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Abstract: Dendrobium catenatum (Dendrobium officinale) is a valuable genuine herb. The source of this
species is difficult to be identified by traditional methods including morphology, spectroscopy, and
chromatography. We used the restriction site-associated DNA sequencing (RAD-seq) approach to
perform the high-throughput sequencing of 24 D. catenatum provenances. In this study, 371.18 Gb
clean data were obtained, and 655,057 high-quality SNPs were selected after their filtration. We
used phylogenetic tree, genetic structure, and principal component analyses to examine the genetic
diversities and genetic relationships of the 109 accessions. We found that D. catenatum could be
divided into two groups, and each group was closely related to the distribution of the sampling sites.
At the population level, the average nucleotide diversity (π) of the D. catenatum population mutation
parameters was 0.1584 and the expected heterozygosity (HE) was 0.1575. The GXLPTP07 accessions
showed the highest genetic diversity in terms of the private allele number, observed heterozygosity,
and nucleotide diversity. The Mantel test showed a significant positive correlation between the
genetic and geographic distances among the overall distribution. A genetic information database
of D. catenatum was established, which confirmed that RAD-seq technology has the potential to be
applied in the identification of medicinal Dendrobium of different origins.

Keywords: Dendrobium catenatum; genetic diversity; provenance identification; genuine regional
drugs; RAD-seq; SNP

1. Introduction

The genus Dendrobium Swartz (1799) is one of the largest genera in Orchidaceae [1],
and it consists of approximately 1450 species [2]. Dendrobium is highly valued for its
medicinal, ornamental, scientific and economics uses, but its medicinal value has attracted
the most attention. There are nearly 80 species of Dendrobium in China. Many Dendrobium
species have been extensively used in Traditional Chinese Medicine (TCM), including
D. catenatum Lindl (D. officinale Kimura and Migo) and D. huoshanense C.Z. Tang and S.J.
Cheng [3,4]. Many studies have shown that Dendrobium polysaccharide has antitumor
effects [5], immune enhancement [6,7], antioxidation [8,9], anti-inflammatory [10,11], and
hypoglycemic effects [12,13]. There is also research showing that Dendrobium can improve
learning and memory [14]. The medicinal Dendrobium industry has developed rapidly in
recent years, and some growers have carried out cross-breeding for medicinal Dendrobium
in pursuit of increasing their yield and profits, which has caused confusion in the market
regarding the Dendrobium varieties. There are great differences in the pharmaceutical
components between Dendrobium species [15], which affect the efficacy or curative effect
of them. A large number of medicinal Dendrobium products on the market have lost their
active ingredients, and variable quality and effective identification methods are lacking.
Traditional morphological identification, microscopic identification, and the physical and
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chemical identification methods can only be used for the interspecies identification of
medicinal Dendrobium [16–18]. Obviously, it is difficult for conventional techniques to
identify the provenance of medicinal Dendrobium as they are similar in their morphological
and anatomical characteristics and even in their chemical components. One of the most
important factors for the modernization of Chinese medicines is the quality of the traditional
Chinese medicines, and the key support for it is the study of its genuineness [19]. A variety
of genuine medicinal materials had been confirmed that the effective components of
different producing areas are very different [20–22]. D. catenatum is a geo-authentic Chinese
medicinal material, and so its identification of provenance is very important.

For identification purposes, researchers have established a full-sequence database
that is based on the rDNA ITS region of the Dendrobium variety “Fengdou” [23]. The
phylogenetic tree constructed from matK and rbcL data could distinguish five types of
medicinal Dendrobium [24]. For the purpose of the swift and precise identification of thirteen
wild and cultivated Dendrobium species belonging to two sections Formosae and Chrysotoxae,
the researchers designed the rDNA ITS region sequence analysis [25]. In recent years, the
molecular identification of Dendrobium plants has also been studied. Inter-simple sequence
repeats (ISSR) molecular fingerprinting markers had been employed to authenticate eight
populations of D. officinale using 10 primers [26]. Two genuine population had been
authenticated based on the SNPs of the rDNA ITS region [27]. However, microsatellite
studies have typically used a low number of markers (<25), which increases the danger of
underestimating the genetic structure due to a lack of polymorphic markers [28]. When one
is using a low number of genetic markers, larger sample sizes are required to accurately
estimate the allele frequencies and diversity [29], which might be difficult to achieve,
especially for Dendrobium as it is an endangered species that has been severely damaged.
The SNPs produce more precise estimates of the population-level diversity, and they use a
higher power to identify the groups in clusters than the methods of using microsatellites
do [30]. To evaluate and quantify the potential marker-specific biases, researchers have
compared the microsatellite variation with genome-wide SNPs. They concluded that a few
thousand random SNPs are sufficient to accurately estimate the genome-wide diversity
and to distinguish between the populations with different levels of genetic variation [31].

Currently, with the development of high-throughput sequencing technology, SNPs are
increasingly used in species identification and population genetic research [32]. Compared
with traditional molecular markers, the SNPs that are obtained by high-throughput se-
quencing can provide a large amount of accurate and reliable information for a genetic and
evolutionary analysis [33]. Reduced representation genome sequencing has been widely
used in the field of population research in areas such as population genetic analysis [34],
marker development [35], genetic map construction and whole-genome association analy-
sis [36,37]. These methods, which consist of restriction site-associated DNA sequencing
(RAD-seq), have been successfully applied to the study of the population structure, genetic
distance, and genetic diversity of many species [38–41]. Currently, high-quality D. catena-
tum genome data have been obtained and published [42]. Therefore, the RAD-seq of this
species of medicinal Dendrobium can provide a large number of reliable SNPs to distinguish
the provenances of them.

To protect the wild population of D. catenatum and meet the increasing market demand,
the following protective measures are recommended: (a) in situ conservation; (b) building
an ex situ conservation base; (c) establishing a provenance database to strictly control the
use of wild populations while ensuring the reliability and detectability of their provenance.
For the creation of management and conservation strategies, information on the genetic
diversity and population structure are crucial. To better understand the genetic diversity,
genetic organization, and divergence of the wild populations of D. catenatum, we produced
and analyzed the SNPs for these populations using RAD-seq. Accurately identifying
the provenances of D. catenatum based on RAD-seq will help growers to choose high-
quality provenances for artificial cultivation and propagation. This research not only
has important significance for the evolution, molecular breeding and biogeography of
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Dendrobium, but it also provides important enlightenment for the identification methods of
other medicinal plants.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

The plant materials that were sequenced in this study were collected from the National
Orchid Conservation & Research Center of Shenzhen, and the specimens were deposited in
the National Orchid Conservation Center herbarium (NOCC) (Table 1). All of the plant
materials were collected with the permission of this institution, and all of the samples
were identified by Prof. Zhong-Jian Liu. We complied with the IUCN Policy Statement
on Research Involving Species at Risk of Extinction and the Convention on the Trade in
Endangered Species of Wild Fauna. Detailed information about localities and samples are
given in Table 1 and Figure 1. Specifically, we collected 109 samples were from 24 wild
populations of D. catenatum, and 10 samples were from 2 wild populations of D. huoshanense.
We selected 3–5 individuals from each population and sampled their leaves. The leaves
were dried in sealed plastic bags that were filled with silica gel until the DNA extraction
was performed.

Table 1. In this study, the population locations and voucher information of D. catenatum and D. huoshanense.

Sample Name Location Specimen Code Population Code Individual Number

D. catenatum Guangze, Fujian Province Z.J. Liu 10572 FJGZTP01 5
Liancheng, Fujian Province Z.J. Liu 10583 FJLCTP02 4
Pingjiang, Hunan Province Z.J. Liu 10580 HNPJTP04 5

Yiyang, Hunan Province Z.J. Liu 10582 HNYYTP05 5
Yuanling, Hunan Province Z.J. Liu 10578 HNYLTP06 5
Xinning, Hunan Province Z.J. Liu 9506 HNXNTP36 3
Lipu, Guangxi Province Z.J. Liu 10574 GXLPTP07 5

Gongcheng, Guangxi Province Z.J. Liu 9497 GXGCTP09 4
Xing’an, Guangxi Province Z.J. Liu 9518 GXXATP10 5

Lishui, Zhengjiang Province Z.J. Liu 9520 ZJLSTP12 5
Wuyi, Zhengjiang Province Z.J. Liu 9511 ZJWYTP32 5

Quzhou, Zhengjiang Province Z.J. Liu 9510 ZJQZTP13 5
Yanshan, Jiangxi Province Z.J. Liu 10576 JXQSTP14 5
Xiushui, Jiangxi Province Z.J. Liu 10573 JXXSTP15 4

Huichang, Jiangxi Province Z.J. Liu 10581 JXHCTP16 5
Xingguo, Jiangxi Province Z.J. Liu 9517 JXXGTP17 4

Nanxiong, Guangdong Province Z.J. Liu 10584 GDNXTP19 5
Heyuan, Guangdong Province Z.J. Liu 10585 GDHYTP20 4

Shaoguan, Guangdong Province Z.J. Liu 9504 GDSGTP22 5
Qujing, Yunnan Province Z.J. Liu 10579 YNQJTP24 4

Wangzishan, Yunnan Province Z.J. Liu 7462 WZSTP34 4
Xianning, Hubei Province Z.J. Liu 9514 HBXNTP25 5
Sandu, Guizhou Province Z.J. Liu 11147 GZSDTP29 4

Dushan, Guizhou Province Z.J. Liu 11148 GZDSTP30 4
D. huoshanense Huangshan, Anhui Province Z.J. Liu 9508 AHHSHS26 5

Longhushan, Jiangxi Province Z.J. Liu 9500 JXLHSHS28 5

The total genomic DNA was extracted using a Plant Genomic DNA kit (Tiangen,
Beijing, China) according to the manufacturer’s protocol. For all of the samples, the DNA
was quantified using a Qubit spectrophotometer (Invitrogen, Carlsbad, CA, USA).

2.2. RAD Library Development and Sequencing

The RAD sequencing libraries were generated using the VAHTS Universal DNA Li-
brary Prep Kit for Illumina (Vazyme Biotech Co., Ltd., Nanjing, China, ND604) following
the manufacturer’s recommendations. In brief, the RAD-seq reduced representation li-
braries were prepared following the digestion procedure using the Hae III (New England
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Biolabs, Ipswich, MA, USA) enzyme, which was followed by a barcode ligation, a DNA
purification and a selective DNA amplification and a size selection. Pair-end sequencing
with a read length of 150 bp was performed to produce approximately 3 Gb of raw data for
each sample using the Illumina HiSeq 4000 platform (Illumina, San Diego, CA, USA) at
Novogene (Beijing, China).
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2.3. SNP Calling

The raw Illumina paired-end reads were filtered using a personally designed program
“filter-G 30.0-adapter 1-poly_A 1-Q 20,0.5-mean 25-insert $ insertSize-Q20 90” to discard the
reads with adapter sequences, poly_A tails, a poor base quality (Q < 20), and those that were
less than 25 bp in length. The cleaned reads were aligned to the D. catenatum genome (NCBI
accession number NC_037361.1) using BWA (version 0.7.12) [43] default parameters, and
they were sorted using Samtools (version 1.9), and following this, they were de-duplicated
using the Picard tool [44]. In order to reduce the impact of mapping bias, we further excluded
the sites with extraordinarily high or extremely low coverage. The RealignerTargetCreator
and IndelRealigner modules from GATK (version 3.8) [45] were used to improve the local
alignments around the indels. The resulting alignment files were subjected to genotyping
using the GATK UnifiedGenotyper at each reference locus. Finally, hard filtering was applied
to the raw variant set using GATK recommended parameters, “QD < 2.0 || MQ < 40.0 ||
FS > 60.0 || SOR > 3.0 || MQRankSum < −12.5 || ReadPosRankSum < −8.0”. We further
filtered the dataset using VCFtools (version 0.1.13) [46] to ensure that we had high-quality
SNPs, removing the SNPs with a missing rate > 20% and minor allele frequencies < 0.02.

2.4. Phylogenetic Tree Construction

The maximum likelihood (ML) analysis was performed using IQtree (version 2.0.3) [47]
with 1000 bootstrap [48] replicates, and the settings were as described. The results were
graphically visualized and edited in FigTree (version 1.4.2).

2.5. Population Structure Analyses

Genetic structure was investigated by a PCA. A PCA was conducted using GATK,
and the program Admixture [49] was used to infer the genotype structure. A population
number (K) ranging from 2 to 8 was assumed, and the CV scores were used to determine
the best-fit K value.
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2.6. Genetic Diversity and Differentiation

A variety of genetic diversity indices were calculated using the Stacks’ populations
program, including the private allele number (AP), nucleotide diversity (π), heterozygosity
(HO and HE), and inbreeding coefficient (FIS) [50]. Sliding windows that were 10 kb in
size were used to calculate Tajima’s D by VCFtools (version 0.1.13) [46]. To analyze the
pairwise population differentiation between the wild germplasms, the FST values were also
computed using the PopGenome package in R [51]. The pairwise geographic distances
from longitude and latitude were identified using the R package geosphere. We used the
Mantel test for the associations between the FST and geographic distance. PopLDdecay
(version 3.31) was used to calculate the linkage disequilibrium between the SNP pairs
within a 500 kb window [52]. The linkage disequilibrium decay was measured the distance
at which the Pearson’s correlation efficient (r2) dropped to half of the maximum.

3. Results
3.1. Sequence Data Quality

For the 109 sequenced samples, 403.61 Gb of raw data with an average of 3.70 Gb
per individual were generated, ranging from 1.74 to 5.29 Gb. After filtering the sequence
data, a total of 371.18 Gb of clean data (1.61 Gb to 4.89 Gb for each individual, with
an average of 3.37 Gb) was maintained, presenting an average effective rate of 91.97%
(Supplementary Figure S1). In short, the sequencing data were of high quality and could
be used for a subsequent analysis. Finally, 655,057 high-quality SNPs were selected after
the filtration was performed. Nearly half of the SNPs in the population level exhibited base
transitions, and the total transition-to-transversion (ts/tv) ratio was 1.36.

3.2. Genetic Diversity

When we were analyzing the variant positions for all of the polymorphic loci at the
germplasm level, the observed heterozygosity (HO), expected heterozygosity (HE), nucleotide
diversity (π) and Wright’s F-statistic (FIS) of the wild D. catenatum were 0.0992, 0.1575, 0.1584,
and 0.3836, respectively (Table 1). The number of private alleles (AP) in the populations ranged
from 1934 (FJLCTP02) to 9655 (GZDSTP30). The observed heterozygosity at the population
level ranged from 0.0724 (GXXATP10) to 0.1516 (GZDSTP30); the expected heterozygosity for
each population ranged from 0.0833 (FJLCTP02) to 0.1312 (GXLPTP07); the nucleotide diver-
sity for each population ranged from 0.0961 (GDSGTP22) to 0.1484 (GXLPTP07); the inbreeding
coefficient in each population ranged from −0.0434 (GZDSTP30) to 0.1135 (GXLPTP07).

Tajima’s D value was a locus-based indicator of the intraspecific polymorphism.
Tajima’s D values were positive and statistically different from zero for all of the pop-
ulations (Table 2). It is therefore possible to reject the null hypothesis of neutral evolution.
In addition, many intermediate-frequency alleles were found in the populations, which
may be a consequence of the bottleneck effects, the population structures, or the selection
for balancing.

3.3. Phylogenetic Tree

In the maximum likelihood (ML) phylogenetic tree that was derived from our finalized
RAD-seq matrix, D. huoshanense was the outgroup (Figure 2). There were high bootstrap
values on most of the branches of the phylogenetic tree, which indicated a strong reliability
of the tree. All of the samples were separated into two clades based on the ML tree (Group I
and Group II). Group I mainly contained D. catenatum from the Yungui Plateau and the
western part of the Nanling Mountains, while Group II mainly contained populations
from the Yandangshan Mountains, Wuyishan Mountains, and the eastern part of the
Nanling Mountains.
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Table 2. The statistical values of genetic diversity within the populations from variants and all of the
positions data. (AP, private allele number; HO, observed heterozygosity; HE, expected heterozygosity;
π, nucleotide diversity; FIS, inbreeding coefficient of an individual relative to the subpopulation.)

Taxon Population AP HO HE π FIS Tajima’s D

D. catenatum 0.0992 0.1575 0.1584 0.3836
FJGZTP01 3254 0.0786 0.0969 0.1165 0.0725 0.6534
FJLCTP02 1934 0.0729 0.0833 0.099 0.0496 0.3964
HNPJTP04 2871 0.0895 0.1131 0.1297 0.0824 0.4221
HNYYTP05 4263 0.0818 0.1082 0.1223 0.084 0.4411
HNYLTP06 4689 0.0976 0.1196 0.1371 0.081 0.5556
GXLPTP07 5512 0.0952 0.1312 0.1484 0.1135 0.4684
GXGCTP09 2679 0.0965 0.1041 0.1355 0.066 0.7907
GXXATP10 2940 0.0724 0.0891 0.1074 0.0628 0.8556
ZJLSTP12 2355 0.0994 0.1182 0.1341 0.0737 0.3298
ZJQZTP13 3084 0.1123 0.1105 0.1245 0.0256 0.3962
JXQSTP14 3844 0.123 0.1115 0.1243 0.0053 0.3384
JXXSTP15 2552 0.0783 0.107 0.1257 0.0922 0.3767
JXHCTP16 3417 0.0778 0.1037 0.1188 0.0866 0.3404
JXXGTP17 4215 0.0919 0.096 0.1134 0.039 0.5287

GDNXTP19 3515 0.0848 0.1022 0.1154 0.0659 0.3163
GDHYTP20 5221 0.1019 0.1155 0.133 0.0638 0.2443
GDSGTP22 3845 0.1078 0.0862 0.0961 −0.0208 0.4748
YNQJTP24 3933 0.1144 0.1153 0.1343 0.039 0.4327
HBXNTP25 2757 0.0979 0.1057 0.1185 0.0426 0.5005
GZSDTP29 4461 0.0975 0.1147 0.1326 0.0696 0.4221
GZDSTP30 9655 0.1516 0.1121 0.1288 −0.0434 0.4646
ZJWYTP32 2932 0.0885 0.106 0.1191 0.0664 0.2539
WZSTP34 4820 0.125 0.1165 0.1342 0.0208 0.4762

HNXNTP36 2967 0.1034 0.0994 0.1218 0.0332 0.4315

In the Group I, the YNQJTP24 accessions were the sister group to the WZSTP34 ac-
cessions, which both had 100% bootstrap values. The samples from Guizhou Dushan
(GZDSTP30), Guangxi Xing’an (GXXATP10) and Hunan Yiyang (HNYYTP06) are clus-
tered into a branch. The samples from the provenances GZSDTP29, GXGCTP09, and
GXLCTP07 were divided into two branches. In the Group II, for most of the provenances
of D. catenatum, the individuals of the same provenance are clustered together with high
support values, with the exception of the individuals of three populations from Zhejiang
Wuyi (ZJWYTP32), Zhejiang Lishui (ZJLSTP12), and Zhejiang Quzhou (ZJQZTP13). The
samples from Zhejiang were gathered into a large branch, and the sister branch was com-
posed of FJGZTP01, FJLCTP02, and JXQSTP14. The populations from Hubei Xinning
(HBXNTP25), Jiangxi Xiushui (JXXSTP15), Hunan Pingjiang (HNPJTP04), and Hunan
Yiyang (HNYYTP05) are clustered into a large branch, and the other three provenances
being independently clustered into a small branch, with the exception of JXXSTP15. The
samples from Guangdong Shaoguan (GDXGTP22) and Guangdong Heyuan (GDHYTP20)
are clustered into a branch. At the same time, the distribution of the D. catenatum samples
in the phylogenetic tree are closely related to their geographical locations. The base of the
phylogenetic tree is represented by the population that can be located in the west.

The geographical distribution of the Dendrobium samples from the west to the east is
roughly consistent with their distribution from the base to the top of the phylogenetic tree.
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Figure 2. ML phylogenetic tree of the D. catenatum accessions and model-based clustering with K
from 2. Numbers near the nodes are bootstrap percentages.

3.4. Population Structure

Based on the ML tree (Figure 2), we calculated the population structure with K values
that range from two to eight (Figure 3). In the clustering analysis using the Admixture
software, K = 2 was the most likely genetic cluster number, because its cross-validation
error (CV) was the lowest. However, the CV values were very close when K = 3 and K = 4.
According to the principal component analysis (Figure 4), when the K value equaled two,
109 materials were not clearly assigned to the two groups, which was inconsistent with the
results of the phylogenetic tree analysis. Due to the differences in the population structure
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and phylogenetic tree results, it was necessary to analyze the population structure under
different K values.
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Figure 3. Genetic structure of cultivated 109 D. catenatum for K = 2–8 based on the Admixture software
(K = 2 with cross validation error is 0.18580, while K = 3 with ross validation error is 0.19141).
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When K = 2, the Group I and Group II accessions could be separated. When K = 3, the
Yunnan populations in Group I were distinguished, which was inconsistent with K = 4. In
conjunction with the phylogenetic tree and structure analysis, these results clearly classified
D. catenatum into two groups.

3.5. Genetic Relationships

A principal component analysis (PCA) was performed with 109 individuals. Accord-
ing to the first component, the accessions were divided into two groups: Group I and
Group II. Overall, GXXATP10 was clustered separately, and other D. catenatum accessions
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could be divided into two groups. Among them, the distribution of Group II was more
concentrated (Figure 4).

The linkage disequilibrium (LD) decay, which was measured by the physical distance,
at which the pairwise correlation coefficient dropped to half of its maximum value, occurred
at 48.2 kb in Group I (r2 = 0.277) and 13.6 kb in Group II (r2 = 0.242) (Figure 5), respectively.
Group II had the higher linkage disequilibrium decay rate.
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Figure 5. Linkage disequilibrium decay patterns of different D. catenatum group.

3.6. Genetic Differentiation

The pairwise FST values between the wild populations of D. catenatum varied from
0.0533 (HNYLTP06 with GXGCTP09) to 0.4755 (FJLCTP02 with GZDSTP30), with 110 of
the 276 population pairs having FST values that are greater than 0.25 (Figure 6). It became
clear that, GXXATP10 had the highest genetic differentiation from the other 24 populations
which was consistent with the PCA results (Figure 4). GXLPTP07 was in the western part
of the Nanling Mountains, and it obtained the lowest mean pairwise FST value, 0.1504;
low values represent the genetic flow between the populations and show a greater genetic
difference between the accessions within a population than it does between the populations.
The pairwise genetic distance between the locations FST was highly correlated with the
geographic distance (Figure 7); the level of significance was p < 0.05.
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Figure 6. Genetic distance (FST) for D. catenatum. The samples from Group I were in red font, and the
samples from Group II were in blue font.
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4. Discussion

Genomic data provide a novel perspective for studying the genetic diversity and
method of identification of medicinal Dendrobium species. In the past, scholars have been
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authenticated eight wild populations of D. officinale by ISSR [26]. Because of the low number
of microsatellite markers, marker ascertainment bias, and there being a high variance in the
microsatellite-derived estimates, the genetic differentiation among the populations (FST)
estimates of microsatellites were significantly larger than those from the SNPs [31]. The
simple PCR methods are simple and quite effective and cheap. However, their weakness
is obvious at the same time. Firstly, these data are not reproducible enough, and it is
difficult to share and reference them, and they can only be analyzed and used in the
same experimental project. Secondly, these markers cannot be mapped to the genome for
further analysis and applications. The data that are obtained by RAD not only have the
advantages of being convenient and highly reproducible, but also, they can be accurately
located in the genome position for more applications. For example, the candidate genes
with known functions can be identified by annotating the outlier loci through the selection
elimination analysis [53,54]. At the same time, the SNPs that are obtained by RAD-seq can
provide more accurate and reliable information for a genetic and evolutionary analysis.
Researchers utilized anadromous pike (Esox lucius) to assess the microsatellite and RAD-seq
results of a study of population differentiation and genetic structure, and they discovered
that the full RAD-seq dataset can provide the most accurate detection of the finer-scaled
genetic structuring [55]. The nuclear microsatellites and the RAD-seq data for a threatened
freshwater fish species were compared by other researchers. The results showed that RAD-
seq more clearly and consistently identified the hierarchical phylogenetic structure [56].

In this research, a whole-genome restriction enzyme digestion of 109 accessions
from 24 provenances was performed to obtain accurate variation information. Except
for GXGCTP09, the clean data size of each sample in the other 23 populations was at least
2 times the D. catenatum genome size (1.11 Gb), and some individual populations reached
4 times this (Supplementary Figure S1). The average sequencing volume of each sample
was 3.37 Gb. The amount of sequencing data was sufficient to meet the requirements of the
subsequent analysis, thus ensuring the accuracy of population genetic analysis. In terms
of the result of the RAD-seq, we detected 655,057 SNPs, which exceeded the number of
genetic variations that were detected by amplified fragment length polymorphism (AFLP)
and the random amplified polymorphic DNA (RAPD) markers [57,58]. These data not only
can be used in this experimental analysis, but they are also convenient for researchers for
other studies.

The number of transitions was predicted to be much larger than the number of
transversions due to the biased mutational processes within the plant genomes. This nu-
cleotide mutation pattern is also observed in other plants, such as peanuts [59], maize [60],
Amorphophallus paeoniifolius [39], Arabidopsis, and apricots [61,62]. Consistent with this
prediction, the ts/tv ratio of the D. catenatum populations was 1.36, indicating that there
was a strong transition bias. This value was higher than the result (1.34) that was reported
by Zhang et al. [42], and lower than that for D. huoshanense (1.47) [63].

Based on the ML tree, the principal component analysis, the genetic structure analysis,
and the population differentiation analysis divided the 24 wild populations of D. catenatum
into two groups. The two groups where the provenances of the wild D. catenatum are
arranged from the west to the east are very consistent with the geographical distribution
of the samples. In another study, Ding et al. used RAPD to study eight wild D. catenatum
populations [58]. Among them, Shaowu and Shunchang in Fujian were clustered into a small
branch, which was the sister branch of Jiangxi Nanfeng, and Tian’e in Guangxi and Guangnan
in Yunnan were clustered into a small group. Our results in this study are consistent with
the previous findings. In a systematic geographical study of D. catenatum and four related
taxa, the regional evolution of D. catenatum was divided into six populations [64]. They
were the South Yungui Plateau, the East Yungui Plateau, Nanling Mountain, Wuyishan
Mountain, Dabieshan Mountain, and Yandang Mountain. In this study, Group I contained
the Yungui Plateau and the western part of the Nanling Mountains, while Group II contained
the Yandangshan Mountains, Wuyishan Mountains, and the eastern part of the Nanling
Mountains. This is largely consistent with the division that had been made previously.
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Genetic diversity forms during the evolution of a species, and it often plays a key role
in the gradual evolution and long-term survival of the species in a changeable environment.
The average nucleotide diversity (π) of the D. catenatum population mutation parameters
was 0.1584 at the population level (Table 2). D. catenatum had a smaller mean nucleotide
variation than other crops did such as A. paeoniifolius (π = 0.3592) [39]. At the population
level, the expected heterozygosity (HE) was 0.1575, which was very close to the previous
results (0.1477) [57]. Overall, the observed heterozygosity and the expected heterozygosity
were relatively low.

Among all of the wild populations, GXLPTP07 had the most significant private allele
number (AP) of 5221, and this indicated the presence of substantial genetic variation, which
could guide genetic improvement in the future. The genetic diversity indices (HE, AP,
and π) of the GXLPTP07 accessions were higher than those of the accessions in the other
ecological groups (Table 2). We speculate that the GXLPTP07 was closer to the origin center
of Group I in terms of genetic distance. In the principal component analysis, GXXATP10
was clustered separately. Combined with the analysis of genetic diversity, GXXATP10
had the highest Tajima’s D values, indicating that the population underwent a balanced
selection or a sudden contraction. The results of the HO, HE, and inbreeding coefficient
(FIS) show that HO < HE, FIS > 0, which may have resulted from the heterozygote loss
and inbreeding, and the selection pressure is high (Figure 3, Table 2). Based on PC1, we
speculate that GXXATP10 was a descendant that was formed by the intersection of the East
Yungui Plateau population and the western part of the Nanling Mountains population in
the past, or a nonnative species that had been introduced from another place.

The Mantel test discovered a significant positive relationship between the genetic and
geographical distances in the total distribution (r = 0.47, p < 2.2 × 10−16), suggesting that
isolation by distance plays an important role in genome-wide variation. Combined with
the results of FST, the phylogenetic tree and the Linkage disequilibrium analysis speculated
that the Group I population is closer to the origin center in terms of its genetic distance,
which supports that it originated in the Nanling Mountains and the Yungui Plateau before
migrating eastward [64].

In the wild, Dendrobium species are either epiphytic or lithophytic. Based on this
habit, there is no need to compete for the niche of most terrestrial plants. However, people
over-excavate and conduct commercial trade for profit, thus causing serious damage to
the wild resources [65]. This leads to a decline in the genetic differentiation among the
Dendrobium species [66].

5. Conclusions

In this study, a genetic information database of D. catenatum was established, which
confirmed that RAD-seq technology has the potential to be applied in the identification of
medicinal Dendrobium of different origins. The level of genetic diversity in the population of
wild D. catenatum was relatively low. The 24 wild populations were divided into two groups,
and the Group I population is closer to the origin center in terms of its genetic distance. The
isolation by distance plays an important role in genome-wide variation. This study provides
information for the development of identification technology for medicinal Dendrobium
species in order to provide a new perspective for the research of genuine regional drugs.
Genetic diversity research provides a theoretical basis for the protection of Dendrobium, and
it also lays a solid foundation for the breeding of fine Dendrobium provenances. Overall,
our study provides abundant genomic resources for wild Dendrobium species and makes
important contributions to its genetic improvement and molecular breeding.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13112093/s1, Figure S1: Average clean data size per sample
in 24 populations.
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