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Abstract: The immunoglobulin LAMP/OBCAM/NTM (IgLON) family of cell adhesion molecules
comprises five members known for their involvement in establishing neural circuit connectivity,
fine-tuning, and maintenance. Mutations in IgLON genes result in alterations in these processes
and can lead to neuropsychiatric disorders. The two IgLON family members NEGR1 and OPCML
share common links with several of them, such as schizophrenia, autism, and major depressive
disorder. However, the onset and the underlying molecular mechanisms have remained largely
unresolved, hampering progress in developing therapies. NEGR1 and OPCML are evolutionarily
conserved in teleosts like the zebrafish (Danio rerio), which is excellently suited for disease modelling
and large-scale screening for disease-ameliorating compounds. To explore the potential applicability
of zebrafish for extending our knowledge on NEGR1- and OPCML-linked disorders and to develop
new therapeutic strategies, we investigated the spatio-temporal expression of the two genes during
early stages of development. negr1 and opcml are expressed maternally and subsequently in partially
distinct domains of conserved brain regions. Other areas of expression in zebrafish have not been
reported in mammals to date. Our results indicate that NEGR1 and OPCML may play roles in neural
circuit development and function at stages earlier than previously anticipated. A detailed functional
analysis of the two genes based on our findings could contribute to understanding the mechanistic
basis of related psychiatric disorders.
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1. Introduction

The immunoglobulin LAMP/OBCAM/NTM (IgLON) protein family comprises the
Opioid Binding Protein/cell Adhesion Molecule-Like (OPCML), previously named OB-
CAM or IgLON1 [1], Neurotrimin (NTM or IgLON2) [2], Limbic System-Associated Protein
(LSAMP or IgLON3) [3], Neural Growth Regulator 1 (NEGR1, KILON or IgLON4) [4],
and IgLON5 [5] (Table 1). All proteins are characterised by three Ig domains and a glyco-
sylphosphatidylinositol (GPI) anchor [6]. IgLON neural adhesion protein family members
form both homo- and heterodimers and have diverse roles in neural development, neurite
outgrowth, neuronal arborisation, axon fasciculation, and synapse formation, including
plasticity [4,7–10]. In addition, IgLON genes are tumour suppressors in a number of
non-neural organs and tissue types [6,11–15].

Among the five IgLON family members, both NEGR1 and OPCML have been linked
to major depressive disorder [16–20], schizophrenia [21–26], autism [27,28], anorexia ner-
vosa [29,30], and Alzheimer’s disease [31,32]. Other pathologies and disorders ranging
from dyslexia to Huntington’s disease and obesity were attributed to alterations in one
gene or the other [33]. These findings suggest a role of NEGR1 and OPCML in partially
overlapping brain areas. In vitro studies and loss-of-function investigations in mammalian
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animal systems have started to shed light on the mechanisms causing the human phe-
notypes [22,33–35]. However, much of the cellular and molecular basis underlying the
genes’ role in these disorders in vivo has remained elusive. Moreover, available studies
have focused on rather late stages of nervous system development and adulthood and
the onset of the neuropsychiatric disorders linked to NEGR1 and OPCML has not been
defined [4,10,36–38]. For instance, a detailed early gene expression analysis could reveal
insights into the time window in which the genes begin to exert their function. Such studies
can contribute to developing therapeutic options other than symptomatic treatments.

Table 1. Gene and protein similarity for negr1 and opcml in zebrafish and mammals, including
previous gene names.

Human (Homo sapiens)
NEGR1
(IgLON4, KILON, NTRA)

Mice (Mus musculus)
Negr1
(Ntra, neurotractin)

Rat (Rattus norvegicus)
Negr1

Zebrafish (Danio rerio)
negr1

64.1% similarity (bp sequence)
78.1% similarity (aa sequence)

61.7% similarity (bp sequence)
75.8% similarity (aa sequence)

63% similarity (bp sequence)
75.8% similarity (aa sequence)

Human (Homo sapiens)
OPCML
(IGLON1, OBCAM, OPCM)

Mice (Mus musculus)
Opcml
(Obcam)

Rat (Rattus norvegicus)
Opcml

Zebrafish (Danio rerio)
opcml

58.7% similarity (bp sequence)
78.3% similarity (aa sequence)

61.4% similarity (bp sequence)
77.8% similarity (aa sequence)

62.2% similarity (bp sequence)
77.8% similarity (aa sequence)

IgLON protein-encoding genes are evolutionarily conserved from arthropods to
teleosts and mammals, including humans [39] (Table 1). The zebrafish (Danio rerio) genome
contains all five family members, which, however, have not been studied extensively to
date. The zebrafish is an excellent model for investigating gene functions in vivo and
complements the methodologies used in other vertebrate model systems. Especially at
early stages of development, the combination of transgenesis for the fluorescent visuali-
sation of proteins and cells in normal and genetically manipulated transparent embryos
and time-lapse analysis facilitates exploring gene functions under physiological conditions.
Moreover, the abundance of ex utero developing small-size embryos allows for large-scale
screening of compounds to elucidate the molecular underpinnings of diseases and to iden-
tify new therapeutic targets as well as ameliorating substances [40,41]. Drug discovery is
further aided by the increasing number of robust behaviour test systems in particular for
neuropsychiatric disorders [42].

Herein, we report the spatio-temporal expression of negr1 and opcml during zebrafish
embryonic development. We discovered that transcripts of both genes are maternally
provided. Subsequently, negr1 and opcml are expressed in brain regions similar to mammals,
as well as in neural circuits not described in other vertebrates to date. Moreover, comparing
negr1 and opcml expression domains to each other at various stages of neural circuit
formation reveals partial overlaps. Our analysis can serve as a starting point for functional
in vivo studies to disentangle the involvement of IgLONs in common and distinct types of
neuropsychiatric disorders.

2. Materials and Methods
2.1. Animals

Adult AB/TL wild-type zebrafish were kept under standard conditions of 13/11 h
light/dark cycles at 28 ◦C [43]. Embryos and larvae were kept at 28 ◦C in a dark incubator.
To prevent pigmentation, 1-Phenyl-2-thiourea (PTU, 0.003% final concentration) was added
at 24 h post fertilisation (hpf). Zebrafish were used under the approval of the Animal
Welfare Body (OPBA, Organismo Per il Benessere Animale) of the University of Trento and
the Italian Ministero della Salute (Project Number 151/2019-PR).
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2.2. Whole-Mount In Situ Hybridisation

RNA from zebrafish embryos and larvae at different stages was extracted using
standard methods (TRIzol, Life Technology Corporation, Carlsbad, CA, USA) and reverse-
transcribed using a reverse transcriptase (Super Script II, Life Technology Corporation,
Carlsbad, CA, USA). The cDNA was used as a template for a PCR (initiation: 95 ◦C 5 min;
34 cycles of 95 ◦C 30 s, 60 ◦C 1 min, 72 ◦C 30 s, and finally 72 ◦C 5 min), using the following
primers: 5′-GACGAGGGCGTCTACACCTG-3′ and 5′-ACACACCCTCGCTTTCCCAA-3′

for negr1 and 5′-CATCCTCTTCACGGGCAATG-3′ and 5′-CTGAGGAGCGACAGGGTTAA-
3′ for opcml. The PCR products (1027 bp for negr1 and 811 bp for opcml) were purified
with Qiagen PCR purification kit and cloned into the pCRII-TOPO vector with the TOPO
cloning kit (Invitrogen). Plasmids were linearised and antisense and sense probes for in
situ hybridisation were transcribed using the T3/T7 Polymerase (Thermo Scientific, Life
Technology Corporation, Carlsbad, CA, USA) and digoxigenin/fluorescein RNA labelling
kits (Roche, Basel, Switzerland).

In situ hybridisation was performed according to standard procedures [44]. In short,
zebrafish embryos and larvae were fixed with 4% PFA at different stages of development
and stored in 100% Methanol at −20 ◦C for at least 24 h. Rehydration and permeabilisation
in ProteinaseK were followed by refixation in 4% PFA and digoxigenin-labelled RNA probe
incubation in a water bath at 65 ◦C overnight. After thorough washing, incubation with
anti-dig FAB fragments at 4 ◦C overnight was performed. On the last day, washing was
followed by a colorimetric reaction using BM Purple AP Substrate (Roche) according to
standard procedures [44]. Stained larvae were embedded in glycerol and imaged using a Zeiss
Axio Imager M2 microscope in brightfield mode using a 10 and 20× objective. For the sections,
larvae were embedded in 5% agarose and sectioned using a Leica VT 1200 Vibratome.

2.3. PCR

PCR on cDNA of 16-cell stage embryos was performed (initiation: 95 ◦C 5 min;
34 cycles of 95 ◦C 30 s, 60 ◦C 1 min, 72 ◦C 30 s, and finally 72 ◦C 5 min) using the following
primers: 5′-ATGGTGTGCAAGCCACTGGA-3′ and 5′-ACGGTTCAACCATGCTCCTT-3′

for negr1 and 5′-CATCCTCTTCACGGGCAATG-3′ and 5′-CTGAGGAGCGACAGGGTTAA-
3′ for opcml. The expected bands of 399 bp and 811 bp, respectively were purified with a
QIAex Purification Kit (Qiagen, Hong Kong, China) and sequenced.

3. Results
3.1. negr1 and opcml Transcripts Are Maternally Deposited in the Early Embryo

To assess the temporal and spatial expression of negr1 and opcml during embryonic
development, we performed whole-mount in situ hybridisation between the 16-cell stage
and 5 days post fertilisation (dpf). In the fertilised egg, many maternal gene transcripts
are present to facilitate the earliest events in development. Only after a process called
midblastula transition (MBT), which in zebrafish occurs at the 512-cell stage (ca. 2 h post
fertilisation (hpf)), do the embryos activate transcription [45].

Unexpectedly, given the genes’ reported functions at late stages of development and
adulthood in mammals, we revealed ubiquitously distributed maternal mRNA transcripts
of both genes already at the 16-cell stage (Figure 1A,B). To confirm this discovery, we
additionally performed PCR on retrotranscribed RNA extracted from embryos at the 16-cell
stage. Sequence analysis of the resulting RT-PCR products validated the presence of the
transcript at this stage of development for both negr1 and opcml (Figure 1E). At 12 h post
fertilisation (hpf), strong and specific expression was detected for negr1 in the midbrain
and the otic placodes (Figure 1C). opcml showed weak ubiquitous staining with increased
intensity in the caudal part of the embryo (Figure 1D).
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Figure 1. negr1 and opcml expression at early developmental stages. 16-cell stage zebrafish embryos
expressing negr1 (A) and opcml (B); sense probe stains are shown in the insets. (C,D) show lateral
views of 12 hpf old embryos. negr1 is expressed in the midbrain and the otic placodes (C), while opcml
exhibits ubiquitous expression (D). RT-PCR corroborates the presence of negr1 and opcml transcripts
at the 16-cell stage (E). MB, midbrain; OP, otic placodes.

3.2. Similarities and Differences in negr1 and opcml Expression at 24 hpf and 48 hpf

At 24 hpf, both negr1 and opcml exhibited rather weak ubiquitous expression in the
central nervous system with several exceptions of distinct expression (Figure 2A–D). Both
gene transcripts are present in the olfactory placodes and the pineal gland. Here, the
expression appears complementary. negr1 is expressed in the centrally located cells of
the pineal gland, while opcml is present in the outer pineal cells (Figure 2A,B insets).
Additionally, the otic vesicles exhibited expression of both negr1 and opcml (Figure 2C,D
insets). Unlike opcml, negr1 is also expressed in the most caudal part of the spinal cord
(Figure 2C upper inset). By 48 hpf, both negr1 and opcml remain expressed in the olfactory
bulb and in the hindbrain (Figure 2E–H). In the pineal, opcml continues to be expressed,
although the expression appears to be weaker in comparison to earlier stages (Figure 2E–H).
Conversely, negr1 starts to be expressed in the ventral telencephalon and the pre-thalamus
at this stage (Figure 2E,G and inset in Figure 2E).

3.3. negr1 and opcml Expression in the Brain at 96 hpf and 120 hpf

negr1 and opcml continued to be expressed in the olfactory bulb at 4 and 5 dpf (Figure 3).
In addition, both genes started to be expressed in the pallium area of the telencephalon.
Moreover, we observed transient negr1 and opcml expression in a few cells of the cerebellum,
which likely correspond to a subpopulation of Purkinje cells at 4 dpf (Figure 3A,B inset).
At 5 dpf, both genes were expressed bilaterally and symmetrically in habenular neurons
(Figure 3E,F), while only negr1 started to be expressed again in cells of the pineal gland
(Figure 3E–H). Additionally, negr1 and opcml were both expressed in the inner nuclear layer
of the retina (Figure 3G,H).
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Figure 2. Expression patterns of negr1 and opcml at 24 hpf and 48 hpf. Dorsal (A,B,E,F) and lateral
(C,D,G,H) views of the head region of zebrafish embryos at stages indicated. Insets show the pineal
gland (A,B), the otic vesicle (C,D), the spinal cord (upper inset in C), and a frontal view (E). HB,
hindbrain; OB, olfactory bulb; OP, olfactory placode; OV, otic vesicle; PTh, pre-thalamus; P, pineal
gland; SC, spinal cord; V, ventral telencephalon.
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(C,D) views of zebrafish larvae focussed on the head at stages indicated. Transversal sections were
carried out at the level of the pineal organ (G,H). Ce, cerebellum (inset in (A,B)); Hb, habenula; INL,
inner nuclear layer; OB, olfactory bulb; Pa, pallium; P, pineal gland; OT, optic tectum.
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4. Discussion

Our present analysis of the two IgLON family members negr1 and opcml reveals
new insights into their spatio-temporal expression dynamics in the developing vertebrate
embryo. Initially, both genes are provided maternally in zebrafish. The importance of
maternal gene function in neural network formation is well established and evolutionarily
conserved in vertebrates and invertebrates [46–48]. In mice and rats, NEGR1 and OPCML
are needed mainly for neuronal outgrowth, dendritic arborisation, and synapse formation,
and it may be interesting to investigate their potential involvement in earlier developmental
processes. Furthermore, a maternal function of these genes might account for differences in
the severity or onset of NEGR1- or OPCML-linked psychiatric disorders. At subsequent
stages of development, both genes are expressed in discrete, partially overlapping domains
of the zebrafish brain. Available gene expression data in mammals focused on late devel-
opmental stages and adult tissues [36,37,49]. Nevertheless, our data suggest that various
expression domains appear conserved between zebrafish and mammals. Notably, some of
these domains have been linked to neuropsychiatric disorders which both genes have been
implicated in, such as major depressive disorder (MDD), schizophrenia [27,28], and autism
spectrum disorder (ASD) [27,28,33]. For instance, negr1 and opcml are strongly expressed
in the zebrafish pallium, which has been proposed to harbour structures homologous to
the hippocampus and amygdala of mammals [50] involved in ASD and schizophrenia [51].
NEGR1−/− mice exhibit a reduced volume of brain regions, including the hippocampus.
Specifically, the parvalbumin-positive interneurons were significantly reduced [34,38]. In
OPCML-deficient mice, the hippocampal area develops largely normally, but alterations
in hippocampus-dependent spatial learning and memory were observed [52]. In primary
hippocampal neurons, the absence of OPCML caused increased numbers of filopodia-
like spines and fewer mature spines and neurons, which might explain the behavioural
phenotypes [52].

Moreover, we found negr1 and opcml expression in restricted subpopulations of cells
in the zebrafish cerebellum, which by position correspond to the Purkinje cells in line with
the expression profile found in rodents [53]. The function of these GABAergic projection
neurons has also been linked to ASD [54,55]. negr1 and opcml expression in zebrafish is also
evident in the dorsal diencephalon. Here, the genes are found both in the medially located
pineal gland and in the left and right adjacent habenulae. Interestingly, the pineal gland
exhibits complementary expression of the two genes: negr1-expressing cells are centrally
located while opcml-positive cells are located mainly in the outer layer of the pineal gland.
These two layers have distinct functions, as the outer layer cells are typically active in
periods of darkness [56]. In addition, the regulation of negr1 expression seems to fluctuate
over time: the expression is stronger early in development, decreases subsequently, and
increases again at 5 dpf. In contrast, opcml expression in the pineal gland is strong at 24 hpf
and decreases in the course of development. We did not observe any transcripts in zebrafish
parapineal cells, which are known to influence the neurogenesis of the left habenula, causing
the left–right asymmetric formation of neuronal subpopulations [57,58]. negr1 and opcml
expression in the zebrafish habenulae is symmetric and begins at developmental stages
after habenular neuron differentiation [59–61]. The habenular neurotransmitter system has
been connected to autism and schizophrenia [42,62]. It has also become a major focus for
the treatment of MDD. Indeed, patients not responding to conventional pharmacological
treatments often benefit from deep brain stimulation to transiently inactivate the lateral
habenulae [63,64]. negr1 and opcml expression in the mammalian pineal gland or the
habenulae has not been reported to date. It may be revealing to re-analyse the genes in
greater detail and to also include earlier stages of brain development. The habenulae relay
sensory information such as visual and olfactory input to mid- and hindbrain areas [65–68].
We found that negr1 and opcml are strongly expressed in the zebrafish olfactory bulb
throughout development. This resembles gene expression in the mammalian olfactory
system [36,37,49]. Olfaction has recently become a focus in the field of ASD research as it



Genes 2024, 15, 363 8 of 11

is involved in social behaviour [69]. However, a link between smell and neuropsychiatric
disorders in mice mutant for NEGR1 or OPCML remains to be explored.

Our detailed expression study extends and refines currently available expression data
on zebrafish negr1 and opcml [44]. It should encourage future research to, for instance,
analyse mammalian NEGR1 and OPCML expression and function in brain areas and at
developmental time points other than those described to date. A particular area of interest
may be to investigate a maternal contribution of the two genes and their expression and
function in the habenular neural circuit. These studies could reveal new insights into
the onset of neuropsychiatric disorders, their severity and the brain area(s) affected. A
zebrafish knock-out for negr1, which did not result in overt morphological alterations, has
been reported in the framework of a large schizophrenia study [70]. In the same study,
an opcml mutant was generated, which, however, was not further described. For both
gene knock-outs, no functional or behavioural investigations are available. Our detailed
expression analysis should provide an excellent starting point for such in vivo studies,
for instance to determine the precise temporal role of the genes during neural network
formation and function. This in turn provides a platform for expression profiling to unravel
the molecular network downstream NEGR1 and OPCML for the identification of suitable
therapeutic targets. Furthermore, it aids screening for disorder-ameliorating compounds,
which subsequently can be tested in mammalian models. Combining the advantages of
available resources to gain deeper insights into the mechanisms underlying NEGR1 and
OPCML function in health and disease is a pivotal prerequisite for developing therapies.
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