, optimisation can involve adjusting
the timeframe to better align with predictive accuracy. In the worst case, this value is 23 h
apart from the value to be predicted.

The unexpectedly low importance of the variables for cloud cover and precipitation
can stem from several factors. Firstly, these variables may be inadequately modelled in the
weather model and, hence, in the reanalysis dataset. Additionally, their relatively coarse
spatial resolution is a potential limitation. Furthermore, their high correlation with other
variables, such as humidity and surface moisture, which are also used and considered more
important, can contribute to their diminished importance.

The variable for the hour of the day is also not included in the final model, as it proved
to be insignificant in previous iterations. While this may initially seem surprising, it is
supported by the weaker diurnal variation compared to the annual cycle observed in PM10
levels. This can also be interpreted as a result of implemented emission reduction measures.
Thus, exhaust emissions in Germany have been declining since the mid-1990s and have
even fallen below road traffic emissions from abrasion (tyres, brake pads, road surface)
since 2015. Unlike gaseous air pollutants, such as NO2, local sources of PM, especially
the coarse fraction PM10, contribute less to the overall concentration. Statistically, the
low importance of the variable can also be attributed to some meteorological parameters
included in the model, such as air temperature, which typically exhibit a relatively strong
diurnal pattern.

4.3. Limitations and Improvement Suggestions

The model faces limitations in predicting very high values, primarily because of the
mathematical configuration of the algorithm and statistical constraints. These constraints
stem from the infrequency of occurrence of such high values, resulting in insufficient data
points for effective learning. While attempts were made to address this issue through bias
correction using quantile mapping, these efforts proved challenging as only a few values
were affected, leading to a limitation in the narrower sense. In evaluating the model’s
performance, considerations of accuracy, precision, and recall for limit exceedances are
essential. It was observed that in cases of incorrectly identified limit exceedances, measured
values mostly hovered just above the threshold, while modelled values of unrecorded
exceedances ranged from 30 with increasing density up to the limit of 50, as shown in
Figure 13. In some cases, even with a significant exceedance of the daily limit value, this
exceedance was not accurately captured by the model. The study of Feng et al. [13] achieved
values for accuracy and precision of >87% and >86%, respectively. Our model’s accuracy of
98.54% also lies above 87%, but the precision of 73.96% is close to but still below 86%. The
reason for this could be that this model was not explicitly trained for this task but rather
aims to predict an hourly mean value using regression. It may be possible to improve the
model for this purpose by training a classification model for daily mean values instead.

Moreover, the model was unable to accurately capture situations originating entirely
outside the study area, such as Sahara dust episodes or long-range transboundary transport
of air pollution originating from sources like heating and coal power plants, e.g., in Poland
or the Czech Republic. Those impacts could be partially covered by taking into account the
wind direction, which varies depending on the season of the year, as shown in Figure 14.
Pültz et al. [24] investigated the source attribution of particulate matter in Berlin and found
that about one-third of the foreign shares can be attributed to Germany’s neighbouring coun-
tries Poland and the Czech Republic. However, these contributions can differ significantly
during episodes. A potential avenue for improvement involves integrating complementary
models like the Copernicus Atmosphere Monitoring Service (CAMS) to learn from errors
between models, offering a straightforward yet effective approach. Furthermore, the in-
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clusion of variables from land use regression, traffic, building density, green area, or noise
alongside meteorological and time variables can enhance predictive capabilities.

Figure 13. Observed and modelled daily mean PM10 concentrations in µg m−3 of the test dataset
(2018) for instances where an exceedance of the EU-limit value of 50 µg m−3 occurred but was not
accurately predicted. Cases where no exceedance of the limit value of 50 µg m−3 occurred are not
shown in this graphic.

Figure 14. Observed PM10 concentrations in µg m−3 with frequency of counts (%) by wind directions
(10 m above ground) and seasons of the test data set (2018).

The model demonstrates effectiveness in predicting particulate matter concentrations
and may be adaptable for finer fractions of particulate matter. However, caution must be
exercised when adapting the model for gaseous contaminants, as their behaviour differs
significantly. Additionally, the training and execution of the model are highly cost-, data-,
and energy-efficient compared to chemical transport models, aligning with the principles
of Green IT and meeting certain environmental requirements.

4.4. Outlook and Further Research Directions

The methodology outlined in Section 2.3 is optimised for maximising predictive
accuracy. However, compared to a classical statistical model not tailored to enhance
our comprehension of feature influences on particulate matter concentration, it may lack
transparency in attributing specific contributions to results. If a deeper understanding of
feature effects was the objective, employing an experimental design enabling statistical
tests alongside a more interpretable statistical approach, such as a generalised additive
model, would be advisable.

Nevertheless, understanding feature importance remains crucial for comprehending
the inner workings of the model and assessing whether our knowledge of influences on
the response variable aligns with model attributions. The feature importance illustrated in
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Figure 2 is quantified using gain, as originally proposed by Breiman [25], which evaluates
the data homogeneity of child nodes compared to their parent node in a decision tree. How-
ever, despite its widespread use, this method can exhibit inconsistency, as demonstrated by
Lundberg et al. [26]. For instance, a feature’s reliance within the model may increase even
as its importance decreases. This discrepancy arises because early splits in decision trees,
being more crucial, tend to be weighted higher, while gain favours later splits, reflecting a
bias inherent in the greedy construction of decision trees. This theoretical limitation persists
in tree ensembles like XGBoost.

Theoretically superior methods for measuring feature importance include permutation
importance and SHAP (SHapley Additive exPlanations) importance, as defined by Lund-
berg and Lee [27]. These methods offer consistency and align closely with human intuition
regarding the significance of features [26]. The SHAP importance for the trained XGBoost
model described in Section 3 is visualised in Figure 15. While the feature ranking closely
resembles the gain-based feature importance depicted in Figure 2, notable differences arise:
the contribution of the previous day’s value appears to have been overestimated in the
gain-based importance, while the influence of variables such as the height of the planetary
boundary layer and temperature is more pronounced.

Figure 15. The relative feature importance of the trained XGBoost model as defined by the normalised
mean of absolute SHAP values.

Furthermore, SHAP values, the basis for SHAP importance, offer deeper insights by
providing feature contributions for each observation. These values, being directional, allow
visualisation of not only the magnitude but also the direction of feature contributions;
for instance, small values in a feature may correspond to increased values in the target.
Additionally, we can visualise the impact of a single feature through dependence plots or
for a single observation using waterfall plots, elucidating how each feature contributes to
the prediction.

A promising extension is transitioning from point forecasts to probabilistic forecasts,
increasingly popular in weather forecasting, as discussed in works such as Gneiting and
Katzfuss [28] and Scheuerer and Hamill [29]. This shift offers several benefits, including
deeper insights into differences between stations or over time, the quantification of un-
certainty through confidence intervals, and the ability to generate varying point forecasts
without retraining by retrieving percentiles and expectiles from the distribution. A straight-
forward approach involves selecting a suitable distribution and forecasting its parameters,
as demonstrated in the XGBoostLSS algorithm by März and Kneib [30], which builds upon
the standard XGBoost library. Alternatively, more flexible options, such as transforma-
tion forests, as explored by Schlosser et al. [31], offer probabilistic forecasting without
pre-defining a distribution.

5. Conclusions

Our present study highlights the feasibility of a point-based prediction of PM10 con-
centration across a large area encompassing numerous stations, leveraging meteorological
variables, station metadata, and time variables. The integration of these factors sheds light
on their intricate interactions, revealing the high potential for utilising XGBoost algorithms
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in predicting PM10 levels. Overall, the performance of the model is deemed satisfactory,
notwithstanding the challenges posed by differing station types and associated biases. This
model has the capability to provide accurate point-based prediction values for assimila-
tion into the geostatistical land-use regression model presented in the study conducted
by Wallek et al. [14], which demonstrated the efficacy of spatial interpolation of point-based
PM10 concentrations using a geostatistical land-use regression model with open data. This
approach proves capable of delivering satisfactory results for large areas, achieving high
spatial (100 m × 100 m) and temporal (hourly) resolutions simultaneously. Utilising the re-
sulting spatially predicted concentrations, it can provide crucial information on inter-urban
and regional transport of particulate matter to significantly contribute to improved health
outcomes. It is worth noting that the geostatistical model’s functions for de-trending and
re-trending, coupled with land-use emission coefficients, likely mitigate above-mentioned
biases. However, the coupling with geostatistical models may introduce error propagation,
necessitating careful consideration when transitioning to an operational model. Despite
these challenges, the model’s cost-effectiveness, data efficiency, spatio-temporal resolution,
and energy efficiency compared to Chemical Transport Models (CTM) make it a promising
tool for a broad spectrum of users and stakeholders, ranging from individual citizens to
governmental entities at various levels, as well as scientists.
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