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Abstract: Solid tumors shed DNA into circulation, and there is growing evidence that the detection
of circulating tumor DNA (ctDNA) has broad clinical utility, including monitoring of disease,
prognosis, response to chemotherapy and tracking tumor heterogeneity. The appearance of ctDNA
in the circulating cell-free DNA (ccfDNA) isolated from plasma or serum is commonly detected
by identifying tumor-specific features such as insertions, deletions, mutations and/or aberrant
methylation. Methylation is a normal cell regulatory event, and since the majority of ccfDNA is
derived from white blood cells (WBC), it is important that tumour-specific DNA methylation markers
show rare to no methylation events in WBC DNA. We have used a novel approach for assessment
of low levels of DNA methylation in WBC DNA. DNA methylation in 29 previously identified
regions (residing in 17 genes) was analyzed in WBC DNA and eight differentially-methylated regions
(DMRs) were taken through to testing in clinical samples using methylation specific PCR assays.
DMRs residing in four genes, BCAT1, GRASP, IKZF1 and IRF4, exhibited low positivity, 3.5% to 7%, in
the plasma of colonoscopy-confirmed healthy subjects, with the sensitivity for detection of ctDNA in
colonoscopy-confirmed patients with colorectal cancer being 65%, 54.5%, 67.6% and 59% respectively.

Keywords: hypermethylation; biomarkers; colorectal cancer; plasma; BCAT1; GRASP; IKZF1; IRF4
SDC2; SEPT9; epigenetics; circulating tumor DNA; liquid biopsy

1. Introduction

Tissue biopsies have long served as a source of biological material for pathology testing to aid
physicians in diagnosis, prognosis and therapy selection. Recent research and commercialization
efforts in the field of detecting circulating tumor DNA (ctDNA) in bodily fluids, i.e. “liquid biopsies”,
particularly blood plasma, have demonstrated the clinical utility of detecting ctDNA as an aid for
clinical management of cancer patients. The detection of ctDNA can be used for obtaining diagnostic,
prognostic and theranostic information concerning cancer. The diagnostic utility of ctDNA primarily
stems from the presence of somatic genomic alterations, such as in the KRAS, BRAF and EGFR genes,
which are absent from DNA taken from matched normal cells and in the circulating cell-free DNA
(ccfDNA) of healthy subjects [1–6].
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Aberrant DNA methylation is a characteristic of most types of solid cancer with common
hypermethylation events occurring more frequently than most mutations [7]. The specific patterns
of DNA methylation differ between cancer types and in some cases can be used for classification of
different sub-types [8]. For a number of cancers it has been possible to identify particular genes
that are methylated with high frequency, e.g., GSTP1 in prostate cancer [9,10], SHOX2 in lung
cancer [11], SEPT9, NRDG4, RASSF1A, THBD, BCAT1 and IKZF1 in colorectal cancer (CRC) [12–16].
These hypermethylation events are not confounded by the need to cover multiple and often large
regions for possible mutations (such as, for example, EGFR, APC, PIK3CA). Hence there has been
a growing interest in the application of assays for the detection of ctDNA by testing for specific
methylated DNA biomarkers [17–22].

To transition DNA methylation markers validated in cancer tissue to blood-based assays, it is
important to interrogate the frequency of methylation in the target gene in ccfDNA of healthy subjects.
Bisulfite sequencing of DNA isolated from plasma has also been used recently for identification of
commonly methylated sequences in healthy and diseased subjects [23,24]. The primary source of
ccfDNA is white blood cell (WBC) DNA, contributing 80% in healthy subjects, with liver-derived DNA
also contributing up to 10% [23]. We and others have previously used the level of methylation in WBC
DNA as a selection criterion for ranking candidate markers [13,15,25–27].

We previously used a pipeline combining gene expression, targeted DNA methylation and
genome-wide DNA methylation analyses to identify a panel of genes that are methylated in a high
number of colorectal cancers [15]. Within this dataset we prioritized genes for further investigation
based on other published literature as well as data available at that time from The Cancer Genome
Atlas (TCGA) project. Here we describe an approach to identifying candidate biomarkers that are
most promising for development of plasma assays, and evaluate them in pilot plasma samples from
colorectal cancer cases and control subjects. Subsequently, two candidate biomarkers selected using
this approach, IKZF1 and BCAT1 [28,29], have been evaluated for detection of ctDNA in larger
patient cohorts.

2. Materials and Methods

2.1. DNA Samples

Clinical specimens were obtained with informed consent Southern Adelaide Health
Service/Flinders University Human Research Ethics Committee Approval number 134/045
(First approved 2006, with amendment 19 January 2011) and trial registration ACTRN12611000318987
(approval, 16.03.2011). Buffy coat WBC DNA was obtained from nine male and nine female healthy
donors under the age of 30, using the PAXgene blood DNA kit (QIAGEN, Hilden, Germany).
Plasma samples were obtained from colonoscopy-confirmed patients from either Flinders Medical
Centre (Adelaide, Australia) or sourced through Proteogenex Inc. (Culver City, CA, USA) as previously
described in [28,30]. Clinical diagnosis was determined on the basis of colonoscopic findings and
histological assessment. Cancers were staged according to American Joint Committee on Cancer
(AJCC) Cancer staging 7th edition [31]. ccfDNA was isolated from 4 mL plasma using the QIAamp
circulating nucleic acid kit (QIAGEN), and bisulphite-converted using an Epitect Fast bisulphite
conversion kit (QIAGEN) as previously described [28].

2.2. MethylMiner Enrichment of Genomic DNA

Separate pools of male and female human genomic DNA were created by combining equal
amounts of DNA from nine individuals. Samples of pooled DNA in a 300 µL volume of Tris-EDTA
buffer (TE) were sonicated for 10 min in a Diagenode Bioruptor (Liege, Belgium) set on high. Sonication
was performed for 20 cycles consisting of a 30s pulse followed by a 30 s rest. 1.8–3 µg of sonicated DNA
(500 bp average size) was enriched for methylated fragments using the MethylMiner kit (Invitrogen,
Carlsbad, CA, USA, Catalogue # ME10025) according to the manufacturer’s instructions and both
bound and unbound fractions kept. The fractionated DNA was then subjected to bisulphite treatment
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using the EZ DNA Methylation-Gold Kit (Zymo Research, Irvine Ca, USA, Cat # D5006) according to
the manufacturer’s instructions.

2.3. Real-time PCR Quantification

Bisulphite treated fractions were analyzed using real-time PCR assays designed for converted
DNA sequences of each targeted gene region (Table S1). Equal aliquots of bound and unbound DNA
were used in the reactions which were carried out in a 15 µL volume containing GoTaq Colourless
Master Mix (Promega, Madison, Wi, USA, Cat # M5133), 3 mM MgCl2, 200 nM primer pairs, 1/100,000
SYBR Green dye at an annealing temperature ranging from 54 ◦C to 58 ◦C in a Light Cycler 480 II
instrument (Roche Life Science, North Ryde, Australia). Melt curve analysis was performed on the
amplicons generated as per manufacturer’s protocols.

2.4. Methylation Specific PCR Assays

Methylation-specific PCR assays (probe-based MethyLight assays or using SYBR Green detection)
were run on ccfDNA samples isolated from patients as described above. Primer and probe sequences
and PCR conditions are given in Table S2. For three assays using SYBR Green for amplicon detection,
PDX1, SDC2 and IKZF1, melt curves were used to confirm positive signals. All assays reliably
detected the presence of target sequences at inputs of 20 pg or less of fully methylated genomic DNA.
The number of positive assays in triplicate are shown in Table S3. A sample was designated positive
if at least one PCR triplicate had a methylation signal above background, although a threshold cut
(pg methylated DNA per mL plasma, averaged across the triplicates) was imposed for the IRF4 assay
(see Table S2). Detection of methylated SEPT9 sequences was done using the described HeavyMethyl
assay [12].

3. Results

Based on a previous panel of genes demonstrated to be methylated in a high fraction of colorectal
cancer tissue specimens [15], and using TCGA CRC methylation profiles (cancer/normal profiles
shown in Figure S1), we chose a set for more detailed evaluation as potential markers for blood-based
assays for CRC detection. DNA methylation array data plots for genes are shown in Figure S1. The set
comprised BCAT1, EFEMP1, FGF5, FOXI2, GATA2, GRASP, HOXA2, HOXA5, IKZF1, IRF4, PDX1,
SDC2, SLC6A15, SNCB, SOX21, ZNF471 and ZSCAN18.

3.1. Characterisation of Methylation in WBC DNA

For the sensitive detection of a low level of methylated sequences in WBC DNA we adopted the
protocol shown in Figure 1.

The degree of enrichment (or lack thereof) of methylated DNA sequences was estimated by
comparison of the Cp values for amplification from the bound and unbound fractions. Amplicon 1 of
HOXA5 was included as a control, and the presence of significant methylation in WBC DNA had been
shown. For HOXA5, amplification from the bound (methylated) DNA fraction occurred with a Cp
slightly ahead of the unbound fraction (Table 1). This indicates that most sequences of this HOXA5
region had been captured in the methylated fraction. Melt curves confirmed that the captured DNA
was methylated and the most of the non-captured DNA unmethylated (Figure 2).

For a number of amplicons, amplification from the bound fraction occurred with a substantial
delay relative to that from the unbound fraction (Table 1), a delay of about 4 to 7 cycles indicating 16 to
120-fold depletion. For example, the Cp for amplification of IKZF1 amplicon C in the bound fraction
was 37.68, while that for the unbound fraction was 31.17. This difference of 6.51 cycles indicates that
the IKZF1 DNA captured in the bound fraction was about 1/100 that in the unbound. Melt curve
analyses of the amplified DNA were further used to characterize the methylation status of target
regions. Compared with methylated and unmethylated controls, IKZF1 amplicon C DNA amplified
from the bound fraction was identical to that of unmethylated DNA, indicating that the low-level
amplification was likely due to background non-specific capture of DNA in the methylated DNA



Genes 2016, 7, 125 4 of 11

binding domain-capture (MBD-Cap) protocol. In other cases, however, the captured DNA showed
clear evidence of containing methylated sequences. For example, the MBD-Cap bound fraction of
FOXI2 region B shows a clear mix with peaks representing unmethylated sequences and methylated
sequences (Figure 2). For HOXA2 region B, the bound fraction shows a melt curve indicative of a mix
of fully methylated and partially methylated molecules (Figure 2).

Genes 2016, 7, 125  4 of 11 

 

low‐level amplification was likely due to background non‐specific capture of DNA in the methylated 

DNA  binding domain‐capture  (MBD‐Cap) protocol.  In  other  cases, however,  the  captured DNA 

showed  clear  evidence  of  containing methylated  sequences.  For  example,  the MBD‐Cap  bound 

fraction of FOXI2 region B shows a clear mix with peaks representing unmethylated sequences and 

methylated  sequences  (Figure  2).  For HOXA2  region  B,  the  bound  fraction  shows  a melt  curve 

indicative of a mix of fully methylated and partially methylated molecules (Figure 2). 

 
Figure 1. Flowchart for evaluation of methylation in white blood cell (WBC) DNA. DNA was
sheared and the methylated fraction was isolated using methylated DNA binding domain-capture
(MBD-Cap). The captured DNA and the unbound fraction were separately bisulphite converted.
Separate conversion-specific PCRs for each gene were performed to amplify both methylated and
unmethylated sequences from each of the bound and unbound fractions.
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Table 1. Amplification from MethylMiner captured and unbound fractions. 
 

 Threshold Cycle (Cp) Difference † 
Melt * 

Unbound  
Melt * 
Bound 

Melt Curve of Bound 
Fraction #  

SDC2  7.4, 6.8 81.2 81.2 + low partial methylation 
BCAT1 (A)  7.01, 6.75 74.6 74.8 partial methylation 
IKZF1 (C)  6.51, >6 81.5 81.5 no methylation  
IRF4 (D)  7.5, 5.0 78.5 78.5 no methylation  

BCAT1 (B)  5.87, 6.24 78.3 78.3 no methylation 
IKZF1 (B)  4.84, 7.26 85.2 85.2 no methylation 
GRASP  5.6, 6.4 80.2 79.3 + no methylation  
IRF4 (B)  5.01, 6.82 79.2 79.2/lower no methylation  

GATA2 (B)  5.51, >6 77.7 77.7 + methylation 
SLC6A15 (B)  5.61, 5.73 81.1 81.4 + methylation 
GATA2 (A)  5.08, 5.87 76.5 77.1 + methylation  

EFEMP  6.3, 4.2 79.1 80.2 + partial methylation  
PDX1  7.4, 3.0 82.1 82.2 low partial methylation 

SLC6A15 (A)  4.97, 5.33 79.5 79.5 + methylation 
ZSCAN  4.4, 5.87 79.1 82.4 methylation 
IRF4 (A)  4.5, 5.62 83.3 83.3 no methylation  
SNCB (C)  4.87, 5.16 81.2 81.3 + low methylation 
SNCB (B)  4.94, 5.0 79.2 79.2 + partial methylation 
SNCB (A)  4.84, 4.53 78.7 80.2 methylation  
IRF4 (C)  3.9, 5.4 78.7 78.7 + low methylation 
SOX21   4.15, 4.43 80.0 80.0 + partial methylation  

IKZF1 (A)  4.15, 4.43 82.1 82.1 no methylation 
FOXI2 (B)  4.03, 4.38 78.9 78.9 + methylation  

HOXA2 (B)  3.21, 4.53 76.6 77.7 methylation  
FOXI2 (A)  3.33, 4.18 80 80.0 + methylation  

HOXA2 (A)  3.14, 4.08 79.3 80 + methylation  
FGF5  2.5, 4.3 77.2 77.3 + low partial methylation 

ZNF471  3.2, 2.2 84.4 83.9 + partial methylation 
HOXA5 
(control)      -0.16, -0.53  77.2 80.0 methylation 

 
† Difference between the Cp values for amplification from bound fraction (methylated DNA) and unbound
fraction for male and female DNAs respectively; bars length scaled to average Cp difference. Table ordered
from top by Cp difference; * Tm of main peak in melting profile of amplified DNA; + indicates that there
was also material with a higher melting temperature than the main peak; # Partial methylation: contains
amplified material with melting temperature in between that of fully methylated and fully unmethylated DNA
Methylation or low methylation: contains (some) amplified material with melting temperature equivalent to
that of fully methylated DNA.

Based on melt curve analysis, amplicons from BCAT1 (B), IKZF1 (A, B & C), IRF4 (A, B & D)
(Figure 2) and GRASP showed no evidence of methylated DNA sequences in the MBD-Cap bound
fractions, and PDX1 a low level of partial methylation within the female DNA only. The data indicated
a background binding of about 1% of input DNA in the bound fraction independent of methylation
status. For other genes, FGF5, SDC2 and SOX21, there was evidence of partial methylation but not
of fully methylated molecules. Based on Cp difference and melt curve analysis regions from EFEMP,
FOXI2, GATA2, HOXA2, ZNF471 and ZSCAN were not considered suitable for further exploration as
blood-based diagnostic markers. In considering these results it needs to be remembered that capture
of DNA is dependent on the presence of more than one methylated CpG site and so is influenced by
both the density of methylation and the frequency of CpG sites within the captured (sonicated DNA)
fragments prior to bisulphite treatment and fragment PCR.
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Figure 2. Amplicon melt curve analysis. For each amplicon, melt curves of triplicate amplifications
of pooled male and female DNA (six samples in all) from the DNA fraction captured by MBD-Cap
(red traces) and DNA not captured (green traces) are shown. Arrows indicated the melt peak positions
for control unmethylated (U) and fully methylated (M) DNAs.

3.2. Evaluation of Selected Candidates in Human Plasma

Based on their level of enrichment in the unbound (unmethylated) fraction of WBC DNA,
lack of methylation or very low level methylation evident from the melt curves of the captured
DNA, and their frequency of methylation in primary CRC tissue DNA, a set of methylation targets
was chosen for analysis in plasma (Table 2). Methylation specific PCR (MSP) assays to regions of
interest were developed (Table S2) and used to test ccfDNA isolated from plasma obtained from
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colonoscopy-classified subjects (Table 2); ccfDNA from 500 µL plasma was used per triplicate assay.
Data for BCAT1 and IKZF1 cancer and normal subjects have been published elsewhere [26].

Table 2. Frequencies of detection of methylated DNA using methylation-specific PCR assays.

Cancer Adenoma Normal

Number
Tested

Number (%)
Positive

Number
Tested

Number (%)
Positive

Number
Tested

Number (%)
Positive

BCAT1 74 48 (64.9) 33 4 (12.1) 144 5 (3.5)
FGF5 20 17 (85) 40 13 (32.5) 40 7 (17.5)

GRASP 44 24 (54.5) 44 6 (13.6) 44 3 (6.8)
IKZF1 74 50 (67.6) 33 8 (24.2) 144 7 (4.9)
IRF4 22 13 (59.1) 21 2 (9.5) 24 1 (4.2)
PDX1 20 9 (45) 20 4 (20) 20 6 (30)
SDC2 44 26 (59.1) 44 6 (13.6) 44 7 (15.9)
SEPT9 44 26 (59.1) 44 2 (4.5) 44 2 (4.5)
SOX21 20 17 (85) 17 9 (52.9) 20 10 (50)

Among the nine markers analyzed, seven showed good sensitivity (54.5%–85%) for cancer
detection (BCAT1, GRASP IKZF1, IRF4, SDC2, SOX21 and SEPT9), while BCAT1, GRASP, IKZF1, IRF4
and SEPT9 also showed false positive rates of ≤10%.

4. Discussion

Screening of ccfDNA in plasma was initially applied in the context of identifying ctDNA
using specific mutations or DNA methylation markers. More recently the use of DNA methylation
biomarkers has been extended to other disease conditions where cell death results in release of DNA
into the circulation and the tissue of origin can be determined by the use of tissue-specific DNA
methylation markers [23–25]. In either context, it is important to minimize DNA methylation signals
arising from the major sources of ccfDNA in healthy individuals. In this context we have focused here
on identifying potential background arising from WBC DNA that accounts for about 80% of ccfDNA
in healthy subjects; further refinement could be obtained by applying a similar approach with normal
liver DNA [23].

In the context of the detection of cancer-derived DNA, either for primary diagnosis or for
monitoring of recurrence, there is a need for sensitivity for detection of a few copies of the methylated
target. Given the presence of ccfDNA in the order of 10 ng per mL of plasma, even levels of methylation
of less than 1:1000 in WBC DNA will contribute significantly to background. The use of MBD-Cap
provides about 100-fold enrichment of methylated target sequences; with melt curve analysis we can
reliably see a peak of methylated DNA corresponding to about 5% of the captured target. Thus, we
expect to detect methylated sequences present at 0.1% or less for a target in WBC DNA, and use this as
an exclusion criteria in prioritizing markers. Notably the two genes showing the highest level of false
positives in plasma, SOX21 and PDX1, both showed low levels of methylation in the MBD-Cap fraction
of WBC DNA, pointing to the critical importance of extremely low background levels in WBC DNA.

Recently, bisulfite sequencing of ccfDNA, either whole genome or targeted amplicons, has been
applied for analysis of plasma DNA of healthy and diseased subjects [23,24]. Provided a sufficient
proportion (at least a few percent) of the ccfDNA is derived from the diseased tissue, combinations
of DNA methylation, mutation and copy number information derived from the bisulfite sequencing
show diagnostic promise in identifying the source tissue. There is also an increasing amount of
whole-genome methylation sequence data of normal blood cell types [32,33] and other tissues [34]
becoming available that will enable bioinformatic screening to eliminate certain regions as targets.
The sequencing depth of available data is still limiting and measurement of low levels of methylation
is also limited by the inherent background of non-conversion in the bisulfite reaction (0.1% to 0.5%).
Considerable advantage could be obtained by combining MBD-Cap either with targeted (amplicon) or
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whole genome bisulfite sequencing of WBC DNA or of ccfDNA of healthy subjects to identify regions
with the lowest levels of background.

Here we have combined MBD-Cap enrichment of methylated DNA with qPCR and melt curve
analysis in order to prioritize markers initially identified from analysis of CRC tissue for clinical
evaluation in plasma. Using WBC DNA pools from cohorts of nine female and nine male healthy
subjects, combined quantitative and qualitative analysis of 30 genomic regions resulted in selection
of nine regions for testing as prospective plasma-based biomarkers for monitoring of colorectal
cancer-derived DNA; SEPT9 was included as a control [12]. We should note that the use of WBC
DNA from young adults may underestimate the likely background of individual targets if their
methylation levels in WBC DNA increase significantly with normal aging. Of the genes tested in
plasma, BCAT1, GRASP, IKZF1, IRF4, SDC2, SEPT9 and SOX21 exhibited high sensitivity (≈55% or
greater) for detection of methylated ctDNA in cancer patients. While there was also a tendency for
higher positivity rates in adenomas, the differences were not sufficient to be clinically useful. Detection
of Ct DNA in plasma has been shown to depend on the invasiveness of tumors [35], and lack of
sensitivity for detection of non-invasive adenomas most likely reflects a biological limitation in the
capacity of blood-based tests.

The SDC2 gene has been reported by Oh et al. [36] to show both high sensitivity and specificity
for detection of cancer DNA in plasma in a Korean population study. The region used in our assay is
located about 460 bp downstream in the same CpG island; the much lower sensitivity in our study
sample may be due to the amplicon location or the study population. Among genes that showed good
sensitivity for detection of ctDNA, FGF5 and SDC2 regions showed background detection in >10% of
normal subjects and were not considered suitable for further blood assay development. The SEPT9
gene gave a background of 4.5% within our subject set. Based on their low background in plasma of
normal subjects, 3.5%, 6.8%, 4.9% and 4.2% respectively, the four genes BCAT1, GRASP, IKZF1 and
IRF4 were considered suitable for assay development and optimization. Xue et al. [37] have recently
reviewed studies evaluating blood-based detection of DNA methylation biomarkers for colorectal
cancer and the above represent promising biomarkers that could be combined with these or other
markers to potentially provide improved sensitivity for cancer detection. In combining biomarkers to
improve assay sensitivity, it is critical that individual markers have minimal false positive detection
rates in normal subjects in order to maintain good specificity. In a 218-person case/control study of two
of our prospective biomarkers, BCAT1 and IKZF1, the combination of two markers provided greater
sensitivity (77%) compared to the two individual assays (65% and 67%) but at the cost of a higher false
positive rate (7.6%) compared to the individual markers (3.5% and 4.9%) [28]. This combination has
now been evaluated in two prospective clinical trials including more than 3900 subjects [29,30] and
showed an overall sensitivity and specificity of 66% and 94% respectively for detection of colorectal
cancer [30].

These data demonstrate the utility of close consideration of the background levels of DNA
methylation in WBC DNA as an important step in the selection of biomarkers suitable for development
as plasma-based assays.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/7/12/125/s1,
Figure S1: Methylation in cancer and normal subjects: TCGA array probe data, Table S1: Oligonucleotide
primers for conversion specific PCR assays, Table S2: Primers, probes and amplification conditions for methylation
specific PCRs, and Table S3: Plasma assay triplicate data.
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