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Abstract: The current coronavirus disease-2019 (COVID-19) pandemic is due to the novel coronavirus
SARS-CoV-2. The scientific community has mounted a strong response by accelerating research and
innovation, and has quickly set the foundation for understanding the molecular determinants of the
disease for the development of targeted therapeutic interventions. The replication of the viral genome
within the infected cells is a key stage of the SARS-CoV-2 life cycle. It is a complex process involving
the action of several viral and host proteins in order to perform RNA polymerization, proofreading
and final capping. This review provides an update of the structural and functional data on the key
actors of the replicatory machinery of SARS-CoV-2, to fill the gaps in the currently available structural
data, which is mainly obtained through homology modeling. Moreover, learning from similar viruses,
we collect data from the literature to reconstruct the pattern of interactions among the protein actors
of the SARS-CoV-2 RNA polymerase machinery. Here, an important role is played by co-factors such
as Nsp8 and Nsp10, not only as allosteric activators but also as molecular connectors that hold the
entire machinery together to enhance the efficiency of RNA replication.
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1. Introduction

Coronavirus disease-2019 (COVID-19) is a respiratory disease caused by a novel enveloped,
positive-sense, single-stranded RNA betacoronavirus, denoted as SARS-CoV-2. In December 2019,
a cluster of patients in the Chinese city of Wuhan was diagnosed with a pneumonia of unknown
etiology. At the time of writing, SARS-CoV-2, has caused over 4 × 106 confirmed cases and 2.98 × 105

fatalities worldwide. The efficiency of disease transmission, the fact that a significant proportion of
infected people develop pneumonia and the increased risk of lethality in fragile patients such as the
elderly, patients with immunodeficiency and people affected by chronic respiratory and heart diseases,
make SARS-CoV-2 infection a serious global health threat. Consequently, on January 2020, the World
Health Organization (WHO) declared the situation a public health emergency of international concern
and in March 2020, it declared COVID-19 a pandemic threat. The scientific community has responded
promptly to the emergency by focusing heavily on accelerating research and innovation, as witnessed
by the copious amount of recent literature. This has set the foundation for understanding the
molecular determinants of the disease and the development of targeted therapeutic interventions [1–3].
These ground-breaking studies have shown that SARS-CoV-2 shares 79.5% of its genome with
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SARS-CoV [1], thus it is sufficiently divergent from SARS-CoV to be considered a new human-infecting
betacoronavirus [3]. Genome sequence analysis has revealed SARS-CoV-2 phylogenetic relationships
with bat-derived SARS-like coronaviruses, which suggests a zoonotic origin [1]. However, much of
what we can infer about the biology of SARS-CoV-2 comes from previous studies on the SARS-CoV.
Starting from these data, the molecular mechanisms underlying the evolution, adaptation, and spread
of this virus warrant urgent investigation.

SARS-CoV-2 gets into the cell through recognition by the spike glycoprotein present on the surface
of the virus envelope of the angiotensin converting enzyme 2 (ACE2) receptors, as previously observed
for SARS-CoV [4,5]. It is possible that other receptors mediate the entry of SARS-CoV-2 into host cells,
such as CD147 [6]. After attachment, the human transmembrane protease serine 2 (TMPRSS2) cleaves
and activates the spike protein [7] in an event that allows SARS-CoV-2 to enter the cells by endocytosis
or direct fusion of the viral envelope with the host membrane [8,9].

Once inside the cell, the infecting RNA acts as a messenger RNA (mRNA), which is then translated
by host ribosomes to produce the viral replicative enzymes, which generate new RNA genomes
and the mRNAs for the synthesis of the components necessary to assemble the new viral particles.
SARS-CoV-2 replication is a complex process that involves RNA synthesis, proofreading and capping.
Similar to other viruses, this process is likely to actively involve many host proteins, like DDX helicases,
which are exploited by the virus for more efficient replication [10–12]. Understanding the molecular
mechanisms that guide the replication of this coronavirus is essential in order to develop therapeutic
tools to neutralize SARS-CoV-2. Here, we review structural information, mostly obtained through
homology modeling based on the available structures for other coronaviruses, on the main protein
actors of SARS-CoV-2 RNA replication and transcription.

2. Organization of SARS-CoV-2 Genome

Like other coronaviruses, SARS-CoV-2 has a positive-sense single-stranded genomic RNA,
approximately 30 kb in length [13], which is among the largest known RNA genomes.

The genomic RNA (gRNA) has a 5′-cap and a 3′-poly(A) tail and can act as an mRNA for immediate
translation of the viral polyproteins. In addition, both 5′- and 3′-ends of the gRNA present a highly
structured untranslated region (UTR) that plays an important role in the regulation of RNA replication
and transcription. Seven stem-loop structures are present at the 5′-UTR, while a stem-loop and
a pseudoknot are present at the 3′-UTR. These two latter structures are mutually exclusive, since their
sequences overlap. It is hypothesized that the alternate formation of either the pseudoknot or the
stem-loop play some role in the transcriptional regulation [14]. The SARS-CoV-2 genome contains 14
open reading frames (ORFs), preceded by transcriptional regulatory sequences (TRSs). The two main
transcriptional units, ORF1a and ORF1ab, encode replicase polyprotein 1a (PP1a) and polyprotein
1ab (PP1ab), respectively (Figure 1). The largest polyprotein PP1ab embeds non-structural proteins
(Nsp1-16), which form the complex replicase machinery. This includes enzyme activities that are rare
or absent in other families of positive-stranded (+) RNA viruses [15]. At the 3′ end, the viral genome
encodes four structural proteins (spike, envelope, membrane, nucleocapsid), which are components of
the mature virus and play a crucial role in viral structure integrity, or as in the case of the spike protein,
for viral entry into the host [4–6]. Interspersed among the structural genes, the 3′ end of the genome
also contains nine putative ORFs for accessory factors [16] (Figure 1). The structural and accessory
proteins are translated from a set of nested sub-genomic (g) RNAs. all terminating with the 3′-end of
the full-length gRNA. The generation of these sgRNAs starting from negative-sense RNA intermediates
is regulated by the TRSs. During minus-strand RNA synthesis, the viral RNA polymerase pauses at
each TRS sequence. The pause can be resolved either by continuing the synthesis through the TRS into
the adjacent gene, or it can lead to the termination of transcription with the generation of a sgRNA.
The exact molecular mechanisms that determine either outcome are yet to be fully clarified, but they
likely involve long-range RNA-RNA interactions between complementary sequences [17,18].
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Figure 1. SARS-CoV-2 19 polycistronic genome. (A) Genome of SARS-COV-2 organized in individual 
ORFs. (B) Polyprotein 1ab (PP1ab) embeds 16 non-structural proteins (Nsps); the black and grey 
triangles indicate the cleavage sites of the protease PLpro and 3CLpro, respectively. Names of 
confirmed and putative functional domains in the Nsps are also indicated. 

3. A Structural View at SARS-CoV-2 RNA Replicatory Machinery 
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Coronavirus RNA synthesis is performed by the replication-transcription complex (RTC), 
associated with a complex vesicular network [14]. Such membranous structures comprise convoluted 
membranes (CVs) and double-membrane vesicles (DMVs), originating from the endoplasmic 
reticulum. These different membranous elements correlate with a precise spatial distribution of the 
different components of the RTC. The viral replication machinery is anchored to the CVs, thanks to 
the transmembrane proteins Nsp3, Nsp4 and Nsp6, while the dsRNA originating from the 
replication-transcription process is mainly contained within the DMVs. This suggests that these latter 
structures act as a protective environment to avoid detection of dsRNA by innate immunity sensors, 
and subsequent degradation [19]. 

The viral RNA replication machinery of SARS-CoV-2 involves an array of functional proteins 
from the N- to C-termini of the polyprotein, PP1ab (Figure 1). These include the essential RNA-
dependent RNA polymerase (RdRp, Nsp12) [20], the zinc-binding helicase (HEL, Nsp13) [21] and a 
number of other enzymatic functions related to viral RNA modification, such as mRNA capping 
(Nsp14, Nsp16), RNA proofreading (Nsp14) [22–24], and uridylate-specific endoribonuclease activity 
(NendoU, Nsp15), which has been shown to counteract double strand RNA sensing [25–27]. The 
activity of these enzymes is further regulated by the association with other non-structural proteins 
(Nsp7–Nsp10) that are likely necessary to achieve all of the replication and transcription processes 
[28–30]. As observed for other nidoviruses, all of these protein subunits likely associate in a 
replication transcription enzyme complex anchored to membranes derived from the host cell ER 
[19,31], which drives the synthesis of new genome molecules and also sub-genomic (sg) messenger 
RNAs (mRNAs) [32]. Table 1 reports all structural information hitherto available for the main non-
structural proteins involved in SARS-CoV-2 RNA replication and its homologs, together with their 
proposed functions. 

In addition to these main RNA replication functions, other activities are important to enhance 
the efficiency of the whole machinery. Suppression of host gene expression and blockage of innate 
immune responses in infected cells have been attributed to Nsp1, which is considered a major CoV 
virulence factor [33,34]. Also, the primary role of the nucleocapsid N protein is to protect the viral 
genome by packing it into a helical ribonucleocapsid (RNP) [35,36]. Accordingly, the N protein must 
tightly bind the RNA, even though it is exposed during viral infection, to make it accessible to the 
replication machinery [37–40]. Furthermore, through interactions mediated by its C terminus, the N 

Figure 1. SARS-CoV-2 19 polycistronic genome. (A) Genome of SARS-COV-2 organized in individual
ORFs. (B) Polyprotein 1ab (PP1ab) embeds 16 non-structural proteins (Nsps); the black and grey
triangles indicate the cleavage sites of the protease PLpro and 3CLpro, respectively. Names of confirmed
and putative functional domains in the Nsps are also indicated.

3. A Structural View at SARS-CoV-2 RNA Replicatory Machinery

3.1. RNA Machinery as a Whole: Nsp Interaction Pattern

Coronavirus RNA synthesis is performed by the replication-transcription complex (RTC), associated
with a complex vesicular network [14]. Such membranous structures comprise convoluted membranes
(CVs) and double-membrane vesicles (DMVs), originating from the endoplasmic reticulum. These different
membranous elements correlate with a precise spatial distribution of the different components of the RTC.
The viral replication machinery is anchored to the CVs, thanks to the transmembrane proteins Nsp3, Nsp4
and Nsp6, while the dsRNA originating from the replication-transcription process is mainly contained
within the DMVs. This suggests that these latter structures act as a protective environment to avoid detection
of dsRNA by innate immunity sensors, and subsequent degradation [19].

The viral RNA replication machinery of SARS-CoV-2 involves an array of functional proteins from
the N- to C-termini of the polyprotein, PP1ab (Figure 1). These include the essential RNA-dependent
RNA polymerase (RdRp, Nsp12) [20], the zinc-binding helicase (HEL, Nsp13) [21] and a number of
other enzymatic functions related to viral RNA modification, such as mRNA capping (Nsp14, Nsp16),
RNA proofreading (Nsp14) [22–24], and uridylate-specific endoribonuclease activity (NendoU, Nsp15),
which has been shown to counteract double strand RNA sensing [25–27]. The activity of these enzymes
is further regulated by the association with other non-structural proteins (Nsp7–Nsp10) that are likely
necessary to achieve all of the replication and transcription processes [28–30]. As observed for other
nidoviruses, all of these protein subunits likely associate in a replication transcription enzyme complex
anchored to membranes derived from the host cell ER [19,31], which drives the synthesis of new
genome molecules and also sub-genomic (sg) messenger RNAs (mRNAs) [32]. Table 1 reports all
structural information hitherto available for the main non-structural proteins involved in SARS-CoV-2
RNA replication and its homologs, together with their proposed functions.

In addition to these main RNA replication functions, other activities are important to enhance
the efficiency of the whole machinery. Suppression of host gene expression and blockage of innate
immune responses in infected cells have been attributed to Nsp1, which is considered a major CoV
virulence factor [33,34]. Also, the primary role of the nucleocapsid N protein is to protect the viral
genome by packing it into a helical ribonucleocapsid (RNP) [35,36]. Accordingly, the N protein must
tightly bind the RNA, even though it is exposed during viral infection, to make it accessible to the
replication machinery [37–40]. Furthermore, through interactions mediated by its C terminus, the N
protein interacts with the viral envelope protein M, which is also involved in genome condensation
and packaging in the viral particle [41–44].



Cells 2020, 9, 1267 4 of 22

Table 1. Available structural information on putative SARS-CoV-2 RNA replication machinery actors.

Target Function PDB Code [Reference] Source Seqid (%)

Nsp7 Cofactor of Nsp12
1YSY [45]; 2KYS [46]; 2AHM (in complex with

Nsp8) [47]; 6NUR (complex with Nsp8
e Nsp12) [48]

SARS-CoV 98.8

Nsp8 Cofactor of Nsp12
2AHM (complex with Nsp7) [47]; 6NUR
(complex with Nsp7 e Nsp12) and 6NUS

(complex with Nsp12) [48]
SARS-CoV 97.5

Nsp9 RNA binding protein 6W4B, 6W9Q, 6WC1 [49]; 1QZ8 [50]; 1UW7 [51] SARS-CoV-2
SARS-CoV

100
97.4

Nsp10 Cofactor of Nsp16
and Nsp14

6W61, 6W75 6W4H (complex with Nsp16);
2XYR, 2XYV, 2XYQ (complex with Nsp16) [52];

3R24 (complex with Nsp16) [53]; 5NFY
(complex with Nsp14) [54]; 5C8S, 5C8T, 5C8U

(complex with Nsp14) [55]; 2GA6 [56]

SARS-CoV-2
SARS-CoV

100
98.5

Nsp12 RNA-directed
RNA polymerase

6M71 and 7BTF (in complex with Nsp7 and
Nsp8 [57];7BV1 (complex with Nsp7 and Nsp8)
and 7BV2 (complex with Nsp7 and Nsp8, RNA

template/primer and Remdesivir, [58];6NUS
(complex with Nsp8) and 6NUR (complex with

Nsp7 and Nsp8) [48]

SARS-CoV-2
SARS-CoV

100
96.4

Nsp13 Helicase,
5′ triphosphatase 6JYT [59]; 5WWP [60] SARS-CoV

MERS-CoV
99.8
72.2

Nsp14

3′–5′ exoribonuclease,
ExoN; Guanine-N7
methyltransferase,

N7 MTase

5C8S, 5C8U, 5C8T (complex with Nsp10) [55];
5NFY (complex with Nsp10) [54] SARS-CoV 95.1

94.9

Nsp15
NendoU,

Uridylate-specific
endoribonuclease

6W01, 6VWW [61];
2H85 [62]; 2RHB [63]

SARS-CoV-2
SARS-CoV

100
88.0

Nsp16 2’-O-ribose
methyltransferase

6W4H, 6W75, 6W61 (complex with Nsp10);
2XYR, 2XYV, 2XYQ (complex with Nsp10) [52];

3R24 (complex with Nsp10) [53];
5YN5 (complex with Nsp10).

SARS-CoV-2
SARS-CoV
MERS-CoV

100
93.5
66.1

Data in the literature on possible interactions among the individual actors of the RNA polymerase
machinery of SARS-CoV-2 are still limited. However, based on data for highly homologous proteins
from either SARS-CoV (sequence identity >88%) or mouse hepatitis virus (MHV) (sequence identity
>40%, Table S1), we reconstituted the likely pattern of interactions among the Nsp proteins constituting
the RNA replication/transcription machinery (Figure 2). Among these, we predict that Nsp12 and
Nsp8 play a central role in the assembly of the entire RNA polymerase replicative machinery. Nsp12,
a RNA-dependent RNA polymerase is the key enzyme mediating the synthesis of all viral RNA
molecules [64]. Biochemical studies have proved that Nsp12 from SARS-CoV exhibits low processive
RNA synthesis in vitro, as it requires the presence of Nsp7 and Nsp8 to bind nucleic acid and perform
efficient RNA synthesis [28,29]. The direct association between Nsp8 and Nsp12 has been reported in
several coronaviruses and it is a feature that is likely shared by most, if not all, coronaviruses [65,66].
We also predict that Nsp12 of SARS-CoV-2 is able to interact with Nsp13 helicase based on studies
of the highly homologous Nsp12 and Nsp13 from SARS-CoV (96.4 and 99.8% sequence identity,
respectively). Indeed, Nsp12 of SARS-CoV can enhance the helicase activity of Nsp13 through a direct
protein–protein interaction [59]. The positive regulation of Nsp13 by Nsp12 is an important event
in viral replication. Indeed, mutation of specific conserved residues of Nsp13 can either negatively
impact or block replication of the arterivirus, equine arteritis virus (EAV) [67,68]. Finally, similar to
SARS-CoV, Nsp12 is most likely able to associate with Nsp14 [29], Nsp5 and Nsp9 [69] (Figure 2).

Nsp8 and Nsp7/Nsp8 complex can also bind and enhance the endoribonuclease NendoU activity
of MERS-CoV Nsp15 in vitro [70]. This result agrees with previous evidence showing that Nsp15
from MHV colocalizes and interacts in vivo with Nsp8 and Nsp12 [71]. However, whether Nsp15
belongs to the RNA replication machinery is still an open question. Finally, Nsp8 deletion or disruption
of the protease cleavage site between Nsp7 to Nsp9, which is necessary to correctly process the
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corresponding proteins, both result in impaired RNA synthesis and a lethal phenotype in MHV [72].
Altogether, these findings identify the Nsp12-Nsp8 complex as a key hub for the viral replication
machinery (Figure 2).
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3.2. RNA Polymerization Requires Nsp12 and Cofactors Nsp7, Nsp8

SARS-CoV-2 RNA polymerization relies on the main polymerase, Nsp12, also denoted as
RNA-dependent RNA polymerase, RdRp. Nsp12 is a large enzyme (932 residues) characterized
by two conserved domains: the NiRAN and the polymerase domains (Figure 3A). The structure of
SARS-CoV Nsp12 bound to the Nsp7 and Nsp8 cofactors has recently been determined using cryo-EM [48].
During the preparation of this manuscript, the structure of SARS-CoV-2 Nsp12 has also been reported [57].
Consistent with the high sequence identity between the Nsp12 form SARS-CoV and SARS-CoV-2 (94%),
the two structures are nearly identical, as indicated by their root mean square deviation of 0.8 Å for 1078
Cα atoms [57]. In both structures, Nsp12 is complexed with the two co-factors Nsp7 and Nsp8 (Figure 3B).
The observed interactions in the complex structure Nsp12-Nsp8-Nsp7 are compatible with a previous
work addressing the impact of residues of Nsp7 and Nsp8 on their interactions with Nsp12 [29].

The N-terminal domain of Nsp12, which has been shown to be essential for viral growth in
both equine arteritis virus (EAV) and SARS-CoV [73], is conserved in all nidoviruses endowed
with nucleotidylation activity. Therefore, it is named NiRAN from nidovirus RdRp-associated
nucleotidyltransferase (Figure 3A,B) [73]. The structure of the NiRAN domain was only partially
described in the structure of SARS-CoV Nsp12, whereas it is fully complete in the last released structure
of the SARS-CoV-2 Nsp12-Nsp7-Nsp8 complex [57]. Overall, the form of this domain is characterized
by an α + β fold composed of eight α helices and a five stranded β-sheet (Figure 3B). In addition,
an N-terminal β-hairpin (residues 29–50) interacts with the palm subdomain of the RdRp domain
(Figure 3B) [57]. This information provides structural tools to understand the functional role of the
NiRAN domain in Nsp12. Indeed, although the exact role of this domain is not fully clear, structural
similarity analyses using DALI suggest that the NiRAN domain of SARS-CoV-2 Nsp12 displays
structural features of kinase-like folds [48]. Indeed, using DALI we identified two kinases as the most
similar structures, the serine/threonine kinase PRP4 homolog (PDB code 6PJJ, DALI Z = 10.5, RMSD
= 2.8 Å, seqid 15%) and tyrosine-protein kinase JAK1 (PDB code 6C7Y, DALI Z = 10, RMSD = 2.8 Å,
seqid 11%) [74]. Given the importance of the NiRAN domain in viral growth [73], this structural
observation suggests a further tool for drug development using kinase inhibitors.
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Figure 3. SARS-CoV-2 Nsp12-Nsp7-8 complex. (A) Domain organization of Nsp12, with its Nsp7 and
Nsp8 cofactors, according to Pfam. (B) Cartoon representation of Nsp12 SARS-CoV-2 bound to Nsp7
and Nsp8 cofactors (PDB code 7BTF). (C) Model of SARS-CoV-2 elongation complex. The positions of
the RNA template/primer and of the divalent cations were obtained from the structural alignment of the
complex in panel A with the elongation complex from SARS-CoV-2 (PDB code 7BV2), while the position
of NTP was obtained from the alignment with the polymerase of norovirus (PDB code 3H5Y). The three
subdomains of the polymerase domain, finger (residues 366–581 and 621–679), palm (residues 582–620
and 680–815), and the thumb (residues 816–920) are shown in red, salmon and brown, respectively.
(D) A zoom of the catalytic site showing the position of the incoming NTP, Remdesivir monophosphate
(RMP) (in stick) and divalent cations (as green spheres). The conserved Asp residues that play a key
role in the NTP and Mg2+ binding and Val557 (involved in Remdesivir resistance) are shown as
yellow sticks.

The RNA polymerase C-terminal domain of Nsp12 (residues 366–920) from SARS-CoV-2 adopts
a conformation that has been described as a cupped right hand, constituted of finger, palm and
thumb subdomains [48,57] (Figure 3C). Biochemical and structural studies of polymerases from other
viruses, e.g., poliovirus and foot-and-mouth disease virus, have defined the catalytic cycle of the
RNA polymerase as a multi-step process composed of successive steps [75,76]. Catalytic residues
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can be identified in SARS-CoV-2, upon alignment with poliovirus RNA polymerase, whose catalytic
residues are known, with the two aspartic acids Asp618 and Asp760 (Supplementary Materials,
Figure S1). Consistently, the D760A mutant of SARS-CoV Nsp12 is unable to synthetize RNA [29].
Together with these two aspartic acids, Asp623 and Asp761 are also involved in the recognition of the
NTP triphosphate and divalent cations, respectively [48,57]. The recent crystal structure of SARS-CoV-2
Nsp12-Nsp7-Nsp8 has confirmed that both Asp760 and Asp761 are involved in the coordination of the
two important magnesium ions at the catalytic center (Figure 3D). Importantly, a key initiation step is
the addition of the first one or two nucleoside triphosphates (NTP) onto a primer, to form a stable
and processive elongation complex [75,76]. The structure of the elongation complex of SARS-CoV-2
contains 14 bases in the template strand and 11 bases in the primer strand. This double-stranded RNA
helix contacts all of the three Nsp12 subdomains (finger, palm, thumb, Figure 3C). Most of protein-RNA
interactions are mediated with the RNA phosphate-ribose backbones, with many interactions directly
to 2′-OH groups, thus providing a basis to distinguish RNA from DNA [58]. Notably, the position of
the RNA primer is nearly superimposable to that obtained for the well characterized poliovirus [75,77]
(Figure 3D, Figure S1). Also, residues involved in RNA binding and composing the catalytic active site
are highly conserved (Figure 3, Figure S1), thus suggesting a similar mechanism of RNA replication.
It is interesting to note that apo and complexed Nsp12 are almost identical, with an RMSD of 0.5 Å,
thus suggesting that SARS-CoV-2 Nsp12 does not require a conformational switch upon ligand binding.
This hypothesis agrees well with the high processivity of viral RNA polymerases [76] since no extra
energy is required to switch the enzyme conformation towards activation.

Although sequence identity of Nsp12 with RdRP from the Ebola virus (EBOV) is quite poor (16%),
structural analysis indicates the conservation of the polymerase active site. Remdesivir, the nucleotide
inhibitor of the EBOV RdRP has been recognized as a promising antiviral drug against a wide array
of RNA viruses including filoviruses, arenaviruses, paramyxoviruses, and other coronaviruses with
divergent RdRp, such as SARS-CoV, MERS-CoV, bat CoV, and the new SARS-CoV-2 strains [78–83]
in cultured cells, mice and nonhuman primate models [78,84,85]. Remdesivir is a prodrug, which is
metabolized into its active form (GS-441524), which causes a decrease in viral RNA production [78]
(Figure 4). The compound has a 1′-cyano group, which provides potency and selectivity toward
viral RNA polymerases, and a monophosphate promoiety to enhance intracellular metabolism into
the active triphosphate metabolite [86] (Figure 4). Remdesivir triphosphate is able to inhibit EBOV
replication with half maximal effective concentrations (EC50) in the sub-micromolar range [78] by
blocking viral RNA synthesis [78]. The mechanism of inhibition is a delayed chain termination of
nascent viral RNA, as described for several viral RdRP, including EBOV, MERS, Nipah (NIV) and
respiratory syncytial virus RSV [78,87–89]. In all cases, Remdesivir triphosphate inhibits transcription
by competing with the incorporation of natural NTP counterparts [87,89]. This finding has been
recently corroborated for SARS-CoV-2 by the determination of the structure of Nsp12-Nsp7-Nsp8 in
complex with RNA template/primer and Remdesivir [58] (Table 1). This structure has shown that
Remdesivir monophosphate (RMP) is covalently incorporated at the 3′ end of the primer strand [58].
As shown in Figure 3D, this position fully overlaps with the +1 position of a natural NTP. Additionally,
it was previously shown for MHV and SARS-CoV [79] that a mutation of a conserved valine residue of
Nsp12, corresponding to V557L in SARS-CoV-2, confers low-level resistance to Remdesivir; it impairs
fitness and attenuates virulence. This mutation is located in proximity to the NTP binding site of
Nsp12 [58] (Figure 3D).
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Figure 4. Chemical structure of Remdesivir (GS-5734) and its pharmacologically active nucleoside
triphosphate NTP.

Significantly, a recent study revealed that Remdesivir is effective in the control of SARS-CoV-2
in vitro [81]. From the clinical point of view, Remdesivir is being used in a small number of SARS-CoV-2
positive patients for “compassionate use” based on the patients’ worsening clinical status. One of the
first cases in the USA is responding well to the nucleoside analogue with an immediate improvement
after intravenous injection [90]. Nevertheless, it is not yet approved for general use and clinical trials
are currently underway to determine its safety and efficacy [91]. Structurally-based improvements of
this drug may constitute a valid tool to enhance its specificity and efficiency against coronaviruses.

3.3. RNA Proofreading and mRNA Capping through the Bifunctional Protein Nsp14 and Cofactor Nsp10

Nsp14 of SARS-CoV-2 contains two domains with different functions, as identified by the PFAM
database (Figure 5A). The N terminal domain (ExoN) is endowed with exoribonuclease activity and
includes three conserved motifs: motif I (DE), II (E) and III (D). Due to this feature, Nsp14 is included
as a “DEED outlier” into the superfamily of DEDD exonucleases [55,92], which embrace enzymes with
proofreading activity [92,93]. In line with this observation, ExoN knockout mutants of SARS-CoV
and murine hepatitis virus (MHV) were shown to accumulate a high number of mutations [94,95].
The carboxy-terminal part of Nsp14, containing (N7 guanine)-methyl transferase activity, is involved
in the viral mRNA cap synthesis. The RNA final cap has several important biological roles in viruses
as it is critical for the stability of mRNAs, for their translation and to evade the host immune response.
Indeed, uncapped RNA molecules are degraded in cytoplasmic granular compartments and may be
detected as “non-self” by the host, therefore triggering innate immune responses [96,97].

A homology model of the complex between Nsp14 and Nsp10 of SARS-CoV-2 is reported in
Figure 5B, based on the structure of homologous proteins of SARS-CoV [54,55] (Table S1). In this
complex, the co-factor Nsp10, composed of a helical domain and an irregular β-sheet region followed
by a loop region at its C-terminus, forms multiple interactions with the ExoN domain of Nsp14, likely
stabilizing it. Consistent with this, SAXS experiments of Nsp14 from SARS-CoV in the absence of
Nsp10 show large conformational changes in the N terminus of Nsp14, which affect the overall shape
of the exonuclease fold [54]. Importantly, the interaction with Nsp10 strongly affects the nucleolytic
activity of SARS-CoV Nsp14, which is enhanced up to 35-fold [98].
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Figure 5. Homology model of SARS-CoV-2 Nsp14-Nsp10 complex. (A) Domain organization of
Nsp14 and Nsp10; (B) Cartoon representation of the homology model of the complex, computed with
MODELLER using the structure of its homolog from SARS-CoV as a template (PDB code 5C8S, covered
region 1−131 in Nsp10 and 1−525 in Nsp14). Zinc atoms are shown as grey and a Mg2+ ion as magenta
spheres. Zooms of the catalytic sites are shown in the insets. Catalytic residues of the ExoN domain
(left inset) are shown as blue sticks, those of the N7-MTase domain (right inset) are shown as orange
sticks; the cap-precursor GpppA (pink), a SAH (demethylated form of SAM) ligand (yellow) and the
SAM-binding motif residues (orange) are also represented as sticks.

The ExoN domain of Nsp14 presents an α/β fold as do the other members of the DEDD
exonuclease superfamily [99]. It is composed of a central twisted β-sheet formed by five β -strands.
These, are flanked by α-helices, with the exception of the strand β3 (Figure 5B) [54,55]. Based on its
structural alignment with SARS-CoV, the catalytic residues of the ExoN domain of SARS-CoV-2 Nsp14
include the DEED residues Asp90, Glu92, Glu191, Asp272 (Figure 5). A structural alignment using DALI
shows that this domain is structurally similar to E. coli RNase T and to RNase AS from M. tuberculosis,
two exonucleases involved in RNA maturation through 5′ processing [100,101]. Similar to these
exonucleases, alanine substitution of the four catalytic residues of ExoN, which coordinate a Mg2+ ion
(Figure 5B), results in a significant reduction of the viral RNA synthesis [94,100–103]. Altogether, these
data suggest that like Nsp12, Nsp14 has a crucial role in SARS-CoV-2 replication through its ExoN
domain, as it is involved in maintaining the integrity of the SARS-CoV-2 RNA genome, preventing
and repairing mutations [95,104]. In this context, susceptibility of EBOV to Remdesivir also involves
the proofreading exoribonuclease, Nsp14 [79]. For EBOV RNA polymerase, the incorporation of the
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nucleotide analogue at position n causes inhibition of RNA synthesis predominantly at position n +

5 [88,89] whereas in the case of MERS, arrest of RNA synthesis occurs at position n + 3, with these three
nucleotides likely protecting the inhibitor from excision by the viral 3′–5′ exonuclease activity [89].
In both cases, delayed chain-termination could be due to inhibitor-induced structural changes of
the newly synthesized double stranded RNA [105,106]. Importantly, a mutant lacking ExoN was
significantly more sensitive to Remdesivir, suggesting that this nucleoside analogue, once incorporated
into viral RNA, can be removed by the exoribonuclease activity of Nsp14 during proofreading [79,107].
Therefore, nucleoside analogues that effectively inhibit viral RNA replication must either evade detection
by the exonuclease or outcompete exonuclease activity [108]. In this case, chemical modifications of the
nucleoside analogues to skip recognition by Nsp14, or simultaneous inhibition of Nsp12 and Nsp14,
would provide a synergistic action in the inhibition of RNA synthesis and be a powerful strategy
against SARS-CoV-2.

A flexible hinge region consisting of a loop and three strands (shown as cyan in Figure 5B)
separates the ExoN domain from the N7-MTase domain of Nsp14 and is highly conserved across CoVs.
This region allows lateral and rotational movements of the two domains to coordinate the two different
enzymatic activities of Nsp14 (Figure 5B) [92]. Following this hinge region, the N7-MTase domain
is an (N7 guanine)-methyl transferase involved in RNA capping, which operates by demethylating
its co-enzyme S-adenosyl methionine (SAM). This domain shows unique structural features as it
displays an atypical fold, different from the canonical Rossmann fold of the virus RNA MTase [54,109].
In addition, it does not belong to any of the classes of SAM-dependent MTases [110–112]. Indeed,
a typical Rossmann fold embeds a central core of β-sheets composed of seven parallel β-strands
with at least three a-helices on each side [109]. Differently, the β sheet of the N7-MTase domain of
Nsp14 is formed by five β -strands instead of seven (Figure 5B). SARS-CoV Nsp14-Nsp10 crystal
structure [55], together with alanine scanning mutagenesis [113] and cross-linking experiments,
revealed two clusters of residues that are key for the N7-MTase activity (Figure 5B) [113–115]. The first
cluster is a canonical SAM-binding motif I (DxGxPxG/A) and includes Asp331, Gly333, Pro335
and Ala337 (Figure 5B), where SAM is the methyl donor in the (N7 guanine)-methyl transferase
reaction catalyzed by Nsp14. A second cluster forms a pocket that holds the GTP of the mRNA cap
structure in close proximity of the methyl donor SAM (Figure 5B). The binding mode of the functional
ligands, the cap-precursor guanosine-P3-adenosine-5′,5′-triphosphate (GpppA) and the product of
SAM demethylation, S-adenosyl Homocysteine (SAH), occurs with no significant structural changes in
the enzyme [55]. These studies have helped to shed light on the mechanism of RNA cap formation,
which also involves several other protein actors, as detailed below.

3.4. SARS-CoV-2 Capping Machinery Involves Nsp13, Nsp14, Nsp16 and the co-Factor Nsp10

3.4.1. RNA Cap Synthesis in Coronaviruses

mRNAs of coronaviruses are protected at their 5′ ends by a cap structure consisting of
an N7-methylated GTP molecule linked to the first transcribed nucleotide by a 5′–5′ triphosphate
bond. Given the importance of RNA capping for mRNA stability and as a mechanism to evade the
host immune response, RNA-capping machineries are an attractive target for antiviral-drug design.
In coronaviruses, apart from the N7-MTase domain of Nsp14 described above, the cap synthesis
involves several enzymes and the co-factor Nsp10 (Figure 6). The mRNA cap (m7GpppN-RNA) is
composed of a 7-methylguanosine (m7G) linked to the 5′-nucleoside (N) of the RNA chain through
a triphosphate bridge (ppp). The process begins with the hydrolysis of the 5′γ-phosphate of the nascent
RNA chains (pppN-RNA) by an RNA 5′-triphosphatase, the Nsp13 helicase [21]. Subsequently, a still
unidentified GTase transfers a GMP molecule to the 5′-diphosphate of the RNA chains (ppN-RNA),
leading to the formation of GpppN-RNA. Then, the cap structure is methylated at the N7 position
of the guanosine by the C-terminal N7-MTase domain of Nsp14, forming cap-0 (m7GpppN-RNA),
using SAM as a methyl donor. Finally, Nsp16 (SAM)-dependent 2′-o-methyltransferase activity
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promotes the addition of a methyl group on the ribose 2′-O position of the first transcribed nucleotide
to form cap-1 (m7GpppNm-RNA) [52,53] (Figure 6). In the last steps, the cofactor Nsp10 acts as
an allosteric activator [52,53].
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Figure 6. The mRNA cap synthesis process in SARS-CoV-2. The process is performed by the sequential
action of four enzymes: Nsp13 (pink), a still unknown GTase, Nsp14 (red) and Nsp16 (orange).
The presence of the co-factor Nsp10 (grey) is fundamental for the activity of the last two enzymes.

3.4.2. Start of mRNA Capping by the Multi-Functional Nsp13 Helicase

Helicases are versatile NTP-dependent enzymes that are widespread in all kingdoms of life
including (+) RNA viruses with genome greater than 7 kb [116]. They are classified into six superfamilies
(SF1 to SF6) and are known to be critically involved in several processes connected to nucleic acid
metabolism [116]. Helicases are required for the unwinding of dsDNA and/or dsRNA substrates,
for displacing proteins bound to nucleic acid or remodeling DNA or RNA secondary structures and for
translocating along double-strand nucleic acid without unwinding [68]. Sequence conservation analysis
shows that Nsp13 of SARS-CoV-2 belongs to the SF1 superfamily and shares many structural features
with the eukaryotic Upf1 helicase, a key factor in nonsense-mediated mRNA decay in cells [117].
Like other coronaviruses, Nsp13 exhibits multiple enzymatic activities, which include not only the
hydrolysis of NTPs required in the capping mechanism (Figure 6), but also unwinding of RNA
duplexes with 5′–3′ directionality and the RNA 5′-triphosphatase activity [118,119]. Additionally, RNA
unwinding activity is stimulated by the interaction with the RdRP Nsp12 [120]. Nsp13 is highly
conserved in all coronaviruses and is a key enzyme in viral replication [121,122], two observations
which make it a promising target for antiviral therapies [68]. In this context, a potent non-competitive
inhibitor (SSYA10-001) blocks viral replication by inhibiting the unwinding activity of the helicase
Nsp13 [123], not only in SARS-CoV but also for two other coronaviruses, MHV and MERS-CoV [124].

Nsp13 of SARS-CoV-2 shares the same structure as that of SARS-CoV [59], given the extremely high
conservation of protein sequences (Table S1), and consists of five domains which fold in a triangular
pyramid shape (Figure 7B). A similar organization was observed for MERS helicases [60]. Three domains
named 1A and 2A and the 1B domain are arranged to form the triangular base, leaving the remaining
two domains, the N-terminal Zinc binding domain (ZBD) and the stalk domain, at the apex of
the pyramid (Figure 7B). Mutagenesis and structural alignments demonstrated that the 1B, 1A and
2A domains are responsible for NTP activity and nucleic acid binding, whereas other functional
information about the structural coordination of these five domains in helicase activity have been
deduced through the H/D exchange assays. As explained above, the activity of Nsp13 is enhanced by
Nsp12 through direct interaction, with the interaction region on Nsp13 mapped on the ZBD domain
and the 1A domain [59]. Given the high sequence conservation of these two proteins, their association
can be considered a common feature across CoV [59].
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Figure 7. SARS-CoV-2 Nsp13 helicase. (A) Domain organization of SARS-CoV-2 Nsp13. (B) Cartoon
representation of the homology model of SARS-CoV-2 Nsp13, obtained using MODELLER based on the
crystallographic structure of the SARS-CoV (PDB code 6JYT, covered region 1-596). The colors of the
protein domains are indicated in panel A (ZBD-green, stalk-yellow, 1B-orange, 1A-red and 2A-salmon).
Three zinc atoms are shown as grey spheres. In the inset, the key conserved residues responsible for
NTP hydrolysis are drawn as sticks.

3.4.3. End of mRNA Capping by 2′-o-Methyl Transferase Nsp16 and Nsp10, an Allosteric Activator
and a Molecular Connector?

Several X-ray structures of Nsp16 are deposited in the PDB, including those from SARS-CoV,
MERS-CoV and more recently of SARS-CoV-2 (Table 1). In all of these structures, Nsp16 is complexed
with the cofactor Nsp10 and presents a similar topological organization [53,125]. In particular, Nsp16
possesses the typical fold of the class I MTase family, comprising a seven-stranded β sheet flanked by α

helices with the characteristic reversedβ hairpin at the carboxyl end of the sheet (β6−β7) (Figure 8) [112].
The catalytic site cleft of Nsp16 contains the conserved K-D-K-E catalytic tetrad, which is peculiar
to SAM-dependent 2′-o-methyltranferases. Specifically, the four residues Lys46, Asp130, Lys170
and Glu203 are predicted to be catalytic (Figure 8) [112]. In addition, a conserved SAM-binding
pocket is located at the C-terminal end of strands β1 and β2, as in the case of other SAM-dependent
MTases [126] (Figure 8). Two zinc ions were identified as bound to two zinc finger regions and found
to be indispensable for the binding of the RNA chains in a nonselective manner (Figure 8) [56,127,128].
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Mutagenesis studies confirmed the central role played by the K-D-K-E tetrad of Nsp16 for the
2 O-MTase activity [52]. Infection of small animal models with viruses expressing Nsp16 mutants
showed a decrease in viral titers. These findings suggest that the inhibition of the viral 2 O-MTase
activity, and the consequent production of an incompletely capped RNA, might stimulate the detection
of viral RNA by pathogen-associated molecular patterns (PAMPs) and induce a host antiviral response.
Indeed, it was shown that the incompletely capped RNA can be detected by the cytosolic RIG-I-like
receptors (RLRs) RIG-I or Mda5 [125,129–131], which stimulate the production of type I interferon
(IFN). The resulting IFN secretion induces the host antiviral response mediated by IFN-induced protein
with tetratricopeptide repeats (IFIT) proteins [132,133].

As shown in the case of SARS-CoV, Nsp16 needs to interact with Nsp10 to become active [53].
Indeed, SARS CoV Nsp16 alone has low affinity for both m7GpppA-RNA and m7GpppA cap analogue,
and the interaction between the two proteins increases RNA-binding affinity [53]. Similar results were
observed for MERS CoV Nsp16/Nsp10 complex [125].

As previously discussed, the cofactor Nsp10 plays a similar activating role for Nsp14,
as demonstrated for SARS-CoV [98]. Therefore, we explored the possibility of the formation of
a ternary complex Nsp10/Nsp14/Nsp16 by verifying the compatibility of binding of Nsp14 and Nsp16
to Nsp10 (see caption for Figure 9 for details). As shown in Figure 9, interacting regions on Nsp10
with Nsp14 and Nsp16 are perfectly complementary, thus allowing for a simultaneous interaction of
Nsp10 with both Nsp14 and Nsp16. This finding suggests it is likely that Nsp10 works not only as
an allosteric activator of the two enzymes but also as a molecular connector, joining three catalytic sites
together in space (Figure 9). As shown in Figure 9, a ternary complex Nsp10-Nsp14-Nsp16 would keep
the proofreading site of Nsp14 close in space to the two catalytic sites responsible for capping on Nsp14
and on Nsp16. This ternary complex is likely only a part of a large RNA polymerase complex, which is
further hold together by the known interactions between the ExoN domain of Nsp14 and Nsp12 [29]
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and between Nsp13 and Nsp12 [59], although fine details of these interactions are still unknown
(Figure 9). In the case of a nucleotide mismatch, the nascent RNA strand can be efficiently moved
from Nsp12 to the ExoN site of the RNA polymerase complex for excision (Figure 9). Final capping
is then provided by the sequential activities of close-in-space enzymes. Namely, the Nsp13 helicase,
the GTase and then the N7-MTase activity of Nsp14 and the 2′-OMTase activity of Nsp16 (Figure 9),
thus completing the nascent RNA strand with the cap1 structure at its 5′ end.
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the two complexes Nsp14-Nsp10 and Nsp16-Nsp10. This model was obtained upon superposition
of Nsp10 cofactors of the Nsp10/Nsp14 and Nsp10/Nsp16 complexes, using CCP4. A nascent RNA
strand polymerized by Nsp12 (grey oval) is proofread by Nsp14, dephosphorylated by Nsp13 and then
capped by GTase, Nsp14 and finally Nsp16.

4. Concluding Remarks

Over the past ten years, we have observed the emergence of many different coronaviruses,
that have caused serious diseases like SARS in 2002, MERS in 2012 and currently, COVID19. It is
more than likely that coronaviruses will emerge again in the near future due to their ability to mutate,
recombine and infect different hosts, as we have just observed for SARS-CoV-2, which has evolved
from a bat disease to a human disease outbreak. A possible strategy is to identify those processes that
are more preserved in all coronaviruses and deeply understand their mechanisms. By inhibiting these
processes there is a great chance of developing a pancoronaviral therapeutic strategy. As discussed in
this review, molecular actors responsible for RNA replication are among the most conserved coronaviral
proteins and therefore deserve deep understanding of their structural properties. The composition
and structural organization of the replicase complex of SARS-CoV-2 has not been thoroughly studied,
although research in the field is progressing fast. However, there are many lessons to be learnt from
studies of the RNA replication of similar viruses, as reported in this review. These studies, both
structural and functional, have identified and described enzymes responsible for RNA polymerization,
proofreading and final capping mechanisms to produce stable RNA. However, an important role is
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also played by cofactors, which mediate protein–protein interactions and thus conduct the orchestra of
RNA processing enzymes to improve their efficiencies. Gaining a complete picture of the intricate
process of RNA replication of SARS-CoV-2 significantly improves our ability to design therapeutic
tools to reduce disease burden.
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