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Abstract: The plastid organelle is vital for photosynthesis and energy production. Advances in
sequencing technology have enabled the exploration of plastomic resources, offering insights into
plant evolution, diversity, and conservation. As an important group of horticultural ornamentals
in the Crassulaceae family, Sempervivum plants are known for their unique rosette-like structures
and reproduction through offsets. Despite their popularity, the classification status of Sempervivum
remains uncertain, with only a single plastome sequence currently available. Furthermore, codon
usage bias (CUB) is a widespread phenomenon of the unbalanced usage of synonymous codons in the
coding sequence (CDS). However, due to the limited available plastid data, there has been no research
that focused on the CUB analysis among Sempervivum until now. To address these gaps, we sequenced
and released the plastomes of seven species and one subspecies from Sempervivum, revealing several
consistent patterns. These included a shared 110 bp extension of the rps19 gene, 14 hypervariable
regions (HVRs) with distinct nucleotide diversity (7: 0.01173 to 0.02702), and evidence of selective
pressures shaping codon usage. Notably, phylogenetic analysis robustly divided the monophyletic
clade into two sections: Jovibarba and Sempervivum. In conclusion, this comprehensive plastomic re-
source provides valuable insights into Sempervivum evolution and offers potential molecular markers
for DNA barcoding.

Keywords: Crassulaceae; Sermpervivum; plastome; codon usage bias; hypervariable regions; phylogenetic
analysis

1. Introduction

The Crassulaceae family, the largest family in Saxifragales, contains around 1400 species
across three subfamilies: Sempervivoideae, Kalanchoideae, and Crassuloideae. The Semper-
vivoideae subfamily comprises five major clades (Telephium, Aeonium, Acre, Leucosedum,
Sempervivum) [1-6]. And many species in this family were seen as ornamental with highly
economic values [7-9]. Notably, the genus Sempervivum, also known as hen and chicks
or houseleeks, is the sole member of the Sempervivum clade. Native to the mountains
of Europe, Africa, and Asia, Sempervivum plants are characterized by their rosette-like
structures composed of succulent leaves and their ability to reproduce via offsets. There are
over 40 species within this genus, exhibiting a wide range of colors, shapes, and sizes [10].
However, the classification status of Sempervivum remains uncertain, with some studies
suggesting that it should be divided into two separate genera, namely, Jovibarba and Semper-
vivum. This proposal is based on the morphological and genetic differences found between
these two groups [10-12].

In plant cells, plastids are crucial organelles responsible for photosynthesis and energy
production [13-15]. The plastome usually possesses a conservative quadripartite circular
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structure with two single-copy regions (LSC and SSC), separated by two inverted repeat
(IR) regions [16-19]. Plastomes are valuable tools for inferring phylogenetic relationships
between plants due to their unique characteristics [20-23]. With the rapid development in
advanced high-throughput sequencing technologies, thousands of plastomes have been
released in public databases. However, to date, only one plastome from Sempervivum is
available on the NCBI database (GenBank accession number: NC_053954). The insuffi-
ciency of plastid data has hindered the progress in exploring the evolutionary status of
Sempervivum. Therefore, more plastomic resources from this genus could effectively address
this issue.

Moreover, codon usage bias (CUB) is a widespread phenomenon of the unbalanced
usage of synonymous codons in the coding sequence (CDS). Some codons are used more fre-
quently than their synonymous codons [24-26]. There are various indices that are frequently
employed to evaluate the CUB, such as the effective number of codons (ENC), relative
synonymous codon usage (RSCU), parity rule 2 (PR2) plot, and neutrality plot [27,28]. CUB
analysis can serve as a potent technique to uncover evolutionary patterns within taxa or
specific genes [16]. A recent study [16] analyzed the CUB among 86 Crassulaceae species
and found that the matK gene had a unique codon usage pattern among Crassulaceae with
relatively high ENC values. However, due to the limited available plastid data of Semper-
vivum, there has been no research that focused on the CUB analysis among Sempervivum
until now. Thus, to gain a deeper insight into the phylogeny of Sempervivum, it is crucial to
explore the synonymous codon usage patterns in Sempervivum with a large sampling scale.

In this study, we sequenced and released the plastomes of seven species and one
subspecies (S. globiferum, S. globiferum subsp. hirtum, S. heuffelii, S. calcareum, S. funckii,
S. ciliosum, S. arachnoideum, and S. tectorum). Notably, three of these belong to the section
Jovibarba. By analyzing these new plastomes, we investigated (1) the structural diversity
among Sempervivum plastomes, (2) the codon usage pattern of protein-coding genes, and
(3) the phylogenetic relationships within the genus. Our findings will undoubtedly provide
a deeper understanding of the evolution of Sempervivum while simultaneously identifying
potential molecular markers for DNA barcoding.

2. Materials and Methods
2.1. Sample Collection, DNA Extraction, and Sequencing

This study collected fresh leaves of eight houseleek (Sempervivum) taxa from the
greenhouse at the Agricultural Genomics Institute, Chinese Academy of Agricultural
Sciences. The samples were assigned the voucher codes KL01699, KL01791, KL01265,
KLO01614, KL01838, KL02009, KL01220, and KL01460, which represented S. globiferum, S.
globiferum subsp. hirtum, S. heuffelii, S. calcareum, S. funckii, S. ciliosum, S. arachnoideum, and
S. tectorum, respectively. The CTAB method [29] was used to extract the total genomic DNA
from the plant samples. The sequencing process was finished by Biomarker Technologies
(Beijing, China). Generally speaking, library construction was then performed using an
IIumina TruSeq DNA PCR-Free Library Prep Kit. Finally, Illumina Hiseq X Ten sequencing
technology was utilized to sequence the prepared libraries.

2.2. Plastome Assembly and Genome Annotation

The plastomes of the eight taxa were assembled using GetOrganelle v.1.6.4 [30], with
the plastomic sequence of S. tectorum (NC_053954) as a reference. Subsequently, the assem-
bled plastomes were annotated using the online program GeSeq [31] and CPGAVAS2 [32].
The protein-coding genes (PCGs) were manually checked by comparing with the reference
(NC_053954) through a BlastN search [33]. Finally, Chloroplot [17] was utilized to generate
circular map visualizations of the plastomes.

2.3. Composition and Structural Analysis of Plastomes

The nucleotide composition of the plastomes from eight Sempervivum taxa was an-
alyzed using Bioedit [34]. Next, the plastomes were aligned using MAFFT software
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(v 7.487) [35], and genomic visualization was performed with mVISTA [36] using the
Shuffle-LAGAN mode. Additionally, DNA polymorphisms were evaluated with sliding
window nucleotide diversity (1) values by utilizing DnaSP v6.12 [37], with a window
length of 600 bp and a step size of 200 bp. A high variability region (HVR) was defined
as a contiguous sliding window with a 7t value greater than the average plus 2 standard
deviations. The variation in the structures of the SC and IR borders among the eight
Sempervivum taxa was visualized using IRScope [38].

2.4. Analysis of Codon Usage Pattern

To elucidate the codon usage patterns in the PCGs of the eight selected taxa, we
employed CodonW v.1.4.2 (http://codonw.sourceforge.net/ (accessed on 28 March 2024))
to calculate several crucial metrics, including the effective number of codons (ENC), rel-
ative synonymous codon usage (RSCU), and the G + C content at the third position of
synonymous codons (GC3s) across the entire gene sequences. The genes for analysis were
selected from the PCGs according to the following criteria: (1) the sequence had a length
greater than or equal to 300 bp and was divisible by three, (2) it was initiated with a valid
start codon, (3) it was terminated with a recognized termination codon, and (4) it did not
contain any intermediate stop codons. By applying these stringent criteria, we ensured the
robustness and accuracy of our analysis of codon usage patterns.

The ENC value serves as an indicator of the extent to which synonymous codons are
unequally utilized and spans a range from 20 (indication extreme bias) to 61 (suggesting no
bias) [39]. On the other hand, the RSCU value signifies the ratio of an observed synonymous
codon frequency to its theoretical expected frequency. Consequently, an RSCU > 1 indicates
that this codon is employed more frequently than its synonymous counterparts, while an
RSCU < 1 designates it as a less frequently used codon [40].

Optimal codons were identified using the ARSCU method [41,42]. To achieve this, the
PCGs with the top 5% highest and lowest ENC values were selected as the high ENC and
low ENC groups, respectively. Then, codons with ARSCU values greater than 0.08 and
RSCU values meeting the conditions of low ENC group > 1 and high ENC group < 1 were
considered optimal codons.

2.5. Phylogenetic Analysis for Sempervivum Species

To determine the evolutionary position of the genus Sempervivum within the Cras-
sulaceae family, we incorporated eight newly generated datasets into our analysis, along
with plastomes from 86 other Crassulaceae species (Table S1) downloaded from the NCBI
database (https:/ /www.ncbi.nlm.nih.gov/). Previous research by Han et al. [43] revealed
a sister relationship between Crassulaceae and Haloragaceae. Thus, two species (Myrio-
phyllum aquaticum and M. spicatum) from Haloragaceae were employed as outgroups.
Phylogenetic trees reconstruction was performed by using both maximum likelihood (ML)
and Bayesian inference (BI) methods. Our dataset consisted of 79 protein-coding genes
(PCGs) from 96 species (Data S1), and we employed RAXML 8.2.12 [44] under the GTRCAT
model with 1000 bootstrap replicates for ML tree reconstruction. Convergence was assessed
using the “-I autoMRE” parameter. For the BI analysis, we utilized MrBayes 3.2.7a [45] and
determined the best models for nucleotide substitutions with ModelTest-NG [46] based
on Bayesian information criterion (BIC). Two trials with four independent Markov chains
were run for 10 million generations, and convergence was evaluated using Tracer 1.7.1 [47].

3. Results
3.1. Plastome Organizations and Structural Features

In this study, the plastome organizations and structural features of eight newly re-
ported Sempervivum species were investigated. The plastomes ranged in length from
150,845 to 151,473 bp and exhibited a typical quadripartite and circular structure (Figure 1),
comprising IR (25,778-25,829 bp), SSC (16,688-16,762 bp), and LSC (82,499-83,151 bp)
regions (Table S2). Notably, all Sempervivum plastomes analyzed in this study displayed
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a similar GC content. The overall GC contents of these plastomes ranged from 37.57% to
37.63%. Interestingly, upon further examination, we found that the GC contents within the
IR regions were higher (42.94-42.99%) than those observed in the LSC (35.44-35.51%) and
SSC (31.44-31.68%) regions (Table S2).
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Figure 1. Plastome annotation map within eight Sempervivum taxa. Directed with arrows, genes that
are listed inside and outside of the circle are transcribed clockwise and counterclockwise, respectively.
Genes are color-coded by their functional classification.

Furthermore, a total of 133 genes were identified within the plastomes of the inves-
tigated Sempervivum taxa, comprising 85 protein-coding genes (PCGs), 36 tRNA genes,
8 rRNA genes, and 4 pseudogenes. The overall organization of the plastomes was analyzed
using mVISTA, revealing that the SC regions exhibited higher divergence than the IR
regions (Figure 2). Furthermore, when compared with the conserved non-coding regions
(CNS), the PCGs displayed a lower level of variation. Sliding-window-based 7 values were
calculated for these new plastomes, ranging from 0 to 0.02702, with an average of 0.003754
and a standard deviation of 0.003955. The high-variability regions were identified by 7
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values that were greater than 0.01166, and a total of 14 HVRs (7t value: 0.01173-0.02702)
were found in Sempervivum (Figure 3, Table S3). These HVRs can potentially be used as
barcodes for identifying species within Sempervivum.
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Figure 2. Structural comparisons of eight newly sequenced Sempervivum plastomes with the mVISTA
program. The Y-axis represents the consistency of sequences, where the numbers ranged from 50%
to 100%, and the X-axis means the plastomic gene position. The labels 1 to 8 represent S. arach-
noideum, S. calcareum, S. globiferum, S. globiferum subsp. hirtum, S. funckii, S. ciliosum, S. heuffelii, and
S. tectorum, respectively.

This study revealed consistent patterns in the eight newly sequenced Sempervivum
plastomes (Figure 4). Notably, the IR junction pattern showed remarkable similarity. Specif-
ically, the ycfl and rps19 genes spanned both the SSC and IRa regions, with the majority
of them located in the SSC region. Due to their position in the inverted repeat region,
fragments of these genes were also present in the IRb region. Furthermore, the rps19
gene extended 110 bp into the IRb region in all of the newly assembled Sempervivum plas-
tomes. Interestingly, this shared structural feature was also observed in other Crassulaceae
species [48].
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Figure 3. Sliding window analyzes of DNA polymorphisms of eight Sempervivum plastomes (window
length: 600 bp; step size: 200 bp). The X-axis represents the midpoint position of each window, and
the Y-axis shows the 7 value of each window. Regions with 7t > 0.01166 were identified as HVRs.
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Figure 4. Comparison of the LSC, SSC, and IR region borders of 8 Sempervivum plastomes. The LSC,
IR, and SSC regions are colored with blue, orange, and green blocks, respectively. Gene boxes above
the block were transcribed counterclockwise, while those below the block were transcribed clockwise.

3.2. Codon Usage Bias Indices of Plastid Genes from Sempervivum

To determine the rules governing codon usage patterns in Sempervivum, we analyzed
four codon usage bias indices, namely, RSCU, ENC, GC content, and optimal codons, in
the eight newly sequenced plastomes. Our analysis included 53 CDSs with lengths of at
least 300 bp. Of these, 59 codons (excluding Met, Trp, and stop codons) were analyzed in
the RSCU analysis.

The overall RSCU values in Sempervivum ranged from 0.33 (AGC) to 2 (TTA), with a
heatmap showing a preference for A/T-ending codons over G/C-ending codons in plastid
PCGs (Table S4, Figure 5). Among these CDSs, the clpP gene in S. heuffelii displayed the
highest ENC value of 54.19, indicating a relative average codon usage in this gene. In
contrast, the rps8 gene in S. tectorum, S. ciliosum, S. funckii, S. calcareum, and S. arachnoideum
had the lowest ENC value of 35.44, indicating an extreme bias in codon usage (Table S5).
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Figure 5. The heatmap of overall RSCU values among Sempervivum species based on 53 CDSs
(length > 300 bp). The x-axis represents the cluster of codons, and the y-axis represents the clusters
of species.

We plotted the ENC and GC3s data from the analyzed plastomes in Sempervioum and
found that most ENC values were lower than expected, lying below the standard curve
(Figure 6). This suggested that the codon usage preferences in Sempervivum were influenced
by natural selection.

70

60
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40

30

20

0.00 0.25 0.50 0.75 1.00
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Figure 6. The ENC plot for 53 CDSs from Sempervivum, with GC3s as the x-axis and ENC as the y-axis.
And the expected ENC values (standard curve) were calculated according to following formula:
ENC =2 + GC3s + 29/[GC3s2 + (1 — GC3s)?] [39].

We used a ARSCU method to determine the optimal codons (Table 1) in Sempervivum,
which revealed that all species shared two optimal codons, namely, CUA and CGU. Addi-
tionally, S. tectorum and S. calcareum had an extra codon, namely, GGG. These two species
were grouped in a clade in the neighbor-joining tree for Sempervivum, implicating that
codon usage contains a phylogenetic signal.

After analyzing the neutrality graph, we examined the relationship between GC12
(average GC content at the first and second positions of codons) and GC3 (Figure S1, Table
S6). This investigation aimed to identify the predominant influencing factor, either natural
selection or mutation pressure, shaping the codon usage patterns. The GC12 values ranged
from 0.3100 to 0.5652, while the GC3 values spanned from 0.1875 to 0.3669. A strong
GC12-GC3 correlation implies mutation-based CUB, while a weak or absent correlation
suggests that translation selection is the driving force. In Sempervivum, the regression
coefficient, which signifies the slope of the neutrality plot, between GC12 on GC3 exhibited
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a range from 0.1953 to 0.2087, with an average value of 0.2039. This observation implies that
the compositional characteristics of the first two bases within codons in Sempervivum may
differ from those of the third base. Furthermore, the results show a relative neutrality and
relative constraint of 20.39% and 79.61% for GC3, respectively. The GC12 in Sempervivum
was influenced by mutation pressure and natural selection, with a ratio of 0.2039/0.7961 =
0.2561. These findings demonstrate that natural selection primarily impacted the codon
usage patterns within the coding sequences of plastomes across the Sempervivum.

Table 1. Analyses of optimal codons in the plastomes of eight Sempervivum taxa.

Taxa Codon AA High Low ARSCU
CTA Leu 1.43 0.80 0.63
S. tectorum CGT Arg 1.79 0.97 0.81
GGG Gly 1.05 0.63 0.42
y CTA Leu 143 0.92 0.52
5. heuffelii CGT Arg 1.79 0.93 0.85
S ol CTA Leu 143 0.80 0.63
- citosum CGT Arg 1.79 0.97 0.81
5. funcki CTA Leu 143 0.80 0.63
' CGT Arg 1.79 0.97 0.81
, , CTA Leu 143 0.80 0.63
S. globiferum subsp. hirtum CGT Arg 1.79 0.93 0.86
5. globiferum CTA Leu 1.43 0.80 0.63
& CGT Arg 1.79 0.93 0.86
CTA Leu 143 0.80 0.63
S. calcareum CGT Arg 1.79 0.97 0.81
GGG Gly 1.05 0.63 0.42
S wrachmoid CTA Leu 143 0.80 0.63
- aracinordeut CGT Arg 1.79 0.97 0.81

3.3. Phylogenetic Analysis of Sempervivum

To shed light on the phylogenetic relationships between Sempervivum species within
the Crassulaceae family, we employed 86 additional plastome sequences obtained from
the Crassulaceae species and used both ML and BI methods. In addition, we selected two
Muyriophyllum species to serve as outgroups for our analysis (Figure 7).

The resulting phylogeny revealed seven well-supported clades: Leucosedum, Acre,
Aeonium, Sempervivum, Telephium, Kalanchoe, and Crassula. Among these clades, the first
five belonged to the subfamily Sempervivoideae, while the latter two clades represented
the subfamilies Kalanchoideae and Crassuloideae, respectively. Eleven species of Crassula
formed a strongly supported group, known as the Crassula clade, which was the sister
group to all other members of the family Crassulaceae. Interestingly, the Kalanchoideae was
closely related to the Sempervivoideae, suggesting a recent common ancestry between the
two groups. Within the Sempervivoideae subfamily, the Telephium clade formed a sister
group to the Aeonium, Leucosedum, Acre, and Sempervivum clades. This clade, which
consisted of 45 species across eight genera, could be further divided into two subclades,
namely, Hylotelephium and Rhodiola, with high support ([BS] = 100, [PP] = 1.0).
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Figure 7. The phylogenetic tree from 94 Crassulaceae species found using maximum likelihood (ML)
and Bayesian inference (BI) methods. The maximum likelihood bootstrap (BS) values and Bayesian

posterior probability (PP) values are displayed at each node; * denotes nodes with a bootstrap value
of 100% or a posterior probability of 1.00; - represents clades collapsed in the strict consensus tree.

In our study, the eight newly sequenced Sempervivum plastomes formed a well-
supported monophyletic clade (Sempervivum), which was a sister to the Aeonium, Leu-
cosedum, and Acre clades ([BS] = 100, [PP] = 1.0). Further analysis revealed that the
monophyletic clade could be further divided into two sections: Jovibarba and Semper-
vivum. The Jovibarba subclade contains S. globiferum and S. globiferum subsp. hirtum,
which formed a sister pair, and S. heuffelii, which was their sister species ([BS] = 100 and
[PP] = 1.00). The Sempervivum subclade comprised five species, including S. tectorum
and S. calcareum, which formed a sister pair ([BS] = 95 and [PP] = 1.00), and S. ciliosum,
which was grouped with them. Additionally, S. funckii and S. arachnoideum constituted
another sister group. The two groups were clearly distinct with robust support ([BS] = 100
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and [PP] = 1.00). Notably, within the Sempervivum subclade, all nodes exhibited robust
support, with bootstraps scores of at least 95 and posterior probabilities of 1.00.

4. Discussion

In this paper, we present the complete plastome sequences of eight Sempervivum taxa
and conducted a comprehensive analysis of their structure comparison, codon usage and
aversion patterns, and phylogenetic analysis. While it is widely recognized that IR regions
of plastomes exhibit greater conservation compared with other regions, they are not exempt
from evolutionary events, such as contraction and expansion at their borders. These events
have been observed frequently in various plastomes [49-55], highlighting the dynamic
nature of plastome evolution.

Our investigation revealed a consistent structural feature at the IR/SC boundary for
Sempervivum. Specifically, all the plastomes newly reported in the present study had a
110-base pair extension of the rps19 gene in the IRb region. This 110 bp span was also
found in other Crassulaceae species, such as Crassula [16], Aeonium and Monanthes [48],
and sedum [16]. These observations led to the hypothesis that this 110-base pair extension
may serve as a special family marker for Crassulaceae. Our study provides additional
compelling evidence to support this proposition.

Moreover, it is crucial to emphasize that prior research revealed two significant phe-
nomena: the loss of the rps19 gene and the presence of pseudogenes within the IR regions.
These occurrences directly impact the length of IRs [56]. Additionally, the dynamic char-
acter of plastome evolution is further illustrated by the variations in IR length observed
between distinct species and genera, which can be attributed to various factors, including
gene loss, gene duplication, and differences in intron—exon structure [57]. These findings
underscore the pivotal role of structural changes in shaping these genomes.

The CUB is a crucial aspect of molecular evolution, as it can provide insights into
the evolutionary history of species and genera. Previous studies showed that the CUB
is species and gene specific [25], and thus, analyzing the CUB can uncover significant
phylogenetic relationships between different species. This study aimed to investigate the
CUB of 53 CDS from eight newly sequenced plastomes of Sempervivum species to gain a
deeper understanding of their evolutionary history.

This study employed the ENC plot and neutrality graph to examine the influence of
natural selection and mutation pressure on the CUBs of the eight plastomes. The results
indicate that natural selection had a stronger influence than mutation pressure in shaping
the CUB, suggesting that the codon usage patterns in the plastomes were primarily driven
by selective pressures.

Furthermore, this study found that the optimal codon in the plastomes of two species,
S. tectorum and S. calcareum, were closely related to phylogenetic patterns. These two
species shared three optimal codons and they were clustered into a clade, while the other
six species only shared two optimal codons. This suggests that in the same genus, the
species that share the same optimal codons may have a closer evolutionary relationship.

This study contributes to the current understanding of the CUB and its relationship
to phylogeny. The findings support the idea that the CUB can serve as a valuable tool for
inferring evolutionary relationships between species. Moreover, this study highlights the
importance of investigating the CUB in different species and genes to gain a comprehensive
understanding of molecular evolution.

Our phylogenetic analysis results presented in this paper provide new insights into the
evolutionary relationships within the genus Sempervivum and the Crassulaceae family. The
resulting phylogeny revealed seven well-supported clades: Leucosedum, Acre, Aeonium,
Sempervivum, Telephium, Kalanchoe, and Crassula. The first five clades belonged to the
subfamily Sempervivoideae, while Kalanchoe and Crassula represented Kalanchoideae and
Crassuloideae, respectively. The fact that the basal Crassula clade was a sister to all other
members of the Crassulaceae family implies that it plays a key role in the evolution of the
family. Of particular note, our phylogeny found that the Kalanchoideae was closely related
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to the Sempervivoideae, suggesting these two groups share a relatively recent common
ancestry. This finding agrees with previous studies that proposed a close relationship
between these two subfamilies.

The Sempervivum clade, consisting of the sections Jovibarba and Sempervivum, forms
a monophyletic genus that is positioned as a sister group to the Aeonium, Leucosedum, and
Acre clades within the Sempervivoideae subfamily. Nevertheless, the status of the Jovibarba
section has remained uncertain for many years [6,10,50]. Both Jovibarba and Sempervivum
share similarities, such as the base chromosome number [58] and phytochemistry [11], but
differ in the flower petal count (6 vs. 8-16), presence of stolons (absent vs. present) [59],
and pollen grain size [12]. Some researchers advocated for merging the genus Jovibarba
into Sempervivum [6,50]. On other hand, molecular evidence, including ITS and IGS data,
show that Jovibarba and Sempervivum are two distinct genera [7]. In this study, the robust
monophyly of the Jovibarba section suggests that it represents a distinct evolutionary
lineage within this genus. Whether these two represent separate genera or not requires
further investigation with a broader sampling of species.

5. Conclusions

Our study provides eight newly assembled plastomes of the Sempervivum species.
The comparative genomics of the Sempervivum plastomes show that their genomes were
conserved in genome size (150,845-151,473 bp) and GC content (37.57-37.63%). Then,
14 HVRs (7 value: 0.01173-0.02702) were found in Sempervivum plastomes. And in the
IR junction pattern, the ycfl and rps19 genes were found to span both the SSC and IRa
regions. In the CUB analysis, both the ENC plots and neutrality plots suggest that the
CUB of the genus Sempervivum plastid genes was predominantly governed by natural
selection. Finally, our phylogenetic studies confirmed the monophyletic status of the
genus Sempervivum and further resolved the monophyletic clade into two distinct sections:
Jovibarba and Sempervivum.
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