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Abstract:



Cyrtomium falcatum is a popular ornamental fern cultivated worldwide. Native to the Korean Peninsula, Japan, and Dokdo Island in the Sea of Japan, it is the only fern present on Dokdo Island. We isolated and characterized the chloroplast (cp) genome of C. falcatum, and compared it with those of closely related species. The genes trnV-GAC and trnV-GAU were found to be present within the cp genome of C. falcatum, whereas trnP-GGG and rpl21 were lacking. Moreover, cp genomes of Cyrtomium devexiscapulae and Adiantum capillus-veneris lack trnP-GGG and rpl21, suggesting these are not conserved among angiosperm cp genomes. The deletion of trnR-UCG, trnR-CCG, and trnSeC in the cp genomes of C. falcatum and other eupolypod ferns indicates these genes are restricted to tree ferns, non-core leptosporangiates, and basal ferns. The C. falcatum cp genome also encoded ndhF and rps7, with GUG start codons that were only conserved in polypod ferns, and it shares two significant inversions with other ferns, including a minor inversion of the trnD-GUC region and an approximate 3 kb inversion of the trnG-trnT region. Phylogenetic analyses showed that Equisetum was found to be a sister clade to Psilotales-Ophioglossales with a 100% bootstrap (BS) value. The sister relationship between Pteridaceae and eupolypods was also strongly supported by a 100% BS, but Bayesian molecular clock analyses suggested that C. falcatum diversified in the mid-Paleogene period (45.15 ± 4.93 million years ago) and might have moved from Eurasia to Dokdo Island.
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1. Introduction


The genome of the plant organelle chloroplast (cp) is responsible for photosynthesis [1,2] and provides rich evolutionary and phylogenetic information [3,4]. These genomes are also involved in the primary functions of the plant such as starch storage; sugar synthesis; production of several amino acids, lipids, vitamins, and pigments; and important sulfur and nitrogen metabolic pathways [5]. Most fern plant cp genomes contain 117–124 unique genes within a 131–168 kilobase (kb) circular chromosome, with genome size differences mostly due to variations in the length of inverted repeats (IRs) and small single copy (SSC) regions [6]. When compared to angiosperm cp, many fern cp genomes display significant rearrangements, including a 30 kb inversion, followed by a 3.3 kb inversion and a D inversion [7]. The key mechanism of gene order change is inversion due to intramolecular recombination, which primarily occurs through dispersed repeats of the cp genome [8,9]. However, evolutionary hot spots representing significant levels of insertions and deletions (indels) with high frequencies of base substitutions are concentrated in specific genes and intergenic spacers [9]. Although gene number and order are comparatively conserved in the cp genome of ferns, there are some differences among taxa [10]. Fern plants hold a critical phylogenetic position as the extant sister group to seed plants [11]; therefore, understanding the organization and evolution of fern plastomes provides useful information for comparative studies across land plants [12].



Islands have long been significant systems in ecology and evolutionary biology, and they present several unique characteristics that are useful for biological studies [13]. Dokdo Island consists of two main islets, Seodo (western island) and Dongdo (eastern island), as well as 89 smaller surrounding islets. Dokdo Island is situated between the Korean Peninsula and Japan at distances of 215 km and 250 km, respectively, and was formed by an underwater volcanic eruption during the late Pliocene epoch. Recent research suggests that the volcanic edifice of Dokdo Island formed first (sometime between 4.6 and 2.5 million years ago (mya)), after which its underlying tectonic plate may have shifted, facilitating the formation of the volcanic body of the nearby Ulleungdo Island [14] approximately 2.7–0.01 mya [15,16]. Despite similar origins, Dokdo Island is different from other nearby islands and the mainland in terms of its information, features, fauna, and ecosystem. It is also the oldest island in the Korean Peninsula. Because it is an oceanic island that is disconnected from the mainland and other islands, it is critical to study its history, island biogeography and plant evolution [17,18]. Several studies of its flora, vegetation, and ecology have been conducted [19]; however, no studies have investigated the evolution of plants on Dokdo Island using complete chloroplast genomes. The genus Cyrtomium is a small member of the Dryopteridaceae family, which consists of 42 species and is sister to the Polypodium ferns that formed a clade with the Eupolypods [10]. Cyrtomium falcatum is a species of house holly or Japanese holly fern that originated in Asia, but is currently cultivated in several countries as an ornamental plant. It is an evergreen perennial fern endemic to forested areas or shady cliffs on Dokdo Island, the Korean Peninsula, and Japan. It is, however, the only fern plant found on Dokdo Island. Interestingly, the rhizome of this plant is used medicinally as an anthelmintic, chiefly for the expulsion of tapeworms [20]. Because its unique attributes, we are very interested in studying the molecular phylogenetic and evolutionary relationships of this particular fern species. In this study, we report the complete cp genome sequence of C. falcatum. In addition to describing the structure of the cp genome, we also provide comparative analyses of the cp genome sequences of closely related species of ferns. We also present the results of phylogenetic analyses of DNA sequences for 76 protein-coding genes from C. falcatum and 23 other fern cp genomes. We also conducted molecular evolutionary analyses to elucidate the origin of this fern plant. Overall, this comparative genomics study will contribute to an increased understanding of phylogenetic relationships among ferns and the evolution of C. falcatum on Dokdo Island.




2. Materials and Methods


2.1. DNA Sequencing


All genomic DNA was extracted from fresh, young leaves of the C. falcatum plant by using a modified cetyl trimethylammonium bromide method [21]. The plant material from Dokdo island is triploid and apogamous. High quality DNA was sequenced using the Illumina NextSeq 500 sequencing system (LabGenomics, Seongnam, Korea). The paired-end library was constructed with an insert size of 550 base pairs (bp). Sequence trimming, assembly, and mapping were performed using CLC Genomics Workbench, v7.0.4 software (CLC-Bio, Aarhus, Denmark). Chloroplast genome reads were aligned to the closest cpDNA sequence obtained from Cyrtomium devexiscapulae (GenBank accession number: KT599100) [10]. The depth of coverage for the cp genome of C. falcatum was 256X. Consensus sequences were extracted and gaps were filled by polymerase chain reaction (PCR) amplification using specific primers based on the gap between sequences. PCR products were purified and sequenced using conventional Sanger sequencing. Sequencing data and gene annotation were then submitted to GenBank and assigned accession number KP189363.




2.2. Genome Analysis of the C. falcatum Chloroplast Genome


Initial annotation of the chloroplast genome in C. falcatum was conducted using a Dual Organeller GenoMe Annotator (DOGMA) [22]. From this initial annotation, putative start and stop codons and intron positions were identified based on comparisons to homologous genes among genera Cyrtomium, Woodwardia [10] and Pteridium [23]. Identified transfer RNA (tRNA) genes were further confirmed using tRNAscan-SE 1.21 web server protocols [24]. A circle cp genome map was then drawn using the OrganellarGenomeDraw (OGDRAW) program (Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany) [25].




2.3. Comparative Chloroplast Genomic Analysis


The complete cp genome of C. falcatum was compared with that of three other species, C. devexiscapulae, Woodwardia unigemmata and Pteridium aquilinum, using the mVISTA software program in Shuffle-LAGAN mode (Joint Genome Institute, United States Department of Energy, Walnut Creek, CA, USA) [26]. C. falcatum was set as the reference for these comparisons.




2.4. Analysis of Single Sequence Repeats


PHOBOS v3.3.12 tandem repeat search software was used to identify single sequence repeats (SSRs). Analysis parameters of alignment scores for match, mismatch, gap, and N positions were set as 1, −5, −5, and 0, respectively (Animal Ecology, Evolution and Biodiversity, Ruhr-Universität Bochum, Bochum, Germany) [27].




2.5. Estimation of Substitution Rates


The C. falcatum cp genome sequence was compared with those of C. devexiscapulae [10], W. unigemmata [10] and P. aquilinum [23]. To analyze synonymous (KS) and non-synonymous (KA) substitution rates, the same individual functional protein-coding exons were extracted and aligned separately using the Geneious v7.1.9 bioinformatics software platform (Biomatters, Aukland, New Zealand). These aligned sequences were then translated into protein sequences and analyzed. Synonymous (KS) and non-synonymous (KA) substitution rates for each protein-coding exon were estimated using DNA Sequence Polymorphism (DnaSP) software (Evolutionary Genomics and Bioinformatics, Universitat de Barcelona, Gran Via de les Corts Catalanes, Barcelona) [28].




2.6. Analysis of RNA Editing


The online program, Plant RNA Editing—Prediction and Analysis Computer Tool (PREPACT) 2.0 (Institut für Zelluläre & Molekulare Botanik IZMB, Universität Bonn, Regina-Pacis-Weg, Bonn, Germany) for Plants [29], was used to identify possible RNA editing sites within the cp genome sequence of C. falcatum. For this analysis, the cut-off Expect (E) value was set as 0.001, minimal was set as 8, and filter threshold value was set as 70%.




2.7. Phylogenetic Analysis


In this study, the genome model was selected based on the close relationships between C. falcatum and other fern families. A molecular phylogenetic tree was constructed using 76 protein-coding genes from 23 different fern taxa. Among these, the genus Ginkgo was set as the outgroup. The 23 completed cp genome sequences representing various fern lineages were then downloaded from the National Center for Biotechnology Information (NCBI) Organelle Genome Resource database (Supplementary Table S1). The 76 protein-coding gene sequences were aligned using the MAFFT v7.017 (Computational Biology Research Center, The National Institute of Advanced Industrial Science and Technology, Tokyo, Japan) multiple sequence alignment program [30] via the Geneious v7.1.9 software platform. The aligned protein-coding gene sequences were saved using the Phylogeny Inference Package (PHYLIP) format in Clustal X v2.1 (The Conway Institute, University College Dublin, Dublin, Ireland) [31], and then used to generate a phylogenetic tree. Phylogenetic analysis was conducted based on maximum likelihood (ML) analysis using the general time-reversible invariant-sites nucleotide substitution model with default parameters in the Randomized Axelerated Maximum Likelihood (RAxML) v. 7.2.6 program (The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg, Heidelberg, Germany) [32]. Bootstrap (BS) probability of each branch was calculated based on 1000 replications.




2.8. Molecular Clock Analysis


For divergence dating analyses, cp genomes were selected based on close relationships between C. falcatum and other fern families. A molecular clock tree was constructed using 76 protein-coding genes from 23 different fern taxa, and divergence dates were estimated using the Bayesian Evolutionary Analysis Sampling Trees (BEAST) v.2.1 software program (Centre for Computational Evolution, The University of Auckland, New Zealand) [33]. A strict clock model was implemented using Markov Chain Monte Carlo (MCMC) chains run for 20 million generations with 10% burn-in and sampled every 1000 generations. A GTR nucleotide substitution model was used with a gamma distribution with four rate categories. A Yule Process tree prior was used to estimate divergence times and creditability intervals. Sample size was evaluated using Tracer v.1.6 analysis software (Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, Scotland) [34]. Tree data were summarized using TreeAnnotator v.2.1.2 (Centre for Computational Evolution, The University of Auckland, New Zealand) [33]. The calibration point was set for the divergence of the genus Ginkgo as 292.44–284.95 mya [35] and implemented a log normal distribution with a mean of 290.29 ± 28.34 mya.





3. Results


3.1. General Characteristics of the Cyrtomium falcatum cp Genome


The total size of the complete C. falcatum genome was found to be 151,628 bp (KP189363). The genome demonstrated a characteristic circular structure with a pair of IRs of 23,852 bp separated by a large single copy (LSC) region of 82,308 bp and an SSC region of 21,616 bp (Figure 1). The guanine-cytosine (GC) content for the entire cp genome of C. falcatum was 42.3%. There were 131 individual genes identified, of which 116 genes were single copy, and 15 that were duplicated and occurred as inverted repeat sequences (Table 1). In terms of overall composition, there were four ribosomal RNA (rRNA) genes (6.1%), 34 individual tRNA genes (26.0%), 54 genes encoding photosynthesis-related proteins (41.2%), 24 genes encoding both large and small ribosomal subunit proteins (18.3%), four genes encoding DNA-dependent RNA polymerase subunits (3.1%), six genes encoding translation proteins (4.6%), and one gene encoding an unknown function (0.7%). Among the 116 single copy genes, 15 contained one intron and three genes encoded two introns (Table 2). Additionally, 22 functional genes possessed internal stop codons that indicated the presence of RNA editing sites. These internal stop codons were observed in all ferns.


Figure 1. Gene map of Cyrtomium falcatum. Genes located on the outside of the outermost layer of the circle are transcribed in a counterclockwise direction, whereas genes located on the inside of the circle are transcribed in a clockwise direction. The colored bars indicate known protein-coding genes, transfer RNA (tRNA) genes and ribosomal RNA (rRNA) genes. The dashed, darker gray area in the inner circle denotes the guanine-cytosine (GC) content of the genome, whereas the lighter gray area indicates the adenosine-thymine (AT) content of the genome. Abbreviations annotated along the perimeter of the inner circle are translated as follows: LSC, large single copy; SSC, small single copy; IR, inverted repeat.
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Table 1. List of genes present in the chloroplast (cp) genome of Cyrtomium falcatum.







	
Category

	
Group of Genes

	
Name of Genes






	
RNA genes

	
Ribosomal RNA genes

	
rrn4.5 a

	
rrn5 a

	
rrn16 a

	
rrn23 a

	




	
Transfer RNA genes

	
trnA-UGC a,b

	
trnC-GCA

	
trnD-GUC

	
trnE-UUC

	
trnF-GAA




	
trnfM-CAU

	
trnG-GCC

	
trnG-UCC b

	
trnH-GUG a

	
trnI-CAU




	
trnI-GAU a,b

	
trnL-UAA b

	
trnL-UAG

	
trnM-CAU

	
trnN-GUU a




	
trnP-GGG

	
trnP-UGG

	
trnQ-UUG

	
trnR-ACG a

	
trnR-UCU




	
trnS-GCU

	
trnS-GGA

	
trnS-UGA

	
trnT-GGU

	
trnT-UGU a,b




	
trnV-UAC b

	
trnW-CCA

	
trnY-GUA

	

	




	
Protein genes

	
Subunits of photosystem I

	
psaA

	
psaB

	
psaC

	
psaI

	
psaJ




	
ycf3 c

	
ycf4

	

	

	




	
Subunits of photosystem II

	
psbA a

	
psbB

	
psbC

	
psbD

	
psbE




	
psbF

	
psbH

	
psbI

	
psbJ

	
psbK




	
psbL

	
psbM

	
psbN

	
psbT

	
psbZ




	
ycf12

	

	

	

	




	
Subunits of cytochrome

	
petA

	
petB b

	
petD b

	
petG

	
petL




	
petN

	

	

	

	




	
Subunits of ATP synthase

	
atpA

	
atpB

	
atpE

	
atpF b

	
atpH




	
atpI

	

	

	

	




	
Large subunit of RuBisCO

	
rbcL

	

	

	

	




	
Subunits of NADH dehydrogenase

	
ndhA b

	
ndhB a,b

	
ndhC

	
ndhD

	
ndhE




	
ndhF

	
ndhG

	
ndhH

	
ndhI

	
ndhJ




	
ndhK

	

	

	

	




	
ATP-dependent protease subunit P

	
clpP c

	

	

	

	




	
Chloroplast envelope membrane protein

	
cemA

	

	

	

	




	
Light-independent Pchlide oxidoreductase (DPOR)

	
chlB

	
chlL

	
chlN

	

	




	
Ribosomal proteins

	
Small subunit of ribosome

	
rps2

	
rps3

	
rps4

	
rps7 a

	
rps8




	
rps11

	
rps12 a,c,d

	
rps14

	
rps15

	
rps16 b




	
rps18

	
rps19

	

	

	




	
Large subunit of ribosome

	
rpl2

	
rpl14

	
rpl16 b

	
rpl20

	
rpl21




	
rpl22

	
rpl23

	
rpl32

	
rpl33

	
rpl36




	
Transcription

	
DNA-dependent RNA polymerase

	
rpoA

	
rpoB

	
rpoC1 b

	
rpoC2

	




	
Translation

	
Translational initiation factor

	
infA

	

	

	

	




	
Other proteins

	
Maturase

	
matK

	

	

	

	




	
Subunit of acetyl-CoA

	
accD

	

	

	

	




	
C-type cytochrome synthesis gene

	
ccsA

	

	

	

	




	
Component of TIC complex

	
ycf1

	

	

	

	




	
Hypothetical proteins

	
ycf2 a

	

	

	

	








a Two gene copies in inverted repeats (IRs); b Gene containing a single intron; c Gene containing two introns; d Gene divided into two independent transcription units.








Table 2. Location and length of intron-containing genes within the C. falcatum chloroplast genome.







	
Gene *

	
Location

	
Exon I

	
Intron I

	
Exon II

	
Intron II

	
Exon III




	
Nucleotides in Base Pairs






	
atpF

	
LSC

	
145

	
720

	
410

	

	




	
clpP

	
LSC

	
240

	
571 7

	
292

	
723

	
71




	
ndhA

	
SSC

	
561

	
972

	
555

	

	




	
ndhB

	
IR

	
780

	
874

	
498

	

	




	
petB

	
LSC

	
6

	
848

	
642

	

	




	
petD

	
LSC

	
8

	
643

	
472

	

	




	
rps12 #

	
LSC

	
114

	
--

	
232

	
577

	
26




	
rpl2

	
IR

	
397

	
725

	
437

	

	




	
rpl16

	
LSC

	
9

	
1068

	
399

	

	




	
rpoC1

	
LSC

	
433

	
696

	
1610

	

	




	
rps16

	
LSC

	
9

	
795

	
405

	

	




	
trnA-UGC

	
IR

	
36

	
798

	
37

	

	




	
trnG-UCC

	
LSC

	
23

	
907

	
48

	

	




	
trnI-GAU

	
IR

	
36

	
1016

	
36

	

	




	
trnL-UAA

	
LSC

	
34

	
637

	
51

	

	




	
trnT-UGU

	
IR

	
34

	
507

	
40

	

	




	
trnV-UAC

	
LSC

	
40

	
618

	
34

	

	




	
ycf3

	
LSC

	
125

	
625

	
229

	
725

	
162








* Identical, duplicate genes containing introns in the IR region are not included; # rps12 is a trans-spliced gene with the 5′ end located in the large single copy (LSC) region; it is duplicated in the 3′ end in the IR regions.









3.2. Comparative Analysis of Genome Structure


The mVISTA software program set was used to study cp genome sequence variations in the order Polypodiales (Figure 2). The coding and non-coding regions of the genome were found to be more highly conserved in the Dryopteridaceae family. However, some dissimilarity was observed among the tRNA genes, e.g., the trnR-UCG, trnR-CCG, trnSeC, trnV-GAC and trnV-GAU genes were either deleted or were not present in the cp genome of C. falcatum (Figure 2).


Figure 2. Comparison of the cp genome sequences of C. falcatum, Cyrtomium devexiscapulae, Woodwardia unigemmata and Pteridium aquilinum generated using mVISTA software. The gray arrows indicate the position and direction of each gene. The red and blue areas indicate intergenic and genic regions, respectively. Black lines define regions of sequence identity with C. falcatum, using a 50% identity cutoff. UTR: untranslated region; CNS: non-coding sequences.
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Additionally, the start codons of 84 protein-coding genes were inferred using comparisons with previously annotated land plant cp genomes. Of the 84 protein genes present, 62 start with AUG, 20 start with ACG and two start with GUG (ndhF and rps7). Among these, four genes encoding the ACG start codon and two encoding the GUG start codon are located within the SSC region.



The significant inversions of the C. falcatum cp genome were compared with those of other ferns (Figure 3). Results indicated that the C. falcatum cp genome shared two significant inversions with other ferns, notably a minor inversion containing a single gene (trnD-GUC) and an approximately 3 kb inversion involving genes trnG, psbZ, trnS, psbC, psbD, and trnT.


Figure 3. Gene organization from rpoB to trnT among analyzed ferns. The arrows correlate with the location, size and transcription direction of the corresponding genes. Dashed lines indicate putative local inversions within the corresponding cp genomes. Fern species are derived as follows: C. falcatum: Cyrtomium falcatum; C. devexiscapulae: Cyrtomium devexiscapulae; P. glycyrrhiza: Polypodium glycyrrhiza; W. unigemmata: Woodwardia unigemmata; C. protrusa: Cystopteris protrusa; C. lindheimeri: Cheilanthes lindheimeri; A. capillus-veneris: Adiantum capillus-veneris; P. aquilinum: Pteridium aquilinum; P. glauca: Plagiogyria glauca; M. crenata: Marsilea crenata; L. japanicum: Lygodium japanicum; O. cinnamomeum: Osmundastrum cinnamomeum; E. arvense: Equisetum arvense.
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3.3. Repeat Sequence Analysis


Distribution, type and presence of SSRs or microsatellites were analyzed in both the genic and intergenic regions of the C. falcatum cp genome. A total of 386 SSRs were identified (Table S2). Of these, 196 were distributed in the LSC regions, whereas 137 and 53 were located in the IR and SSC regions, respectively. Moreover, 163 SSRs were found in the protein-coding regions, 174 were located within intergenic spacers and 49 were found in the introns of the C. falcatum cp genome. Among these SSRs, mononucleotide repeats were found to be the most common, accounting for 48.96% of the total, whereas dinucleotide repeats accounted for 7%, trinucleotide repeats accounted for 10.36%, and tetra-, penta-, hexa-, 7-, 8-, 9-, 10-, 12-, 14-, 17-, and 24-nucleotide repeats occurred with less frequency. Additionally, 33 hexa-, eight 7-nucleotide, four 8-nucleotide, three 9-nucleotide, and one each 10-, 12-, 13-, 14-, 17-, and 24-nucleotide repeats were detected in the cp genome. The size and location of hexa-, 7-, 8-, 9-, 10-, 12-, 13-, 14-, 17-, and 24-nucleotide repeats are shown in Table S3. A total of 54 repeats (>12 bp) were identified within the genome, whereas 28 were localized within intergenic spacers, 19 were located in coding regions and seven were found in introns.




3.4. Synonymous and Non-Synonymous Substitution Rate Analysis


The synonymous and non-synonymous substitution rates for C. falcatum were compared with those of closely related species C. devexiscapulae [10], W. unigemmata [10] and P. aquilinum [22]; results indicated that these rates were less than one for all genes (Figure 4). Among these findings, the gene petD of C. falcatum, compared to that of C. devexiscapulae, demonstrated the highest KA/KS ratio at 0.354, whereas the gene ycf2 of C. falcatum, when compared with both W. unigemmata and P. aquilinum, indicated the highest KA/KS ratios of 0.502 and 0.498, respectively.


Figure 4. Synonymous/non-synonymous (KA/KS) substitution rate values for the 76 protein-coding genes of C. falcatum, C. devexiscapulae, W. unigemmata and P. aquilinum. The blue boxes indicate the KA/KS ratio of C. falcatum compared to C. devexiscapulae, the red boxes indicate the KA/KS ratio of C. falcatum compared to W. unigemmata and the green boxes indicate the KA/KS ratio of C. falcatum compared to P. aquilinum.
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3.5. RNA Editing of Cyrtomium cp Genomes


The RNA editing events were analyzed in all plastid protein-coding genes in C. falcatum and C. devexiscapulae. The C-to-U (Figure 5) and U-to-C (Figure 6) RNA editing events were calculated separately at triplet positions 1 and 2, and then compared to both cp genomes of Cyrtomium. Results indicated that the number of these two RNA editing events varied between the two cp genomes. The protein-coding genes in the C. falcatum cp genome revealed RNA editing at 841 sites in the form of C-to-U conversions (Figure 5) and at 562 sites in the form of U-to-C conversions (Figure 6), whereas 867 C-to-U and 537 U-to-C RNA editing sites were observed in C. devexiscapulae.


Figure 5. Triplet position and number of C-to-U RNA editing sites in plastid genes of C. falcatum and C. devexiscapulae were compared. Columns represent the protein-coding genes of C. falcatum and C. devexiscapulae, respectively. The blue cylindrical column indicates C-to-U RNA editing events that occurred in triplet position 1, whereas the green cylindrical column indicates C-to-U RNA editing events that occurred in triplet position 2.
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Figure 6. Triplet position and number of U-to-C RNA editing sites in plastid genes of C. falcatum and C. devexiscapulae were compared. Columns represent the protein-coding genes of C. falcatum and C. devexiscapulae, respectively. The gray cylindrical column indicates U-to-C RNA editing events that occurred in triplet position 1, whereas the red cylindrical column indicates U-to-C RNA editing events that occurred in triplet position 2.
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Closely related genomes typically contain regions encoding closely related proteins. Alignments in sequences of homologous genes reveal some differences, mostly in the form of single-site mutations or indels. There is often a reasonable correlation between overall species divergence and the divergence of sequences of individual genes and their corresponding proteins. In this study, we compared amino acid changes in the protein-coding genes of C. falcatum with closely related C. devexiscapulae. A total of 1478 and 1494 amino acids within the protein-coding regions of C. falcatum and C. devexiscapulae, respectively, were changed into other amino acids by RNA editing (Figure 7). Among these, 222 amino acids (15.02%) changed from serine to leucine, 117 (7.92%) changed from proline to leucine and 103 (6.97%) changed from phenylalanine to leucine.


Figure 7. The number of amino acid changes in the cp genomes of C. falcatum and C. devexiscapulae. The green column indicates the amino acid changes that occurred in the protein-coding genes of C. falcatum, whereas the gray column indicates the amino acid changes that occurred in the protein-coding genes of C. devexiscapulae.



[image: Genes 07 00115 g007]







3.6. Phylogenetic Analysis


In this study, we investigated the relationship between eupolypod, leptosporangiate and eusporangiate ferns. We have compared the chloroplast genes of Dokdo populations with other populations from Japan (rbcL, AB575102), Taiwan (matK, JF303945) and USA (atpA, EF463671). However, all sequences showed 100% homology with Dokdo populations and no dissimilarity has been observed. Eusporangiate ferns are grouped in four clades: Psilotales, Ophioglossales, Equisetales and Marattiales. Phylogenetic analysis of fern cp genomes strongly supported monophyly with a 100% BS value (Figure 8). Equisetum was identified as a sister genus to Psilotum, Ophioglossum and Mankyua with strong BS support of 100%. The clade of marattioid ferns formed a sister clade to the leptosporangiate ferns with 100% BS support. Among the core leptosporangiate ferns, Marsilea formed a sister relationship between tree ferns and polypods that was strongly supported by 76 protein-coding genes with a 100% BS value. Dennstaedtiaceae was also suggested to be a sister to the Pteridaceae clade and the eupolypods according to a moderate BS value of 65%. However, the sister relationship between Pteridaceae and eupolypods was strongly supported with a 100% BS value.


Figure 8. Molecular phylogenetic tree of 23 distinct fern taxa based on 76 protein-coding genes in the cp genome. The tree was constructed by maximum likelihood (ML) analysis of conserved regions using the Randomized Axelerated Maximum Likelihood (RAxML) program and the general time-reversible invariant-sites nucleotide substitution model. The stability of each tree node was tested by bootstrap analysis using 1000 replicates. Bootstrap values are indicated on each of the branches, whereas the branch length reflects the estimated number of substitutions per 1000 sites. The genus Ginkgo was set as the outgroup. * Fossil data cp genomes were used to identify phylogenetic relationships with corresponding taxa.
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3.7. Divergence Dating Analysis


In this study, we analyzed the divergence time of C. falcatum to determine its origin. Historically, the genus Ginkgo diversified in the late Permian period (290.29 ± 28.32 mya) (Figure 9), whereas among fern groups, eusporangiate ferns diversified in the mid-Permian (262.97 ± 28.18 mya) to late Cretaceous (116.64 ± 12.08 mya). Leptosporangiates diversified in the middle Triassic (225.14 ± 21.69 mya) to early Jurassic (163.01 ± 18.88 mya) periods, whereas the leptosporangiate core diversified between the early Triassic (144.79 ± 15.46 mya) and mid-Paleogene (43.25 ± 4.57 mya) periods. In contrast, eupolypods diversified in the late Paleogene (55.29 ± 5.36 mya) period. Within this group, the genera Cyrtomium and Polypodium diversified first (45.15 ± 4.93 mya), whereas Cystopteris and Woodwardia diversified later (43.25 ± 4.57 mya). Nevertheless, Bayesian molecular clock analyses suggest that the fern plant C. falcatum diversified in the middle of the Paleogene period, approximately 45.15 ± 4.93 mya.


Figure 9. The molecular clock was constructed based on 76 protein-coding genes of 23 different fern taxa cp genomes using the Bayesian Evolutionary Analysis Sampling Trees (BEAST) software program. Mean age estimates (in millions of years) are shown along the branches. The gray bars represent the 95% posterior density credibility interval for node ages. * Fossil data cp genomes were used to identify the molecular age of the corresponding taxa.
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4. Discussion


4.1. General Characteristics of the Cyrtomium falcatum cp Genome


Islands are ideal model systems for evolutionary studies. Dokdo Island is located between the Korean Peninsula and Japan, and is home to 49 different plant species [36], including only a single fern plant, C. falcatum. To date, no evolutionary studies of fern plants have been conducted on Dokdo Island using chloroplast (cp) genomes. Therefore, we sought to understand the molecular phylogenetic and evolutionary relationships of this fern plant from Dokdo Island. In this study, the total size of the C. falcatum genome was found to be 151,628 bp (KP189363), which is approximately the same size as that of C. devexiscapulae (151,684 bp) [10]. The cp genome of C. falcatum is smaller than those of P. aquilinum (152,362 bp) [23], W. unigemmata (153,717 bp) [10] and C. lindheimeri (155,770 bp) [37], but larger than that of A. capillus-veneris (150,568 bp) [12]. Such variation in cp genome size results from the expansion and contraction of the border areas between IR regions and single copy regions. The C. falcatum cp genome was also found to have an AT content of 57.7%, which is identical to that of C. devexiscapulae (57.7%), higher than those of W. unigemmata (56.8%) and C. lindheimeri (57.3%), but smaller than those of A. capillus-veneris (58%) and P. aquilinum (58.5%). This variation in AT content might be due to the presence of a non-coding region in the core leptosporangiate cp genome. In general, however, the gene content and gene order in the C. falcatum cp genome is virtually identical to that of C. devexiscapulae.




4.2. Comparative Analysis of Genome Structure


mVISTA software was used to study cp genome sequence variations among members of the order Polypodiales (Figure 2). Coding and non-coding regions were highly conserved in the Dryopteridaceae family, whereas the greatest dissimilarity was observed in the cp genomes of W. unigemmata and P. aquilinum when compared with cp genomes of ferns belonging to other families. Interestingly, the tRNA genes trnR-UCG, trnR-CCG and trnSeC were not present in the cp genome of C. falcatum or other eupolypod ferns. However, the trnR-UCG gene was present in the Alsophila cp genome [38], the trnR-CCG gene was found in non-flowering land plants, including Angiopteris and Psilotum [6], and the trnSeC gene was present in the Adiantum cp genome [12]. These results suggest that these genes are restricted only to tree ferns, non-core leptosporangiates and basal ferns. Sugiura and Sugita [39] also reported that the trnR-CCG gene is not essential for plastid function, even though it is highly conserved in the chloroplasts of non-flowering plants.



Interestingly, the start codon GUG of genes ndhF and rps7 is only found in polypod ferns. Other groups of ferns, such as tree ferns, heterosporous ferns and leptosporangiate ferns, encoded the AUG initiation codon for these two genes. In contrast, Gao et al. [7] reported that the psbC and rps12 genes encoded the GUG initiation codon in the cp genome of the tree fern Alsophila.



The C. falcatum cp genome shared two significant inversions with other ferns (Figure 3), a minor inversion near trnD-GUC and an approximately 3 kb inversion. These two inversions are restricted to ferns; however, cp genomes of other tree ferns such as Alsophila share another 30 kb inversion at the beginning of the LSC region that is also observed in all vascular plants except for lycophytes [7]. Additionally, three conserved and consecutive tRNA genes, trnD-GUC, trnY-GUA and trnE-UUC, have been identified in all cp genomes of land plants. These three genes have the same transcription directions found in all land plants except ferns. In ferns, the trnD gene is inverted relative to genes trnY and trnE. This may be due to a single minor inversion in the trnD gene. The 3 kb inversion appears to be identical to that of other ferns such as C. devexiscapulae, W. unigemmata, C. lindheimeri and A. capillus-veneris, whereas Angiopteris and Psilotum follow the Osmunda gene order.




4.3. Repeat Sequence Analysis


Chloroplast genomes of land plants have highly conserved structures and content organization. Similar regions with high sequence polymorphisms are commonly observed in closely related species [40]. A total of 386 SSRs were identified in the genic and intergenic regions of the C. falcatum cp genome. Mono, di-, tetra-, penta-, 7-, 8-, 9-, 10-, 12-, 14-, 17-, and 24-nucleotide repeats were observed in the intergenic regions. Comparatively, the genic regions had more tri- and hexa-nucleotide SSRs; the implications of this could be extremely important for genomic stability and gene functions within the cp genome. However, the presence of several SSR sites in the cp genome indicates that these sites could be assessed for intraspecific levels of polymorphism, leading to highly sensitive phylogeographic and population structure studies for this species.




4.4. Synonymous and Non-Synonymous Substitution Rate Analysis


Nucleotide substitution rates are very important indicators in gene evolution studies [41,42,43]. Makalowski and Boguski [44] stated that the ratio of KA/KS was less than one in most protein-coding genes. However, non-synonymous substitution rates occurred less frequently than their synonymous counterparts. The KA/KS rates of the C. falcatum cp genome were compared with those of closely related species. The results suggested that the rates of synonymous and non-synonymous substitutions did not vary among genes of closely related species. Therefore, all of these genomes contain similar sets of genes, and their cp genomes evolved in similar ways.




4.5. RNA Editing of Cyrtomium cp Genomes


RNA editing modifies genetic information at the transcript level, and primarily occurs in the mitochondrial and cp genomes of higher plants [45]. During these events, substitutions or indel mutations may occur, possibly leading to alternations in the transcription process. The majority of C-to-U and U-to-C RNA editing sites occur in protein-coding genes ndhF, rpoB, rpoC2, ycf1, and ycf2, with over 40 RNA editing events modifying start or stop codons. Previous studies indicated that most seed plant plastomes have about 30–40 RNA editing sites [46]. Wolf et al. [36] reported that RNA editing was highest in hornworts (approximately 972 sites) and intermediate in the fern Adiantum (approximately 344 sites). Most RNA editing involved C-to-U conversions rather than U-to-C by base modification [47]. RNA editing generally occurs in the mitochondrial genome, but this phenomenon is significantly less frequent in chloroplasts [48]. Nevertheless, the total number of C-to-U RNA editing sites in the first and second positions is 255 and 586 in the cp genome of C. falcatum, and 259 and 608 in that of C. devexiscapulae, respectively. Conversely, the total number of U-to-C RNA editing sites in triplet positions 1 and 2 is 250 and 312 in C. falcatum, and 222 and 315 in C. devexiscapulae, respectively. These results revealed that the RNA editing rate was very high at the second triplet position compared to the first position, and that it differed from that of Adiantum. However, the results of this study suggest that levels of RNA editing may vary greatly within each of these large clades of plants. When compared with other amino acids, the conversion rate of amino acids to leucine is very high. Previous studies also reported that RNA editing of C/U at the second codon position has occurred mainly in plant organelles to increase the frequency of the highly hydrophobic amino acid leucine [49]. Mungpakdee et al. [50] suggested that nine types of RNA editing have occurred in Symbiodinium to increase molecular hydropathy. Thus, similar environments within organelles may force RNA editing to produce similar outcomes.




4.6. Phylogenetic Analysis


The phylogenetic relationships among Monilophytes, including four orders of eusporangiate ferns (Psilotales, Ophioglossales, Equisetales and Marattiales), as well as a clade of leptosporangiate ferns orders, were unclear, although recent studies [6,11,15,35,51,52,53] showed that they constitute a paraphyletic assemblage. However, phylogenetic analyses based on chloroplast genomes confirmed both the paraphyly of eusporangiate ferns and the sister relationship between Marattiales and leptosporangiate ferns [6,10,53,54]. In a recent study, Lu et al. [10] revealed that marattioid ferns were sisters to leptosporangiate ferns. In our study, Equisetum formed a sister clade to Psilotum, Ophioglossum and Mankyua with strong BS support (100%). However, in a previous study, Zhong et al. [53] reported that placement of Equisetum in various analyses did not have strong statistical support, and when the cp genome of Tmesipteris bernh. (another genus of Psilotaceae) was added to these phylogenetic analyses, Equisetum was found to be a sister to Psilotaceae with strong BS support. In our study, we did not use any other genera of Psilotaceae; nevertheless, we found that Equisetales was a sister to Psilotales-Ophioglossales with strong support. Moreover, the results of our study strongly support the relationship of an Equisetales sister with the Psilotales-Ophioglossales clade as in Lu et al. [10]. The clade of marattioid ferns formed a sister clade to the leptosporangiate ferns with a 100% BS value, whereas in the core leptosporangiate ferns, Marsilea formed a sister relationship between tree ferns and polypods that was strongly supported by 76 protein-coding genes with a 100% BS value. Dennstaedtiaceae was also a sister to the Pteridaceae clade and eupolypods with a moderate BS value of 65%. However, the sister relationship between Pteridaceae and eupolypods was strongly supported by a 100% BS value. In contrast, Lu et al. [10] reported that Pteridaceae was a sister to the Dennstaedtiaceae clade and eupolypods with high support (100% BS), and a sister relationship between Dennstaedtiaceae and eupolypods was strongly supported (98% BS). In their study, they used two different sets of cp genes consisting of 48 and 64 genes, respectively. In our study, we used 76 protein-coding genes from 23 taxa for this analysis. Thus, variation in BS values may be due to the number of genes used in this study. Lu et al. [10] suggested that a 48-gene dataset showed higher support values than a 64-gene dataset. Therefore, to confirm the position of Pteridaceae, it will be necessary to expand taxon sampling as the next step in future phylogenomic analysis of polypods.




4.7. Divergence Dating Analysis


The major lineages of the eusporangiate ferns, leptosporangiate ferns, polypod ferns and tree ferns originated in the mid-Permian, mid-Triassic, and middle and late Cretaceous periods, respectively. All extant members of Equisetum diversified only within the last 50 million years, whereas Equisetales was estimated to have a Paleozoic origin [55]. Our study strongly supports the hypothesis that E. arvense diversified during the Paleozoic era (262.97 ± 28.18 mya), and Pteridium aquilinum diversified during the early Cretaceous period (85.57 ± 8.25 mya). The earliest divergences of eupolypods within each of these lineages occurred 55.29 ± 5.36 mya. The order Polypodiales diversified 45.15 ± 4.93 mya, whereas Dryopteridales and Blechnales diversified in the middle of the Paleogene period (43.25 ± 4.57 mya). Celaya and McCabe [56] reported that Japan separated from the Eurasian continent approximately 15 mya, the East Sea formed in the early Miocene epoch (15 to 12 mya), but Dokdo Island formed later, in the mid-Pleistocene epoch (4.6 to 2.5 mya) [19]. C. falcatum is found on the Korean Peninsula, and Japan and its islands, but is the only fern plant present on Dokdo Island. In this study, we analyzed the divergence time of C. falcatum to determine its period of origin. Bayesian molecular clock analyses suggest that this fern plant diversified in the mid-Paleogene period (45.15 ± 4.93 mya). Moreover, the Cyrtomium plant lineage diverged very recently, compared to other eupolypods (55.29 ± 5.36 mya). Based on this divergent time analysis, we estimate that C. falcatum may have moved from Eurasia to Dokdo Island, and Japan and its islands, prior to island separation from the mainland.





5. Conclusions


In summary, we present the complete cp genome sequence of Cyrtomium falcatum, a holly fern, and provide a comprehensive comparative analysis of the cp genomes of eupolypod ferns. The cp genomes of the two characterized Cyrtomium species are very similar in terms of both gene content and gene order; therefore, they provided little information regarding the complexity of the fern cp genome. However, some dissimilarities were observed in the fern cp genomes, including the encoding of GUG as a start codon in genes ndhF and rps7, which is only found in polypod ferns. Similarly, genes trnV-GAC and trnV-GAU were deleted from the C. falcatum genome, whereas genes trnP-GGG and rpl21 were identified in C. falcatum. These findings suggest that these genes are not conserved in all angiosperm cp genomes. Moreover, the tRNA genes, trnR-UCG, trnR-CCG and trnSeC, were not present in the cp genome of C. falcatum or other eupolypod ferns, indicating that these genes are probably restricted to tree ferns, non-core leptosporangiates and basal ferns. The C. falcatum cp genome also shares two significant inversions with other ferns, including a small inversion of the trnD-GUC region and an approximately 3 kb inversion of the trnG-trnT region. There were 76 protein-coding sequences from 23 fern species employed to construct phylogenetic trees, providing strong support for a monophyletic group in the fern clade. Equisetum was basal to eusporangiate ferns, with a strong BS value (100%), whereas Dennstaedtiaceae was basal to eupolypods with a moderate BS value (65%). Bayesian molecular clock analyses suggested that C. falcatum diversified in the mid-Paleogene period (45.15 ± 4.93 mya), and showed that this species may have moved from the Eurasian continent to Dokdo Island before the island separated from the mainland. Overall, the results of this study contribute to a better understanding of the genome structure of eupolypod ferns and their phylogenetic relationships with other fern taxa. However, confirmation of the position of the Pteridaceae is still needed; thus, expanded taxon sampling should be conducted as the next step in the phylogenomic analysis of polypods.








Supplementary Materials


The following are available online at www.mdpi.com/2073-4425/7/12/115/s1, Table S1: Accession numbers of the chloroplast genome sequences used in this study, Table S2: List of identified simple sequence repeats of Cyrtomium falcatum chloroplast genome, Table S3: Distribution of hexa-, 7-, 8-, 9-, 10-, 12-, 13-, 14-, 17-, and 24-nucleotide single sequence repeats (SSRs) in Cyrtomium falcatum chloroplast genome.





Acknowledgments


This study was supported by a National Research Foundation of Korea (KRF) grant funded by the Korean Government (KRF, No. 2012R1A1A2004996), South Korea and the Research Center for Policy Suggestion of the Ministry of Educational Science (2016).




Author Contributions


S.P. and G.R. conceived and designed the experiments; G.R. performed the experiments: G.R. analyzed the data; K.S.C. assembled the genome and deposited it to GenBank; G.R. wrote the paper.




Conflicts of Interest


The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.




References


	1. 
Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K.; et al. The complete nucleotide sequence of tobacco chloroplast genome: Its gene organization and expression. EMBO J. 1986, 5, 2043–2049. [Google Scholar] [CrossRef] [PubMed]

	2. 
Shinozaki, K.; Hayashida, N.; Sugiura, M. Nicotiana chloroplast genes for components of the photosynthetic apparatus. Photosynth. Res. 1988, 18, 7–31. [Google Scholar] [CrossRef] [PubMed]

	3. 
Downie, S.R.; Palmer, J.D. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In Molecular Systematics of Plants; Soltis, P.S., Soltis, D.E., Doyle, J.J., Eds.; Chapman and Hall: New York, NY, USA, 1992; pp. 14–35. [Google Scholar]

	4. 
Raubeson, L.A.; Jansen, R.K. Chloroplast genomes of plants. In Diversity and Evolution of Plants-Genotypic Variation in Higher Plants; Henry, R, Ed.; CABI Publishing: Wallingford, UK, 2005; pp. 45–68. [Google Scholar]

	5. 
Martin, G.; Baurens, F.C.; Cardi, C.; Aury, J.M.; D’Hont, A. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution. PLoS ONE 2013, 8, e67350. [Google Scholar] [CrossRef] [PubMed]

	6. 
Grewe, F.; Guo, W.; Gubbels, E.A.; Hansen, A.K.; Mower, J.P. Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evol. Biol. 2013, 13, 8. [Google Scholar] [CrossRef] [PubMed]

	7. 
Gao, L.; Yi, X.; Yang, Y.X.; Su, Y.J.; Wang, T. Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: Insights into evolutionary changes in fern chloroplast genomes. BMC Evol. Biol. 2009, 9, 130. [Google Scholar] [CrossRef] [PubMed]

	8. 
Jansen, R.K.; Palmer, J.D. A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. USA 2009, 84, 5818–5822. [Google Scholar] [CrossRef]

	9. 
Graham, S.W.; Reeves, P.A.; Burns, A.C.E.; Olmstead, R.G. Microstructural changes in noncoding chloroplast DNA: Interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. Int. J. Plant Sci. 2000, 161, S83–S96. [Google Scholar] [CrossRef]

	10. 
Lu, J.M.; Zhang, N.; Du, X.Y.; Wen, J.; Li, D.Z. Chloroplast phylogenomics resolves key relationships in ferns. J. Syst. Evol. 2015, 53, 448–457. [Google Scholar] [CrossRef]

	11. 
Pryer, K.M.; Schneider, H.; Smith, A.R.; Cranfill, R.; Wolf, P.G.; Hunt, J.S.; Sipes, S.D. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 2001, 409, 618–622. [Google Scholar] [CrossRef] [PubMed]

	12. 
Wolf, P.G.; Rowe, C.A.; Sinclair, R.B.; Hasebe, M. Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Res. 2003, 10, 59–65. [Google Scholar] [CrossRef] [PubMed]

	13. 
Franks, S.J. Genetics, evolution, and conservation of island plants. J. Plant Biol. 2010, 53, 1–9. [Google Scholar] [CrossRef]

	14. 
Jang, Y.D.; Park, B.J. Geology of Dokdo volcanic: Rocks, minerals, age, and cause of formation. In Nature of Dokdo; Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Eds.; Kyeongbuk University Press: Daegu, Korea, 2008; pp. 10–51. [Google Scholar]

	15. 
Kim, Y.K. Petrology of Ulleung volcanic island, Korea; Part 1. Geology. J. Jpn. Assoc. Miner. Pet. Econ. Geol. 1985, 80, 128–135. [Google Scholar] [CrossRef]

	16. 
The Korea Herald: [Weekender] Dokdo’s promising resources, ecology. Available online: http://www.koreaherald.com/view.php?ud=20140117000879 (accessed on 5 September 2016).

	17. 
Sun, B.Y.; Park, J.H.; Kwak, M.J. Characteristic of vascular flora of Ulleung and Dokdo. Rep. Surv. Nat. Environ. Korea 1996, 10, 113–135. [Google Scholar]

	18. 
Hyun, J.O.; Kwon, S.K. Flora of Dokdo. Report on the Detailed Survey of Dokdo Ecosystem; Ministry of Environment: Seoul, Korea, 2006; pp. 35–44.

	19. 
Song, G.; Park, S.J. Distribution and management of non-indigenous plants in Dokdo. Korean J. Plant Taxon. 2012, 42, 98–107. [Google Scholar] [CrossRef]

	20. 
Singh, A. Herbalism, Phytochemistry and Ethnopaharmacology; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]

	21. 
Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]

	22. 
Wyman, S.K.; Boore, J.L.; Jansen, R.K. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20, 3252–3255. [Google Scholar] [CrossRef] [PubMed]

	23. 
Der, J.P. Genomic Perspectives on Evolution in Bracken Fern. Ph.D. Thesis, Utah State University, Logan, UT, USA, 2010. [Google Scholar]

	24. 
Schattner, P.; Brooks, A.N.; Lowe, T.M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005, 33, W686–W689. [Google Scholar] [CrossRef] [PubMed]

	25. 
Lohse, M.; Drechsel, O.; Bock, R. Organellar genome DRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 2009, 25, 1451–1452. [Google Scholar]

	26. 
Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef] [PubMed]

	27. 
Mayer, C.; Leese, F.; Tollrian, R. Genome-wide analysis of tandem repeats in Daphnia pulex—A comparative approach. BMC Genom. 2010, 11, 277. [Google Scholar] [CrossRef] [PubMed]

	28. 
Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]

	29. 
Lenz, H.; Knoop, V. PREPACT 2.0: Predicting C-to-U and U-to-C RNA editing in organelle genome sequences with multiple references and curated RNA editing annotation. Bioinform. Biol. Insights 2013, 7, 1–19. [Google Scholar] [CrossRef] [PubMed]

	30. 
Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]

	31. 
Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]

	32. 
Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef] [PubMed]

	33. 
Bouckaert, R.; Heled, J.; Kuhnert, D.; Vaughan, T.; Wu, C.H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [PubMed]

	34. 
Rambaut, A.; Suchard, M.A.; Xie, D.; Drummond, A.J. Tracer v1.6. 2014. Available online: http://beast.bio.ed.ac.uk/Tracer.

	35. 
Pryer, K.M.; Schuettpelz, E.; Wolf, P.G.; Schneider, H.; Smith, A.R.; Cranfill, R. Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am. J. Bot. 2004, 91, 1582–1598. [Google Scholar] [CrossRef] [PubMed]

	36. 
Kong, W. The Geography of Dokdo; Ministry of Land, Infrastructure and Transport National Geographic Institute: Gyeonggi-do, Korea, 2011.

	37. 
Wolf, P.G.; Der, J.P.; Duffy, A.M.; Davidson, J.B.; Grusz, A.L.; Pryer, K.M. The evolution of chloroplast genes and genomes in ferns. Plant Mol. Biol. 2011, 7, 251–261. [Google Scholar] [CrossRef] [PubMed]

	38. 
Gao, L.; Zhou, Y.; Wang, Z.W.; Su, Y.J.; Wang, T. Evolution of the rpoB-psbZ region in fern plastid genomes: Notable structural rearrangements and highly variable intergenic spacers. BMC Plant Biol. 2011, 11, 64. [Google Scholar] [CrossRef] [PubMed]

	39. 
Sugiura, C.; Sugita, M. Plastid transformation reveals that moss tRNAArg-CCG is not essential for plastid function. Plant J. 2004, 40, 314–321. [Google Scholar] [CrossRef] [PubMed]

	40. 
Wicke, S.; Schneeweiss, G.M.; dePamphilis, C.W.; Muller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef] [PubMed]

	41. 
Kimura, M. The Neutral Theory of Molecular Evolution; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]

	42. 
Raman, G.; Park, S. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective. PLoS ONE 2015, 10, e0141329. [Google Scholar] [CrossRef] [PubMed]

	43. 
Raman, G.; Park, S. The Complete Chloroplast Genome Sequence of Ampelopsis: Gene Organization, Comparative Analysis, and Phylogenetic Relationships to Other Angiosperms. Front. Plant Sci. 2016, 7, 341. [Google Scholar] [CrossRef] [PubMed]

	44. 
Makalowski, W.; Boguski, M.S. Evolutionary parameters of the transcribed mammalian genome: An analysis of 2820 orthologous rodent and human sequences. Proc. Natl. Acad. Sci. USA 1998, 95, 9407–9412. [Google Scholar] [CrossRef] [PubMed]

	45. 
Chen, H.; Deng, L.; Jiang, Y.; Lu, P.; Yu, J. RNA editing sites exist in protein-coding genes in the chloroplast genome of Cycas taitungensis. J. Integr. Plant Biol. 2011, 53, 961–970. [Google Scholar] [CrossRef] [PubMed]

	46. 
Stern, D.B.; Goldschmidt-Clermont, M.; Hanson, M.R. Chloroplast RNA metabolism. Annu. Rev. Plant Biol. 2010, 61, 125–155. [Google Scholar] [CrossRef] [PubMed]

	47. 
Yu, W.; Schuster, W. Evidence for a site-specific cytidine deamination reaction involved in C to U RNA editing of plant mitochondria. J. Biol. Chem. 1995, 270, 18227–18233. [Google Scholar] [CrossRef] [PubMed]

	48. 
Hirose, T.; Fan, H.; Suzuki, J.Y.; Wakasugi, T.; Tsudzuki, T.; Koessel, H.; Sugiura, M. Occurrence of silent RNA editing in chloroplasts: Its species specificity and the influence of environmental and developmental conditions. Plant Mol. Biol. 1996, 30, 667–672. [Google Scholar] [CrossRef] [PubMed]

	49. 
Yura, K.; Go, M. Correlation between amino acid residues converted by RNA editing and functional residues in protein three-dimensional structures in plant organelles. BMC Plant Biol. 2008, 8, 79. [Google Scholar] [CrossRef] [PubMed]

	50. 
Mungpakdee, S.; Shinzato, C.; Takeuchi, T.; Kawashima, T.; Koyanagi, R.; Hisata, K.; Tanaka, M.; Goto, H.; Fujie, M.; Lin, S.; et al. Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome. Genome Biol. Evol. 2014, 6, 1408–1422. [Google Scholar] [CrossRef] [PubMed]

	51. 
Smith, A.R.; Pryer, K.M.; Schuettpelz, E.; Korall, P.; Schneider, H.; Wolf, P.G. A classification for extant ferns. Taxon 2006, 55, 705–731. [Google Scholar] [CrossRef]

	52. 
Gao, L.; Wang, B.; Wang, Z.W.; Zhou, Y.; Su, Y.J.; Wang, T. Plastome sequences of Lygodium japonicum and Marsilea crenata reveal the genome organization transformation from basal ferns to core leptosporangiates. Genome Biol. Evol. 2013, 5, 1403–1407. [Google Scholar] [CrossRef] [PubMed]

	53. 
Zhong, B.J.; Fong, R.; Collins, L.J.; McLenachan, P.A.; Penny, D. Two new fern chloroplasts and decelerated evolution linked to the long generation time in tree ferns. Genome Biol. Evol. 2014, 6, 1166–1173. [Google Scholar] [CrossRef] [PubMed]

	54. 
Kim, H.T.; Chung, M.G.; Kim, K.J. Chloroplast genome evolution in early diverged leptosporangiate ferns. Mol. Cells 2014, 37, 372–382. [Google Scholar] [CrossRef] [PubMed]

	55. 
Des Marais, D.L.; Smith, A.R.; Britton, D.M.; Pryer, K.M. Phylogenetic relationships and evolution of extant horsetails, Equisetum, based on chloroplast DNA sequence data (rbcL and trnL-F). Int. J. Plant Sci. 2003, 164, 737–751. [Google Scholar] [CrossRef]

	56. 
Celaya, M.; McCabe, R. Kinematic model for the opening of the Sea of Japan and the bending of the Japanese islands. Geology 1987, 15, 53–57. [Google Scholar] [CrossRef]





























© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).







nav.xhtml


  genes-07-00115


  
    		
      genes-07-00115
    


  




  





media/file8.jpg
I Biidienas





media/file11.png
\

ndhB .-k

I 60

: 40

rps16 L
P10 chiB " psbk® o P Ll
y atpA ath-agJI n ‘ 20

A
rps2

rpoC2 rpC1

i
rpoB =

sa)is Bunipa YNY O-n 40 JaquinN

S o
psbZ S e 0
psbC p S =
ps14 >e® 08
psaB Bee [ ]

-
Genes - LSC Region petN

80

60

S e
-
n

8
so)is Bunipa YNy 9-n J0 JaquinN

dhC atpE -au’B ] —_
rocl T BB o o n 20
psal cf4 .
o yreto 7 2 -
Genes - LSC Region PSbE " ot ® - " 0

80

60

»
=)
sajis Bunipa YNy 9-N J0 1aquinN

® e
ps18 " 150 ™ =
pI20 -
psbB psbT psgN. - o
petB ol . 20
petD rpoA "11o o P
P infA " ]
ps8
i pl1d ° = - 8
Genes - LSC Region pite = 0 ® rp% i - 0
rpl2 (> ]
rol23

80

L ]
ndhE ®

ndhG

-
(=]
sajis SunIpa YNy J-N 0 JaquinN

S8
nahl 2 e @ ® g P

Genes - IR & SSC Region ndhH " s1s @

ycf1 . =
chiN chil -

B Triplet position 1 B Triplet position 2





media/file6.jpg





media/file18.png





media/file1.png
0,
P &
'o@‘/@f( N
sy G
7N SN
78 0N
\\\ \\ NN
X\\
D \\
AN
ﬁkb@
Os,
psbl,’f
,Oe[ '8 0Os b/\/
Petp

rpl
_rpl23
:',1 — t?n\—CAU

TGV

M photosystem |
[l photosystem I
[ cytochrome b/f complex

& ATP synthase

] NADH dehydrogenase /
[l RubisCO large subunit /
[l RNA polymerase

[ ribosomal proteins (SSU)

[ ribosomal proteins (LSU)

& clpP, matK

[ other genes

[] hypothetical chloroplast reading frames (ycf)

RFs

[l transfer RNAs

[l ribosomal RNAs

[ origin of replication

[Jintrons

[l polycistronic transcripts

12
iz

o

>

@
0]
[«
>

PsaB

[l Q
/// // ;/? é)

VA /] g/
Vo 4 | Q //
LS Yo //
%ng @ T (5 //ﬂ /
2= 95 NG
o b SO«

I3 &5
ESES OF &
g’
LSC N
$

Cyrtomium falcatum
chloroplast genome

151,628 bp

s 20
2 8% &
I > TOo

&
/?'/7 & 4, —
oG

rps16

matK
ndhB

ndhg

—
g ACG

\ff'n4.5

I'rn 2 3





media/file13.png
250

200

150

100

R+.g "
A'VC-R Fel

FoP gy
Fs”'Y"TLFLP '
L-$

P-F

Number of amino acid change

Amino acid change

Ws.F '
s LRLIE 8 .
V' w.

B Cyrtomium falcatum

Y

W Cyrtomium devexiscapulae





media/file10.jpg





media/file7.png
rpo
Genes - LSC Region

0.75

0.5

SHIVH

< ¢

yc
PS4 ndhJ |, GnK
ndh atpi i
atpB  pe

acchD psa

ye ce
Genes - LSC Region

0.75
H 5 2
’ ' X
»
rps .
psbA 0.25

ndh

rpl2 ’
mpl3
ccsA
ndhD psa )

- dh A
Genes - IR & SSC Region A ndh .
chi

0

ps1 ’
4a chil

[ C. falcatum vs C. devexiscapulae [ C. falcatum vs W. unigemmata [l C. falcatum vs P. aquilinum





media/file12.jpg
ST PR QuRe Jo seateng
g &8 g 4

1 Cyrtomium devexiscapulze

Amino acid change

B Cyrtonium flcatum





media/file9.png
-
|
w
o g 8
says Buiypa YNy N-9 Jo JaquinN

ndhB 8
matK rps16 chig® = @ o I I
psbK - 28
ycf12 atpA
atpH atpl rpsz 15
rpoC2 rpoC1 =3
rpoB oM™ N ° o g
Genes - LSC Region petN — sbz 3 0
P psbc © 9 8
ps14 psaB b A
psa

2]
o

8 A
[3,]
sayis Bunipa YNy N- Jo JaquinN

L |
sbJ [~
Genes - LSC Region P psbL =, cpe® @ @ 0

[ ]
petL petG

-
psaJ @ a8

f ps.‘l 8.rp50. ‘

clpP prB ps'b
petB  heth moAT. 8 ® g o

rpsﬁ rpl36 ’A 3

A rps8

8
sayis Bunipa YNy N-9 Jo Jaqunp

1s° 8 .o
P rpi1e T 5es 8.9 8 o -
Genes - LSC & IR Region P rps19 | 0

3
rpl2 rpl23 g L

ycf2

& 2

w
o
sa)is Bunipa VNN N-D JO JaquinN

ndhF

-
v

ndhl

ndhG ' .
n

Genes - SSC Region

B Triplet position 1 M Triplet position 2





media/file14.jpg





media/file16.jpg





media/file5.png
~

rpoB trnDtrnYtrnE psbM petN trnC trnGpsbZ trnS psbC psbD  trn
C. falcatum umm @@ = @ @ @ @my -
C. devexiscapulae (v ) @G0 m) m @ @ my) -
P.glycyrrhiza  {mmmm W @@ wm) m @ @ C—Q%
W.unigemmata  ums ) @ =) 4m G G qumr)
C. protrusa (mmm @@ = @ @ 6 _.% -
C. lindheimeri Camm )@@ = @ @ @ _.% Q
A. capillus-veneris¢=mmn @ m) m ¢ (O m ) a
P. aquilinum C— Qﬁﬁ = @ @ @ amy <i|
P. glauca G S NE = s & &
M. crenata — »@g ------ Q'E:I:. _________ @ ¢ e
L japonicum e 1 i e W o g
O. cinnamomeum (.. .. ‘*‘:‘-‘ ..................... e

orz2
e ..,
A T L LT TP
F; .es

E. arvense 2. o . @ D m) i G E—)





media/file15.png
100 | Crytomium devexiscapulae

Cyrtomium falcatum

Polypodium glycyrrhiza
Cystopteris protru i

ystopleris protrusa Polypodiales
Woodwardia unigemmata

Adiant: il
Lo} (1] a0

[100

] Cheil. F lindheimeri

Pteridium aguilinum

100 Plagiogyria glauca
100 Alsophila spinulosa | Cyatheales
100 Marsilea crenata I Salviniales
100 | Lygodium japonicum*
100 | Lygodium japonicum

Schizaeales

Diplopterygi i * . "
100 100 | Diplopteryglum glaucum | Gleicheniales

Diplopterygium glavcum

100 100 IOsmundasrmm cinnamomeum*

Osmundastrum cinnamomeum Osmundales

Angiopteris angustifolia I Marattiales

Mankyua chejuense .
100 P I Ophioglossales
100 o

99 Psilotum nudum I Psilotales

Equisetum arvense Equisetales

Ginkgo biloba | Seed plant

Core leptosporangiate ferns

Leptosporangiate ferns

Eusporangiate ferns

Out group





media/file3.png
Cyrtomium falcatum
Cyrtomium devexiscapulae
Woodwardia unigemmata
Pteridium aquilinum

chiB ycf12 atpF psbZ psbD
ndhB rps16 psbK atpA atpl rpoC2 rpoC1 rpoB psbM pshC rps14
matK psbl atpH_rps2 petN psaB
T 100%
50%
I 1 100%
50%
WY VY IR T e MY A Dy 1007
50%
bt AT AT WA A et SR AT At 1 00
| L g ,‘ 1’"' . ¥ T ' 1 L 1 L T ) 1 L) 1 E 1 '500/0
Ok 4k 8k 12k 16k 20k 24k 28k 32k 36k
psaA ndhC atpB accD psbF, ¢ P20 psbN petD infA
psaB ycf3 rps4 ndhd  atpE  rbcl  ycfd petApsb“Pfstrpl33 clpP psbB petB rps11
ndhK psalcemA psbL eﬂ_psaJ rps12 psb;'b H rpoA rpl36
100%
50%
1 1 100%
50%

TN AN VT WYY VA VA 100%
— 50%
A AV A A A AR P 007
: . : . . . . ' . " ; 50%

40k 44Kk 48k 52k 56k 60k 64k 68k 72k 76k
infA rps19 rpl21 ndhD
rpl14 rps3 rpl23 rrnS rrn23 rrn16 rps12 psbA ycf2 ndhF ccsA
rpsé8 B é’plzzr 2 rrn4.5 rps7 rpl32 psa‘C
—b _Pc 100%
50%
50%
v/ T2 N TV o N o Y S g W P e ST, ) T 1Y M (N ; 800/%
y Y N\ (1]
NP Vs ey WTWW' 100%
1 g ' 4 ' v Vw0
50%
76k 80k 84k k 96k 100k 104k 108k 112k
ndhG ndhH chiL rps12
psaC ndhA rps15 ycf1 chiIN ycf2 psbA rrn16 rrn23 rrn5 ndhB
ndhﬁ b rps7 rrn4.5
o L1], 100%
contig 50%
gene Y o v 100%
UTR — —— 71 300°
Vo= © v 7 >, 0 Py 0,
CNS s ! ! : ; %Y MCN YV A WYY WV ;I_) goo/o %
mRNA D AT s NP ey AN T A IV v 100%
TA! Y, v 'y { T
— 50%
116k 120k 124k 128k 132k 136k 140k 144Kk 148k





media/file17.png
225.14

195.6

0.17 | Cyrtomium falcatum

ICyrtomium devexiscapulae

Polypodium glycyrrhiza
Cystopteris protrusa
Woodwardia unigemmata

Pteridium aquilinum

Adiantum capillus-veneris

Cheilanthes lindheimeri

Plagiogyria glauca

Alsophila spinulosa

Marsilea crenata

0.03 | Lygodium japonicum*

| Lygodium japonicum

0.03 | Osmundastrum cinnamomeum*

163.01 |

| 0smundastrum cinnamomeum

o | Diplopterygium glaucum*

116.64

| Diplopterygium glaucum

Mankyua chejuensis

Ophioglossum californicum

Psilotum nudum

Angiopteris angustifolia

Equisetum arvense

Ginkgo biloba

200

0 Mya

uaternary period

Paleozoic era

Mesozoic era

Core leptosporangiates

Leptosporangiates

Eusporangiate Ferns

| Out group





media/file4.jpg
OB trDnYtrnE psbM petN tmC tmGpsbZtmS psbC  psbD  trnT

C. falcatum == ee = @ ¢ -.% @
C. devexiscapulze ¢ B 46 D dm @ 6 e &
Pglycyrrhiza (== @é = m & & -Q% @
W.unigemmata (w66 =) m & & -’% &
C. protrusa == et = @ & C-Q% ¢
C.lindheimeri ~ {ummm W @6 =) 4m & & -.% ]
A. caplllus-veneris s ) @ ) dm 6 6 b
P aquilinum e = = e —Q% @
P. glauca — e = &
M. crenata — e @
L. japonicum G W T. . @

0. cinnamomeum <. o, .
E.arvense -





media/file0.jpg
Cyrtomium falcatum
chloroplast genome
15162800





media/file2.jpg
kB yefiz  apF Ll —d
e etk oA, moca_poct_mos_psow " gt e
T, o P e TP | P e

Gyrtomium facatum [ I B LI - — - ..,
Cyrtomium devexiscapulac 1IN
Woodwardia unigommata i fig

Pteridium aquitinum i pCTIF A A AT S v A o I

L I e e e R

"o S e memz e rarzesea
e e R
L i il

W B W RENID

e By B B W
psaC_ ndhA"pstS_yctt _ chiN otz 6. 23S ndn8
R o, mt e

e I [P
sax 1) Lo
B e S L Lig






