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Abstract: Antisense oligonucleotide-based (ASO) therapeutics have emerged as a promising strat-
egy for the treatment of human disorders. Charge-neutral PMOs have promising biological and
pharmacological properties for antisense applications. Despite their great potential, the efficient
delivery of these therapeutic agents to target cells remains a major obstacle to their widespread use.
Cellular uptake of naked PMO is poor. Cell-penetrating peptides (CPPs) appear as a possibility to
increase the cellular uptake and intracellular delivery of oligonucleotide-based drugs. Among these,
the DG9 peptide has been identified as a versatile CPP with remarkable potential for enhancing the
delivery of ASO-based therapeutics due to its unique structural features. Notably, in the context of
phosphorodiamidate morpholino oligomers (PMOs), DG9 has shown promise in enhancing deliv-
ery while maintaining a favorable toxicity profile. A few studies have highlighted the potential of
DG9-conjugated PMOs in DMD (Duchenne Muscular Dystrophy) and SMA (Spinal Muscular Atro-
phy), displaying significant exon skipping/inclusion and functional improvements in animal models.
The article provides an overview of a detailed understanding of the challenges that ASOs face prior to
reaching their targets and continued advances in methods to improve their delivery to target sites and
cellular uptake, focusing on DG9, which aims to harness ASOs’ full potential in precision medicine.

Keywords: antisense oligonucleotides; cell penetrating peptides; delivery; DG9 peptide; phosphoro-
diamidate morpholino oligomers (PMO)

1. Introduction

The advancement of antisense oligonucleotides (ASOs) has brought about a profound
change in the field of genetic therapeutics, offering a promising avenue for addressing
a diverse array of diseases on a molecular level. ASOs are short synthetic nucleic acid
analogs that offer a revolutionary means to modulate gene expression by precisely inter-
acting with RNA transcripts. The history of ASO can be traced back to the pioneering
work of Zamecnik and Stephenson in early 1970, who first proposed the concept of us-
ing synthetic oligonucleotides to regulate eukaryotic gene expression in cultured cells
through sequence-specific hybridization with RNA [1,2]. Later, the pharmacokinetic prop-
erties of ASOs, such as stability, reduced susceptibility to nuclease degradation, specificity,
and cellular absorption, have been greatly improved by developments in oligonucleotide
chemistry, including the introduction of chemical modifications and different backbone
structures, which transformed them from theoretical concepts into potentially effective
therapeutic agents [3].

ASOs have been successfully employed in treating a wide range of diseases, including
Duchenne Muscular Dystrophy (DMD), spinal muscular atrophy (SMA), amyotrophic
lateral sclerosis (ALS), and many more. This success led to the regulatory approval of
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10 ASO-based drugs [4] and many antisense drug candidates for clinical trials to treat
cardiovascular, metabolic, endocrine, neurological, neuromuscular, inflammatory, and
infectious diseases [5]. This demonstrates the dynamic nature of ASO-mediated therapy.
Despite being a promising approach, it is widely accepted that the delivery of ASO treat-
ments to specific tissues is limited by factors such as intracellular trafficking, degradation
in biological fluids, and transportation across cellular barriers [6]. Although chemical mod-
ifications have significantly improved their metabolic stability as well as their affinities for
RNA targets and have, to some extent, reduced off-target effects, no chemical modification
has significantly improved cellular uptake or tissue targeting.

Cell-penetrating peptides (CPPs) or peptide transduction domains (PTDs) are one of
the many approaches that have been developed to improve the delivery of oligonucleotides.
CPPs are small peptides with the ability to transport cargos, including ASOs, across cellular
barriers and hereby offer the potential to improve ASOs’ cellular uptake and intracellular
distribution, enhancing therapeutic outcomes and reducing the required dosage [7]. The
initial CPP was introduced several decades ago, and ever since, there has been an ongoing
endeavor to enhance cell-penetrating peptides for improved oligonucleotide delivery and
enhanced pharmacological properties [8].

Particularly in the context of phosphorodiamidate morpholino oligomers (PMOs), R6G,
PiP (PNA/PMO Internalizing Peptides), and DG9 have captured interest among the CPPs
for their potential to improve ASO-mediated therapy. PMOs have shown effectiveness
in treating genetic diseases, but their poor cellular absorption continues to be a major
drawback. Due to its high efficacy and low toxicity, DG9 has become a promising CPP
for improving the intracellular transport of PMOs since it holds the prospect of improved
therapeutic advantages [9,10]. This review offers a thorough analysis of ASO therapies
and their difficulties, highlighting the potential contribution of CPPs, particularly DG9,
to overcoming these difficulties and improving ASO efficacy. Through an exploration of
CPP-mediated ASO delivery intricacies and focusing on the remarkable properties of DG9,
this review seeks to highlight the potential of this approach to transform ASO-mediated
therapy more effectively.

2. Why Antisense Technology?

With their ability to precisely target disease-causing genes at the RNA level, antisense
oligonucleotides (ASOs) have become an important tool in the development of therapeutics.
ASOs show promise in the treatment of a wide range of illnesses, such as cancer, viral
infections, genetic disorders, and neurological problems. Currently, 15 oligonucleotide
therapeutics have received approval from the Food and Drug Administration (FDA, USA),
the European Medicines Agency (EMA), and/or the Japanese Ministry of Health, Labour,
and Welfare, and most of them have received approval in the past 4 years [11] (Table 1).
Compared to small molecules antisense technology’s unprecedented specificity, ability
to modulate gene expression, variety of target types, potential for personalized therapy,
disease modification abilities, and documented clinical effectiveness make antisense tech-
nology an appealing strategy for therapeutic research.
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Table 1. FDA-approved Oligonucleotide Therapeutics. ASO, antisense oligonucleotide; dsDNA, double-stranded DNA; 2′-F, 2′-fluoro; GalNac, N-acetylgalactosamine;
LNP, lipid nanoparticle; 2′-MOE, 2′-O-methoxyethyl; 2′-OMe, 2′-O-methyl; PMO, phosphorodiamidate morpholino oligonucleotide; PO, phosphodiester;
PS, phosphorothioate; ROA, route of administration; siRNA, small interfering RNA; ssDNA, single-stranded DNA.

Drug Name
(Market Name) ROA Target Gene Indication Modality Chemistry Mechanism of

Action Approval Company

Fomivirsen
(Vitravene) Intraocular IE-2 mRNA Cytomegalovirus

(CMV) retinitis ASO 21 mer PS DNA RNase H1 FDA/EMA (1998)

Ionis Pharmaceuticals
(California, USA),
Novartis (Basel,

Switzerland)

Pegaptanib
(Macugen) Intraocular Heparin-binding

domain of VEGF-165
Neovascular age-related
macular degeneration Aptamer 27 mer 2′-F/2′-OMe

pegylated
Binding and

blocking FDA (2004) OSI Pharmaceuticals
(New York, USA)

Mipomersen
(Kynamro) Subcutaneous Apolipoprotein B100 Homozygous familial

hypercholesterolemia ASO (gapmer) 20 mer PS 2′-MOE RNase H1 FDA (2013)

Kastle Therapeutics
(Chicago, USA), Ionis

Pharmaceuticals,
Genzyme

(Massacheusetts, USA)

Eteplirsen
(Exondys 51) Intravenous Exon 51 of DMD Duchenne muscular

dystrophy ASO 30 mer PMO Splicing modulation FDA (2016) Sarepta Therapeutics
(Massachusetts, USA)

Nusinersen
(Spinraza) Intrathecal Exon 7 of SMN2 Spinal muscular

atrophy ASO 18 mer PS 2′-MOE Splicing modulation FDA/EMA (2016) Ionis Pharmaceuticals,
Biogen

Defibrotide
(Defitelio) Intravenous Adenosine A1/A2

receptor
Veno-occlusive disease

in liver Aptamer Mixture of PO
ssDNA and dsDNA

Binding and
activating FDA (2016) Jazz Pharmaceuticals

(Ireland)

Inotersen (Tegsedi) Subcutaneous Transthyretin

Polyneuropathy caused
by hereditary

transthyretin-mediated
(hATTR) amyloidosis

ASO (gapmer) 20 mer PS 2′-MOE RNase H1 FDA (2018) Akcea Therapeutics

Milasen * Intrathecal CLN7
Mila Makovec’s CLN7
gene associated with

Batten disease
ASO

22 mer 2′-O-MOE,
PS, 5-methyl

cytosine
Splicing modulation FDA (2018) Boston Children’s

Hospital *

Patisiran
(Onpattro) Intravenous Transthyretin Polyneuropathy caused

by hATTR amyloidosis
siRNA (LNP
formulation)

19 + 2 mer 2′-OMe
modified RNAi FDA/EMA (2018) Alnylam Pharma

(Massachusetts, USA)

Golodirsen
(Vyondys 53) Intravenous Exon 53 of DMD Duchenne muscular

dystrophy ASO 25 mer PMO Splicing modulation FDA (2019) Sarepta Therapeutics

Givosiran
(Givlaari) Subcutaneous

5-aminolevulinic
acid

synthase

Acute hepatic
porphyria (AHP)

siRNA (GalNAc
conjugate)

21/23 mer Dicer
substrate siRNA RNAi FDA/EMA (2019) Alnylam Pharma
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Table 1. Cont.

Drug Name
(Market Name) ROA Target Gene Indication Modality Chemistry Mechanism of

Action Approval Company

Volanesorsen
(Waylivra) Subcutaneous Apolipoprotein C3

Familial
chylomicronemia
syndrome (FCS)

ASO 20 mer PS, 2′-MOE RNase H1 EMA (2019) Akcea Therapeutics

Viltolarsen
(Viltepso) Intravenous Exon 53 of DMD Duchenne muscular

dystrophy ASO 21 mer PMO Splicing modulation FDA (2020) NS Pharma

Casimersen
(Amondys 45) Intravenous Exon 45 of DMD Duchenne muscular

dystrophy ASO 22 mer PMO Splicing modulation FDA (2021) Sarepta Therapeutics

Tofersen (Qalsody) Intrathecal SOD1 Amyotrophic lateral
sclerosis ASO 20 mer 2′-MOE,

gapmer RNase H1 FDA (2023) Ionis Pharmaceuticals,
Biogen

Valeriasen Intrathecal KCNT1 Epilepsy ASO 2′-MOE, gapmer RNase H1 FDA (2020) Boston Children’s
Hospital *

Atipeksen Intrathecal ATM Ataxia telangiectasia ASO Splicing modulation Boston Children’s
Hospital *

* Milasen, Valeriasen, and Atipeksen are individualized medicines and are approved as investigational new drugs by the FDA.
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3. The Mode of Action of Antisense Oligonucleotide

Antisense oligonucleotides (ASOs) are synthetic, single-stranded nucleic acid molecules
targeted for mRNA, generally comprised of ~18–30 nucleotides with a variety of chemi-
cal structures [12]. ASOs form a DNA–RNA hybrid by binding specific RNA sequences
through Watson–Crick base pairing to modulate gene expression [13]. The functional
mechanism of ASO can be broadly categorized into two main modes of action: RNase
H-mediated degradation and steric hindrance [13].

RNase H-mediated degradation: When DNA-based oligonucleotides, also known as
gapmers, bind to their respective mRNA sequences, they can recruit endogenous RNase
H enzymes. RNase H recognizes the RNA–DNA duplex and catalyzes the degradation
of RNA, leading to the reduction in the target RNA and gene silencing (Figure 1a) [14].
This strategy has been employed widely to suppress disease-causing or disease-modifying
genes. Fomivirsen, mipomersen, and inotersen are the three RNase H-competent ASOs
that have so far acquired regulatory approval [14].
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Figure 1. Functional mechanism of antisense oligonucleotide-mediated modulation of gene expres-
sion. (a) RNase H mediated degradation of RNA by antisense oligonucleotides. (b) Suppressing
the translation or splicing modulation by an antisense oligonucleotide through steric hindrance
mechanisms.

Steric hindrance: Apart from RNase H-mediated breakdown, ASOs can interfere
with RNA–RNA or RNA–Protein interaction by blocking certain regions within the tar-
get transcript. This results in the prevention of translation rather than the lowering of
transcript levels [15]. The best-known application of this mode of action is splicing modu-
lation, which can cause either exclusion (exon skipping) or retention (exon inclusion) of
specific exon/exons by targeting splice sites or exonic/intronic inclusion signals, respec-
tively [16,17]. Typically, this approach can be used both for restoration of the translational
reading frame to have functional protein synthesis or for disruption of translation of the
target gene [18,19] (Figure 1b). Eteplirsen, golodirsen, nusinersen, viltolarsen, casimersen,
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milasen, and atipeksen are the splice-switching ASOs that have received FDA approval
to date [12,20–22].

4. Molecular Mechanism of Cellular Uptake and Intracellular Distribution
of Antisense Oligonucleotides

The effectiveness of antisense oligonucleotides (ASOs) as therapeutic agents depends
significantly on cellular uptake and intracellular distribution. To have the desired effects,
ASOs must efficiently penetrate cells and locate their target locations. After intravenous,
subcutaneous, or direct administration, ASOs reach the bloodstream, where they can be
broken down by nucleases [23]. Once they reach the target organ, the cellular uptake process
can be achieved in several ways, such as phagocytosis, macropinocytosis, micropinocytosis
via clathrin and caveolin-independent pathways, caveolar internalization, and classical
clathrin-mediated endocytosis. Following cellular uptake, ASOs are internalized into early
endosomes and then late endosomes, regulated by Rab, SNARE, and tethering proteins. A
percentage of ASO drugs, possibly a very tiny portion, are released from late endosomes
into the cytoplasm, where they target mRNAs or pre-mRNAs in the cytoplasm or the
nucleus to carry out their therapeutic effects. Nuclear entry can be actively mediated by
the nuclear pore mechanism or passively via simple diffusion [24]. Many small cellular
proteins, such as COPII, can facilitate nuclear trafficking. However, the process is not
entirely known [23]. The target of different ASOs is located at different subcellular sites.
For RNase H-mediated mRNA degradation, the ASO drugs need to reach either the
cytoplasm (ribosomes) or the nucleus [25]. In contrast, for exon skipping/inclusion, ASOs
must be present in the spliceosomes of the nucleus [26]. Another percentage of ASO
medications enter lysosomes or are subsequently expelled from the cell by one of three
hypothesized mechanisms: membrane leakage, back-fusion-mediated release, or vesicle-
mediated release [23]. It is essential for ASOs to avoid or circumvent lysosomal degradation
to maintain their integrity and efficacy. Apart from that, cellular uptake and intracellular
localization of ASOs can significantly vary based on the ASO chemistry, cell type, and
specific cellular conditions.

5. Challenges Associated with ASO Delivery

Although ASOs have great potential as therapeutic agents, their efficient delivery faces
several difficulties. These difficulties are associated with the physiochemical characteristics
of ASO molecules, such as their large size, molecular weight (single-stranded ASOs are
~4–10 kDa, double-stranded siRNAs are ~14 kDa), and negative charge, which hinders
passive diffusion across the cell membrane. ASOs predominantly rely on endocytosis
for cellular uptake, which might be ineffective and lead to entrapment in endosomes or
lysosomes, leading to lysosomal degradation. So, once inside the cell, ASO must escape
endosomal entrapment to gain access to the target region in the cytoplasm or nucleus [27].
Apart from that, for the systemically administered ASOs to be effective, they need to
avoid renal clearance [28,29], resist nuclease degradation both in the extracellular fluid
and intracellular compartment [30], and avoid removal by the reticuloendothelial system,
which includes mononuclear phagocytes, liver sinusoidal endothelial cells, and Kupffer
cells [31]. A study reported that intravenous administration of an AON resulted in 40%
and 18% accumulation in the liver and kidneys, respectively [32]. Recently, ASOs have
also been developed for the treatment of central nervous system (CNS)-related diseases.
The additional barrier—in this case, ASOs—has to cross the blood–brain barrier (BBB)
or brain–cerebrospinal barrier before they can distribute within the CNS. The vascular
barriers of the nervous system are composed of a monolayer of endothelial cells forming
tight junctions through interactions of cell adhesion molecules, which prevents most of the
ASOs from reaching the CNS after systemic injection [33] (Figure 2).
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Figure 2. Challenges in the systemic delivery of ASO drugs. After systemic administration, antisense
oligonucleotide drugs face difficulties in terms of reaching the central nervous system, heart, and
other targeted tissue due to their accumulation in the liver and spleen and renal excretion. Most
systemically administered, naked ASOs are susceptible to degradation by nuclease in the bloodstream.
Upon reaching the target tissue, they undergo internalization by the endosome. Endosomal escape is
required to exhibit activity. Apart from that, ASO may undergo degradation in the lysosome or exit
the cell/tissue by the multi-vesicular system.

Due to these challenges, to date, most of the approved oligonucleotide treatments
are delivered either locally (for example, to the eye or spinal cord) or to the liver. The eye
is chosen as a target for ASO delivery (for example, Pegaptanib and Fomivirsen) due to
its accessibility, anatomical considerations, and immune-privileged status [12]. Although
ocular delivery of ASOs has benefits, there are still obstacles to be overcome, including
getting through anatomical obstacles (such as the blood–retinal barrier), maximizing ASO
stability, and pharmacokinetics for long-lasting therapeutic effects. For ASOs targeting the
CNS, direct delivery into the cerebrospinal fluid via lumber puncture is most commonly
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used (for example, Nusinersen) [34]. However, it should be noted that this method requires
expertise and specialized equipment and carries a small risk of complications associated
with invasive procedures.

6. Strategies to Enhance the Stability and Delivery of Antisense Oligonucleotides
6.1. Chemical Modification

Antisense oligonucleotides were initially employed as synthesized, unaltered DNA,
which turned out to be extremely vulnerable to exonuclease and endonuclease degrada-
tion [35] (Figure 3). Chemical modifications of antisense oligonucleotides can enhance
stability, improve target binding affinity and biodistribution, and provide protection against
nuclease-mediated degradation. Modification of the nucleic acid backbone, the ribose sugar
moiety, and the nucleobase itself have been extensively employed to improve the drug-like
properties of antisense oligonucleotides [29,36].
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Figure 3. Some common chemical modifications used in antisense oligonucleotide chemistry.
(a) Schematic of an RNA nucleotide with a common modification site. (b) Ribose sugar modifi-
cation: 2′-OMe, 2′-O-methyl; 2′-MOE, 2′-O-methoxyethyl; 2′-Fluoro; tcDNA, tricyclo DNA; LNA,
locked nucleic acid; cEt, constrained ethyl bridged nucleic acid; ENA, ethylene-bridged nucleic acid.
(c) Backbone modification: PS, phosphorothioate. (d) Nucleobase modification: 5-methylcytidine,
5-methyluridine. (e) Alternative chemistries: PMO, phosphorodiamidate morpholino oligonucleotide;
PNA, peptide nucleic acid. Created with BioRender.com (https://app.biorender.com/illustrations/
64c764c0257fb4bbb5688afa (Accessed on 2 August 2023).

6.1.1. Backbone Modification

Backbone modifications involve changing the repeating sugar-phosphate units that
make up the phosphodiester backbone of ASOs. Typical changes to the backbone in-
clude the incorporation of phosphorothioate (PS) linkages, in which one of the non-
bridging oxygen atoms of the inter-nucleotide phosphate group is replaced with sulfur [37]
(Figure 3c). Phosphorothioate (PS) belongs to the first generation of ASOs that work by
an RNase H-mediated mRNA cleavage-based mechanism and do not disrupt RNase H
activity [38]. Unmodified ASOs are reported to be degraded within 30 min in serum [1],

https://app.biorender.com/illustrations/64c764c0257fb4bbb5688afa
https://app.biorender.com/illustrations/64c764c0257fb4bbb5688afa
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whereas oligonucleotides with these modifications are more stable, with reported half-lives
of 9 h in human serum [39]. Scavenger receptors (such as the stabilins STAB1 and STAB2)
also take up sulfated molecules, such as oligonucleotides with PS linkages, and facilitate
their internalization into organs like the liver [32,40,41]. Apart from that, the incorpora-
tion of PS linkages increases the binding of ASO to proteins in both plasma and within
cells, which significantly improves drug pharmacokinetics by reducing renal clearance
and increasing circulation time [42]. However, high PS concentrations have been shown to
cause cytotoxic effects, which are assumed to be due to protein binding [43–45]. In addition
to that, PS backbone modifications have been found to reduce the binding affinity of the
oligonucleotide for its target [12].

6.1.2. Ribose Sugar Modification

Oligonucleotides are frequently modified at the 2′ position of the ribose sugar to
provide resistance to enzymatic degradation, improve stability in plasma, and increase
tissue half-lives. 2′-O-methyl (2′-OMe), 2′-O-methoxyethyl (2′-MOE), and 2′-Fluoro (2′-F)
are among the most used 2′ substituents (Figure 3b) [46]. 2′-ribose-modified ASOs are
used to sterically block oligonucleotides or flanking sequences in gapmer ASOs, as these
modifications are not compatible with RNase H activity [12].

In comparison to unmodified phosphorothioates, 2′-O-methyl (2OMe) and 2′-O-
methoxy-ethyl (MOE) have been shown to increase hybridization affinity to their target
RNA and decrease sequence-independent toxicity arising from the PS backbone [47–50].
Due to their extensive success and effectiveness, among the fifteen FDA-approved drugs,
five use 2OMe or 2′MOE chemistry (for example, Pegaptanib, Mipomersen, Nusinersen,
Patisiran, and Inotersen) [12].

Locked nucleic acids (LNA) are a type of 2′-modification in which the 4′-carbon is
linked to the 2′-hydroxyl group and have also been utilized in steric block ASOs, such as
miRNA inhibitors (Figure 3b). LNAs offer increased resistance to nucleases [51] and exhibit
significantly improved hybridization compared to other 2′-modifications [52,53]. How-
ever, they are associated with more severe toxicological issues in systemic treatment [54].
Furthermore, a loss in target specificity can also be due to the strong affinity of LNAs [53,55].

Other sugar modifications that are less frequently used are tricyclo-DNA (tc-DNA)
and S-constrained-ethyl (cEt) (Figure 3b). For tc-DNA modification, this adds an ethylene
bridge fused with a cyclopropane unit, which results in a more stable duplex formation [56].
When tested in cells, Tc-DNA was found to be more effective at correcting splicing than
a 2OMe-PS oligonucleotide and to be stable in serum [57]. However, tc-DNA has only
been used in a very small number of studies up to this point. Finally, the cEt-modified
antisense oligonucleotides show a similar binding affinity to LNA but a better toxicity
profile [58] and have recently shown good promise in a humanized mouse model for HD
(Huntington disease) [59].

6.1.3. Nucleobase Modification

ASOs’ characteristics can also be enhanced by the introduction of nucleobase modifi-
cations in ASO to achieve optimized Watson–Crick base-pairing and thereby control the
melting temperature of the ASOs [36] (Figure 3d). Alteration of the nucleobase chemistry
results in a thermally more stable ASO-target duplex by increasing the affinity towards
the target. The thermal stability of splice-switching ASOs plays a vital role, as a stronger
hybridization between ASOs and their target can hinder the formation as it directly impacts
their ability to effectively block the splice site or hinder the assembly of the ribosomal com-
plex, ultimately preventing translation and executing the therapeutic effects [60]. Among
nucleobase modifications, the incorporation of cytosine analogs has been extensively used.
5-methylcytidine and 5-methyluridine/ribothymidine) has the effect of increasing the
oligonucleotide melting temperature by ~0.5 ◦C per substitution [36] (Figure 3d). Apart
from that, 5′-methyl cytosine-based analogs were used to reduce the immunological stimu-
lation caused by CpG dinucleotide-mediated toll-like receptor activation [61,62].
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6.1.4. Alternative Chemistries of ASOs

Apart from the modifications mentioned above, other chemistries have also been
explored for the improvement of ASOs’ drug-like properties, such as PNA (Peptide Nu-
cleic Acid) and PMO (Phosphorodiamidate Morpholino Oligomer) (Figure 3e). PNA is a
synthetic nucleic acid analog in which the sugar-phosphate backbone is replaced with a
peptide-like backbone, which makes them uncharged [63]. As a result, PNAs have a high
binding affinity and are resistant to enzymatic degradation [64,65]. These are mostly imple-
mented in splicing modulation approaches or translation inhibition, as they are unable to
activate the RNase H enzyme. A clear shortcoming of this type of modification is its poor
cellular uptake and water insolubility [66,67]. PNAs are found to be rapidly cleared when
administered peripherally [68], and these poor pharmacokinetic properties are the main
reason for their limited in vivo use thus far.

Another strategy that has been explored is the use of PMO synthetic backbone mod-
ification, in which the five-membered ribose heterocycle is replaced by a six-membered
morpholine ring structure with phosphorodiamidate linkages [69]. Similar to PNA, PMOs
are neutrally charged and work by steric hindrance or splice modulation to provide an
antisense effect [70]. The absence of a carbonyl group provides PMO resistance against
protease and nuclease degradation [70], and their neutral charge makes them less suscep-
tible to activating immune responses [71]. Apart from that, studies have shown that the
administration of multiple high doses can be achieved with minimal toxicity [72].

To date, four PMO drugs have been approved by the FDA: eteplirsen, golodirsen,
viltolarsen, and casimersen (Eteplirsen targets exon 51, Golodirsen and Viltolarsen target
exon 53, and Casimersen targets exon 45 of the dystrophin mRNA) for Duchenne Muscular
Dystrophy [73,74] (Table 1). The first in vivo exon skipping of Dmd using 2′-OMePS ASO
chemistry was documented in a work by Lu et al. [75]. In another work, exon 23 skipping
was successfully induced, and dystrophin production was restored in mdx mice by the
intramuscular administration of leashed PMOs (PMOs annealed to complementary anionic
oligonucleotides to increase delivery). Even two weeks after the injection, the skipped
transcript was observed, which was not the case with 2′-OMePS ASOs [76]. An additional
investigation on CXMDJ dogs discovered that intramuscular or intravenous delivery of
a 3-PMO cocktail promotes in-frame 6 to 8 exon skipping with 61–83% exon skipping
efficiency two weeks after intramuscular injection, which results in approximately 25–50%
dystrophin protein restoration [77].

In addition to the DMD, the neutrally charged PMO chemistry was also being studied
by several groups for the treatment of central nervous system (CNS) disease. For Spinal
Muscular Atrophy, a neurodegenerative disease, peripheral administration of Nusinersen,
an MOE-based drug, has already been proven to rescue the SMA phenotype [78,79] (Table 1).
However, with peripheral delivery or intrathecal injection being more invasive, the focus
is now to modify the ASO in such a way that systemic injection can reach the CNS by
crossing the blood–brain barrier (BBB). There is a length-dependent effect of PMO ASO.
Two separate studies showed that a single intravenous injection of longer PMO (25 mer)
in a severe SMA mouse model can increase the survival rate. Based on the experimental
results, they emphasized the superiority of the morpholino ASOs because of their lower
toxicity, increased SMN levels, and prolonged survival [80,81]. In addition to that, another
study proved PMO can more readily cross the immature BBB into the CNS [72].

However, the main pharmacokinetic shortcomings associated with PMO are low
efficacy, which is related to its rapid clearance from the bloodstream, poor uptake in tissues
like the skeletal muscle, and endosomal entrapment [82,83]. As PMOs are uncharged
nucleic acid molecules, this provides the opportunity to covalently conjugate them to
charged delivery-promoting moieties such as cell-penetrating peptides (CPPs) for enhanced
delivery, as mentioned below [69,84].
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6.2. Bioconjugates

While chemical modifications are required to protect ASOs from exonucleases and
prolong their stability, the next challenge is ASO passage across biological barriers. These
barriers include the vascular endothelial barrier, cell membranes, and intracellular com-
partments. Additionally, achieving specific cell/tissue targeting and a reduction in clear-
ance from circulation is essential [85]. Improving ASO delivery potential can be achieved
through the conjugation of different moieties that can direct the drug to specific tissues
and enhance internalization. Bioconjugates are distinct molecular entities with precise
stoichiometry, which ensures well-defined pharmacokinetic properties and simplifies large-
scale synthesis. Additionally, bioconjugates tend to have a small size, which often results
in favorable biodistribution profiles [12]. Bioconjugates usually promote interaction with
cell-type-associated receptors, consequently enhancing delivery to the target tissue and in-
ternalization by receptor-mediated endocytosis [86]. There are different types of conjugates
available, including lipid-based bioconjugates (e.g., cholesterol and its derivatives) [87–89],
peptide-based bioconjugates (e.g., cell-penetrating peptides) [90–95], aptamers [96], antibod-
ies [97,98], sugars (for example, N-acetylgalactosamine (GalNAc)) [99,100], and polymers
(e.g., PEG) (Table 2). The selection of the appropriate bioconjugate depends on several
factors, including the application goals, specific requirements of the ASO delivery system,
the intended therapeutic application, and safety considerations. Due to the effectiveness
of bioconjugates in increasing the efficacy of ASO delivery, bioconjugated compounds are
present in four of the five FDA-approved siRNA medications [101].

Table 2. Brief description of the most commonly used bioconjugates in the delivery of antisense
oligonucleotides.

Bioconjugates Brief Introduction Benefits

Lipid-based
conjugates

Lipid-based moieties are usually cholesterol and its derivatives,
which are covalently conjugated to siRNA and antagomir ASOs
to enhance delivery. This group of bioconjugates enhances
in vivo delivery by adhering to lipoprotein particles (such as
HDL and LDL) in the circulation and taking over the body’s
natural system for lipid uptake and transport [101]. The overall
hydrophobicity of siRNAs governs their in vivo association
with the various classes of lipoprotein, with the more
hydrophobic conjugates preferentially attaching to LDL and
primarily being taken up by the liver. The less lipophilic
conjugates preferentially bind to HDL and are consumed by the
liver, adrenal glands, ovary, kidney, and small intestine.
Another lipid derivative, α-tocopherol (vitamin E), was also
found to increase the delivery of siRNA [12].

• Improved cellular uptake.
• Enhanced pharmacokinetic

properties.
• Improved cell/tissue targeting.
• Enhanced binding specificity.
• Improved in vivo stability.

GalNac conjugates

Trimeric GalNac is the most clinically successful
tissue-targeting ligand used in ASO delivery to date. GalNAc is
a carbohydrate moiety that has a high affinity for the highly
expressed asialoglycoprotein receptor 1 (ASGR1 and ASPGR)
[101]. This interaction promotes the endocytosis of PO ASOs
and siRNAs into hepatocytes. Givosiran, a GalNAc-conjugated
siRNA, was granted FDA approval for the treatment of acute
hepatic porphyria in November 2019 as a result of its
remarkable success [12].
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Table 2. Cont.

Bioconjugates Brief Introduction Benefits

Antibody and
Aptamer conjugates

Antibody–RNA bioconjugates offer a promising strategy for
nucleic acid therapeutics; however, their utility for
oligonucleotide delivery is still in the early stages of
development. Antibodies are useful for the targeted delivery of
oligonucleotides to cells or tissues that other methods cannot
reach since they are very selective in recognizing target antigens
[12,101]. Aptamers bind to their specific target proteins with
high affinity, just like antibodies do. Aptamers are regarded as
chemical antibodies and have demonstrated many advantages
over antibodies, including being easier and less expensive to
produce (i.e., through chemical synthesis), smaller size, and
lower immunogenicity [12].

Polymer conjugates

PEG is a non-ionic, hydrophilic polymer with a wide range of
applications. It is widely used to prolong blood circulation and
improve drug efficacy. PEGylation, which involves covalently
adding PEG to a drug, improves the stability of ASOs and
reduces renal excretion by forming a protective hydration layer
around them. PEG-conjugated drugs have been found to have
better pharmacokinetic and pharmacodynamic properties in
terms of the drug’s chemical aspects of absorption, distribution,
metabolism, excretion, and toxicity (ADMET). Other polymers
besides PEG have also received attention, including
poly(glycerol), poly(2-oxazoline), poly (amino acid), and
poly[N-(2-hydroxypropyl)methacrylamide] because they are
more ADMET-enhancing and less immunogenic [101].

Peptide-based
conjugates

Peptides are short chains of amino acids that can serve as
carriers for oligonucleotide delivery for their cell-specific
targeting, cell-penetrating, or endosomolytic properties [12].
More information about peptide conjugates is
mentioned in Section 6.2.1.

6.2.1. Cell Penetrating Peptides

Cell-penetrating peptides (CPPs, also known as protein transduction domains) are
short (fewer than 30 amino acids) cationic, amphipathic, or hydrophobic peptides that
translocate small drugs/cargo across cell membranes and biological barriers [101,102].
CPPs were not just recently discovered; they were first identified in 1988 when two research
groups identified that the transactivator of transcription (TAT) protein of HIV can cross the
cell membranes and can be efficiently internalized by cells due to the strong electrostatic
interactions with heparin sulfate during endocytosis [103]. Later, another group of scientists
found thirteen amino acid sequences that align with residues 48–60 of TAT and play a key
role in cellular uptake. Subsequently, peptides exhibiting cell membrane translocation like
TAT were commonly categorized as cell-penetrating peptides (CPPs) [104].

CPPs can be classified into cationic CPPs, amphipathic CPPs, and hydrophobic CPPs
based on their physicochemical characteristics [105]. Cationic CPPs are mainly composed
of basic amino acids such as arginine and lysine [104]. Poly-arginine stretches exhibit the
utmost capacity for cellular uptake and hold considerable therapeutic potential [105]. How-
ever, higher values of arginine are related to irreversible side effects [106]. Several studies
have shown that positively charged CPPs interact with negatively charged carboxylic,
phosphate, and sulfate groups of the cell membrane and eventually mediate internalization
by endocytic pathways [104,107]. Some examples of cationic CPPs include TAT, penetratin,
and polyarginine [104]. Amphipathic CPPs contain polar and non-polar amino acid regions.
Generally, the non-polar region is made up of valine, leucine, and alanine, whereas the
polar region is made up of lysine and arginine. Amphipathic peptides have been found to
play a role both in cellular internalization and endosomal escape [107]. This group of CPPs
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makes up more than 40% of all the CPPs that have so far been identified [105]. Some of the
examples of amphipathic CPPs are MAP, transportan, and Pep-1 [103]. Compared to other
types of CPPs, there are relatively few hydrophobic CPPs that are typically composed of a
large number of non-polar residues or only a few charged amino acids (less than 20% of
the sequence) [105]. Hydrophobic CPPs usually interact with the hydrophobic region of
the cellular membrane and probably translocate by an energy-independent mechanism.
Examples of such natural hydrophobic CPPs include K-FGF, C105Y, and gH625 [104]. How-
ever, the peptide sequence of hydrophobic CPPs has not been found to significantly affect
cell uptake [108]. CPPs can function either via receptor-mediated endocytosis, where CPPs
trigger endocytosis by directly binding to the specific cell surface receptor, or via direct
translocation, where CPPs cross the cell by creating transient pores on the cell membrane
and deliver the cargo inside the cytoplasm or nucleus [101].

7. Overcoming the Limitations of PMO by Conjugating It with Cell
Penetrating Peptides

As mentioned earlier, PMOs show low efficacy as therapeutic agents due to their poor
cellular uptake, less permeability of membrane barriers, rapid clearance from the systemic
circulation, inability to cross blood–brain barriers, and the requirement of repetitive admin-
istration and/or a high dosage of the drug for executing its function. Apart from that, due
to the hydrophobicity of the plasma membrane and the neutral charge in PMO, only small
portions of internalized PMOs can escape endosomes and reach their intended target [83].
A promising utilization of CPP is their ability to directly conjugate with neutrally charged
PMO and PNA and increase the delivery efficacy [109–111].

A promising utilization of CPP is their ability to directly conjugate with neutrally
charged PMO and PNA using several methods, including maleimide linkage, disulfide
linkage, click chemistry, or amide linkage. It enhances the pharmacokinetic properties of
PMO and PNA. Among various therapeutic purposes, this approach has been extensively
explored, mostly for Duchenne Muscular Dystrophy (DMD). This affects approximately
1 in 3500 newborn boys and is caused by out-of-frame deletions in the Dmd gene, resulting
in the loss of dystrophin, the structural muscle protein [112]. Lack of dystrophin results in
progressive muscular degeneration, which impairs ambulation and causes mortality from
cardiac and respiratory failure [113]. The mRNA reading frame around the deletion can
be restored by the “exon-skipping” approach, where pre-mRNA splicing is modulated to
produce smaller but functional proteins. This approach has been used successfully with
naked PMO and resulted in the conditional approval of four PMO-based drugs for DMD
(e.g., eteplirsen, golodirsen, viltolarsen, and casamirsen) [73,74]. Eteplirsen has been found
to restore an average of 0.9% dystrophin to normal levels after 180 weeks of treatment,
which indicates low treatment efficacy despite the safe profile of this drug [102]. For
golodirsen, according to the trial results, dystrophin expression increased by ~0.9% after
the demonstration of the drug [73]. The casimersen-treated group saw a 0.81% increase
in dystrophin production [114]. Whether such a tiny increase in dystrophin expression is
enough to slow down disease progression and provide clinical benefits is still a big question.
Apart from that, viltolarsen has limited efficacy in cardiac tissue due to poor uptake.
As the primary cause of mortality in the DMD patient population is cardiorespiratory
complications, the low efficacy of the drug in the heart is a serious concern in exon-skipping
therapy [115]. Therefore, there is still a need for a more potent substance to raise dystrophin
levels and thereby maximize the functional advantages of this strategy.

Conjugation of CPPs with PMO is one such approach to improving PMO delivery.
This strategy was first demonstrated with an arginine-rich peptide (RXR)4, which was
administered to the mdx mouse model of DMD in a variety of doses, time intervals, and
delivery methods. It was observed that a single intravenous administration can cause high
dystrophin exon skipping in skeletal muscle, the diaphragm, and for the first time in the
heart [116]. Another arginine-rich peptide, (RXRRBR)2 peptide (B-peptide), was identified
from a screen using the EGFP-654 splicing reporter mouse model to ensure PPMO entry
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to cells and notable exon-skipping in the heart after retro-orbital injection, resulting in
improved cardiac function, specifically end-systolic volume and end-diastolic volume and
resistance to dobutamine [117]. In another study, intravenous injection of a single 25 mg/kg
dose of B-peptide conjugated PMO into mdx mice confirmed approximately 50% of wild-
type dystrophin levels along with restoration in cardiac function [116,117] and improved
muscle function. In contrast, weekly administration of naked PMO at 200 mg/kg for
12 weeks could only achieve 10% wild-type dystrophin levels [118]. Fusion of muscle-
specific peptide (MSP) with B-peptide through a phage display has been found to improve
activity 2- to 4-fold after multiple 6 mg/kg doses [119]. Interestingly, another study revealed
that a specific orientation (B-MSP-PMO) can lead to a 2–5-fold improvement in skeletal
muscle restoration compared to B-PMO [120]. Additionally, B-PMO has also been used
for research in canine models of DMD that better mimic the pathophysiology of human
illness and serve as a more rigorous evaluation of the efficacy of CPP-PMOs in restoring
dystrophin expression. A repeat low-dose (4 mg/kg per ASO) B-PMO intravenous injection
has been found to restore 5% dystrophin of wild-type levels throughout the body, including
in the heart, where improvement of cardiac conduction defects was seen after therapy [121].
Another arginine-rich peptide, R6G, is also currently being explored for the treatment of
DMD [122]. R6G peptide is a modification of the conventional R6 peptide with the glycine
residue that has been extensively studied for various neuromuscular disorders [123,124].
When conjugated with PMO, it has shown promise for exon-skipping efficacy, specifically
in cardiac muscle [122].

Recent research has led to the development of several peptide series known as “Pip’s”
(PMO/PNA internalization peptides), which are generated from the parent peptide pene-
tratin [125,126] and consist of the amino acids arginine (R), 6-aminohexanoic acid (X), and
ß-alanine spacer (B), with an internal core containing hydrophobic residues [12]. The most
recent Pip-PMO conjugates are significantly more effective than naked PMO and, more
critically, reach cardiac muscle following systemic administration in dystrophic animal
models. A single intravenous injection of the Pip5e peptide-conjugated PMO induced
the highest amounts of exon skipping and dystrophin restoration throughout the body,
including in the hearts of mdx mice [127]. To increase homogenous dystrophin repair and
to target the heart muscle more effectively, the Pip6 series of peptides were generated by
further iterations of the core design [128]. In a study, it was observed that inversion of
the Pip5e-PMO hydrophobic core (Pip6a) resulted in a cardiac dystrophin recovery score
of up to 37% in the mdx animal model [92]. In another study by the same group, it was
demonstrated that administering Pip6f-PMO (scrambled peptide core) can increase the
levels of the protein dystrophin by up to 28% in the hearts of mdx mice who had previously
undergone a forced exercise regimen to cause changes resembling the DMD cardiac phe-
notype [129]. Additionally, injection of Pip2a or Pip2b conjugated PPMOs in the tibialis
anterior of the mdx mouse has also been found to induce an effective exon 23 skipping and
a noticeable increase in dystrophin rescue [130]. Another CPP created to target muscle is
M12, which was discovered through a phage display conducted on C2C12 myoblasts upon
conjugation to PMO. M12 achieved approximately 10–25% of wild-type dystrophin levels
following a single systemic administration, although at dosing levels 5- to 6-fold higher
than those required for comparable efficacy [102].

CPP-PMO has also been used as a therapeutic approach for myotonic dystrophy type
I, where a CTG expansion in the DMPK gene’s 3′ untranslated region causes a pathogenic
transcript that interacts with RNA-binding proteins like muscleblind-like 1 (MBNL1) to
cause widespread aberrant splicing abnormalities. Systemic administration of B-PMO
targeting this repeat element causes the blocking of Mbnl1 sequestration, resulting in
normal nuclear distribution and subsequent correction of abnormal RNA splicing, including
for the chloride channel 1 gene, which is a primary contributor to myotonia [131].

One of the biggest challenges of nucleic acid therapy is crossing the blood–brain
barrier to reach the central nervous system (CNS) after systemic delivery. CPPs have
been identified as promising medicines in the treatment of central nervous system (CNS)
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diseases due to their demonstrated transmembrane transporting ability. It is assumed
that small-size cationic or amphipathic CPPs may exhibit greater affinity for negatively
charged endothelial cells on the blood–brain barrier [132,133]. CPP-PMOs have recently
been investigated in preclinical models of spinal muscular atrophy (SMA), an autosomal
recessive neuromuscular disorder that results in premature death [134]. This disease is
caused by mutations in the survival of the motor neuron 1 (SMN1) gene. A paralogous gene,
SMN2, encodes a vital SMN protein but generates only minimal levels due to a sequence
variant leading to the exclusion of exon 7 from approximately 90% of mature transcripts.
Consequently, a truncated, non-functional protein is produced [135,136]. To address the
functional deficiency caused by the loss of SMN1 protein in patients, ASOs have been
employed to facilitate the inclusion of exon 7 in SMN2 transcripts, thereby enhancing the
production of SMN2 protein [137]. However, the limited delivery of the currently used
ASO in the rostral spinal cord and brain has reduced therapeutic efficacy. Nusinersen, a
modified 2′-MOE PS ASO, has been recently approved by the FDA for the treatment of
SMA. Intrathecal injection of Nusinersen can significantly improve motor function and
increase the lifetime of SMA patients [138,139]. However, this procedure is invasive and
is linked to unpleasant post-lumbar puncture adverse effects for the patients [137]. There-
fore, to address this, PPMO trials have been conducted. Intravenous administration of
Pip6A-PMO in the Taiwanese severe SMA mouse model increased mean survival and
SMN2 expression in the brain and spinal cord and improved neuromuscular junction
morphology [140]. Due to the mouse model’s severity, the drug has to be administered
before postnatal day 2 to demonstrate functional benefit. It is likely that the BBB may
not be fully formed at that time and, as a result, does not accurately represent the clinical
condition for therapeutic intervention [102]. To prove the blood–brain barrier crossing
capacity of PPMO, a study has been conducted where symptomatic SMA mice were admin-
istered RXR-MO and r6-MO (morpholino oligomer) conjugates intraperitoneally at PD-5
with a completely closed BBB. The treated mice showed improved median survivals of
41.4 and 23 days, respectively, which is significantly higher compared to the naked
MO (~17 days). Additionally, RXR-MO and r6-MO conjugates were found in the cen-
tral nervous system in a symptomatic phase. Pathological studies demonstrated that
CPP-MOs mitigate the degradation of neuromuscular connections more efficiently than
scrambled or naked MOs [124]. Another study demonstrated that a derivative of an ApoE
could induce a 0.25-fold increase in exon 7 inclusion in the pre-mRNA of the spinal cord
and, to a lesser extent, in the brain of a spinal muscular atrophy mouse model, improving
the diseased mice’s phenotype [141].

CPP-PMO strategies have also been developed for the treatment of other neurological
diseases like Huntington’s disease (HD) and Amyotrophic Lateral Sclerosis (ALS) [83],
as well as for use as antibacterial agents because ASOs by themselves are not very effec-
tive at penetrating bacterial cell walls [102]. It is evident that CPPs have a great deal of
therapeutic potential in delivering and increasing the efficacy of ASOs specifically the
PMO-based strategy.

8. DG9: A CPP for Enhancing the Delivery and Cellular Uptake of ASO and Proteins

Although CPPs hold promise in facilitating the transport of biologically active cargo
across cell membranes, including the notorious blood–brain barrier and other challenging
barriers within the body, they also pose a number of difficulties and issues that require
careful study. The primary obstacle to completing clinical trials for PPMO-based medica-
tions right now is their toxicity and immunogenicity. Toxicity can be variable depending on
several factors, including species, treatment duration, frequency of systemic administration,
dosage, exons skipped, and the cationic nature of the peptide [83]. Additionally, first-
generation arginine-rich peptides were found to be more immunogenic than PMOs [142],
suggesting that the toxicity may result from immunogenic processes such as complement
activation [121,143]. Due to severe side effects, a preclinical experiment using an arginine-
rich PPMO by Sarepta had to be stopped. It is assumed that the side effects were partially



Cells 2023, 12, 2395 16 of 24

attributable to the high dosage employed [144]. In a separate study, rats given high doses of
B-peptide-PMO experienced a loss of body weight and an increase in serum blood urea ni-
trogen and creatinine in a dose-dependent manner, indicating decreased renal output [145].
Therefore, the quest for cell-penetrating peptides is still ongoing in order to overcome the
challenges. A peptide found recently in this search is DG9.

DG9 is a cell-penetrating peptide derived from the protein transduction domain (PTD)
of the human Hph-1 transcription factor, which facilitates the cell membrane penetration of
its protein cargos in the lungs (Figure 4). Two of these Hph-1 domains constitute DG9 [9].
In a study by Choi et al., it was shown that intraperitoneal injection of fusion proteins con-
jugated with the Hph-1 domain has enhanced delivery in a wide range of organs, including
the heart and brain, which are apparently challenging to deliver. Additionally, according to
the study, cell viability was not affected, and behavioral abnormalities, cytotoxic effects,
and immunogenicity were not observed after 1.6 mg/kg of intravenous administration
of Hph-1-fused protein into mice for 14 days or 100 µg of intraperitoneal injection two
times a week for two weeks [146]. The same author later reported another study where
they used the same protein transduction domain (PTD) of the human Hph-1 transcription
factor, but this time with two tandem sequences (HHph-1-PTD) and fused it with Foxp3
(the target protein of the study) protein to increase the cell permeability of Foxp3. In an
in vitro study, HHph-1-Foxp3 was detected in the nucleus as well as in the cytoplasm
within 30 min of transduction, suggesting that Foxp3 protein is efficiently delivered to cells
and is localized in the nucleus. The delivery efficacy of HHph-1 was also proved in vivo,
as HHph-1-Foxp3-treated mice lived longer and their phenotype improved compared to
the control groups. They also found that two repeats of Hph-1-PTD (HHph-1) resulted in
optimal intracellular transduction and rapid delivery compared to one Hph1 domain [147].
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A separate study reported that a conjugate of PMO and a unique peptide, derived
from a human T cell and a near dimer of the PTD, are at least 10- to 100-fold more efficient
than the prior peptides at delivering the PMO into bacteria and ultimately causing bacterial
death. The only difference between the DG9 and the peptide used in the study is that
only L forms of amino acid residues were used in the peptide [148]. Kim et al. previously
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demonstrated that DG9 can deliver a PMO to the zebrafish heart and can cause strong exon
skipping in the heart while also inducing exon skipping at significantly greater levels in
the skeletal muscle [149].

The FDA has approved exon skipping as a promising therapy for DMD, which utilizes
phosphorodiamidate morpholino oligomer (PMO) to target and modulate gene expression.
Yokota’s research group has identified DG9 peptide conjugation as a powerful way of
enhancing the exon-skipping efficacy of PMO in vivo [9]. The positive aspect of the DG9
peptide used in this study is that it has a potentially better toxicity profile compared to
other peptides. As mentioned earlier, peptide-conjugated PMOs have been found to induce
dose-dependent toxic effects in preclinical studies, which are thought to be linked with
their amino acid compositions [83,144,150]. It has also been reported that substituting
D-amino acid for L-amino acid in polymer-peptide conjugates attenuates anti-polymer
antibody generation and toxicity and exhibits good tolerance in vivo even after repeated
administration [151]. Therefore, certain L-arginine residues in DG9 were converted to
D-arginine (DG9 (sequence N-YArVRRrGPRGYArVRRrGPRr-C; uppercase: L-amino acids,
lowercase: D-amino acids)) [9]. This conversion has been shown to improve the viability of
peptide-conjugated PMO-treated cells in vitro, along with increasing serum stability [152].
Additionally, this DG9 does not contain any 6-aminohexanoic acid residues (often repre-
sented by “X” in peptide sequences), which have also been linked to higher toxicity [152].
In the study of DG9-PMO-mediated efficient exon skipping by Lim et al., it has been
demonstrated that retro-orbital injection of DG9-conjugated PMO into hDMDdel52; mdx
mice can increase skipping efficiency by a factor of 2.2 to 12.3-fold and 14.4-fold compared
to the unconjugated PMO. This resulted in a dystrophin restoration amount of 3% and
2.5% of wild-type levels in skeletal muscles and the heart, respectively. Skeletal muscles
produced 2.8 to 3.9% more dystrophin and had an exon 51 skipping level of 55 to 71%
after receiving repeated injections of DG9-PMO once each week for three weeks. Most
notably, hDMDdel52; mdx mice treated repeatedly with DG9-PMO showed a considerable
improvement in forelimb and total limb grip strength, indicating the improvement of the
muscle function of the treated mice. Additionally, the tibialis anterior DG9-PMO intramus-
cular injection was successful and demonstrated dystrophin restoration, suggesting the
possibility of DG9-PMO for DMD therapy. There was no significant toxicity observed after
the injection of DG9-PMO [9].

Another study by Yokota’s research group tested the effectiveness of DG9 peptide
in an SMA mouse model (Figure 4). In that study it has been shown that after a single
subcutaneous administration of DG9-PMO into SMA mice (Taiwanese model), FL-SMN2
(full-length SMN2) expression was increased ~5-fold compared to unconjugated PMO
in the majority of the tissues, including the brain and spinal cord. The results indicated
improved motor and breathing function and muscle strength, with an increased mean
survival of 58 days for DG9-PMO-treated mice, which was significantly higher compared
to untreated (8 days) and unconjugated PMO-treated mice (12 days). The fact that DG9
greatly improved the uptake of PMO in the CNS and peripheral tissues at PD7, despite
subcutaneous treatment at PD5, indicates that DG9-PMO can assure extensive distribution
of the PMO to both the peripheral and CNS tissues. The toxicological studies show that
DG9-PMO does not appear to be adverse or to impair mice’s immune systems [10].

9. Conclusions

Despite their huge potential, the poor biodistribution of nucleic acid-based medications
has prevented them from being used clinically. As a result, cell-penetrating peptides have
been thought of as a potential tactic to enhance passage across biological barriers and
intracellular delivery, as covered in great detail in this chapter. However, there are a number
of concerns that need to be resolved before CPPs are used in clinics, such as in vivo stability,
immunogenicity, cellular toxicity, lack of selective intracellular uptake, and inability to
escape from endosomes. Despite extensive research, the underlying mechanisms regulating
the extravasation and cellular transport of these CPP-drug conjugates or complexes remain
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poorly understood. Undoubtedly, a deeper comprehension of these PPMOs’ limitations,
pharmacodynamics, and mode of action will help create new CPP generations that are better
able to target various tissues (and clinical diseases) and deliver their payload within the
appropriate cellular compartment, giving patients hope for an improvement in their quality
of life. The integration of DG9 into ASO-mediated therapy holds the potential to enhance
cellular uptake and biodistribution of PMO, opening the door to more effective and precise
treatments for a wide range of disorders. However, further research and development
are necessary to fully realize the potential and long-term safety considerations. While
DG9 has demonstrated proficiency in facilitating ASO transport into the cytoplasm, the
precise underlying mechanism remains a topic requiring deeper exploration. This quest for
mechanistic understanding holds promise as a compelling avenue for future investigative
pursuits. With continued scientific inquiry, answers may emerge, potentially solidifying
CPP-conjugated ASO-mediated therapy as a valuable asset within the arsenal of gene
therapy strategies.
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