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Abstract: The screening of real features among thousands of ions remains a great challenge in the
study of metabolomics. In this research, a workflow designed based on the MetaboFR tool and
“feature-rating” rule was developed to screen the real features in large-scale data analyses. Seventy-
four reference standards were used to test the feasibility, with 83.21% of real features being obtained
after MetaboFR processing. Moreover, the full workflow was applied for systematic characterization
of 14 species of the genus Isatis, with the result that 87.72% of real features were retained and
69.19% of the in-source fragments were removed. To gain insights into metabolite diversity within
this plant family, 1697 real features were tentatively identified, including lipids, phenylpropanoids,
organic acids, indole derivatives, etc. Indole derivatives were demonstrated to be the best chemical
markers with which to differentiate different species. The rare existence of indole derivatives in Isatis
cappadocica (cap) and Isatis cappadocica subsp. Steveniana (capS) indicates that the biosynthesis of
indole derivatives could play a key role in driving the chemical diversity and evolution of genus Isatis.
Our workflow provides the foundations for the exploration of real features in metabolomics, and has
the potential to reveal the chemical composition and marker metabolites of secondary metabolites in
plant fields.

Keywords: untargeted metabolomics; high-resolution mass spectrometry; real features screening;
chemical characterization; genus Isatis

1. Introduction

Metabolomics has been widely applied by a broad spectrum of researchers interested
in defining the biological roles of biomarkers, novel metabolites, and new drug candidates,
as well as for disease diagnosis [1–3]. Untargeted and targeted metabolomics are the two
most common methodologies for comprehensive and targeted analyses to provide global
or simple metabolic overviews [4,5]. For sample sets of complex mixtures for which little
information is available, untargeted metabolomics can provide an unbiased discriminatory
analysis for global metabolite detection, and may also yield insights into biochemical
functions [6]. Advances in liquid chromatography coupled with mass spectrometry (LC-
MS) have become integral metabolomics platforms, with each resulting signal commonly
being referred to as a “feature”. On average, the representative untargeted approach is
usually performed with a tremendous amount of MS features across tens to hundreds of
samples, which makes the exploration of metabolite features even harder [7]. Until recently,
numerous open-source tools have been developed to define features for the generation of
peak tables, with the most common ones being XCMS, MZmine2, and MS-DIAL [8–10].
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Although an enormous and diverse collection of MS data is critical for metabolomics
studies, the interpretation of results remains a challenge owing to the ever-increasing
complexity of feature attributions, which complicates the determination of real features in
peak tables.

In untargeted metabolomics, the peak table obtained with a feature-detection tool
contains all the data acquired from a metabolomics study [11], implying that the quality
of the peak table may influence data interpretation. Variations in experimental conditions
and multiple sample sets may lead to erroneous assignments of feature attributions in MS
data in a peak table, including parental features, adducts, fragments, isotopes, dimers and
contaminants [12–14]. Real features cover, e.g., parental features, while adducts represent
features according to real metabolites and are derived from real sample sources. Parental
features, including quasi-molecular ions, are presented as a proton adduct of [M + H]+ in
positive-ion mode or [M − H]− in the negative-ion mode [13]. Meanwhile, adducts are
formed by the addition of a molecular ion to a metabolite within the ion source. Notably,
each adduct may coexist and correlate with the parental feature or other adducts. Such
correlations inform the discovery of parental features accurately and rapidly, in particular
for metabolites that have no parental features in MS. In contrast, the existence of enormous
amounts of in-source fragments, which are produced during a series of dissociation events
as a consequence of weak bonds that are broken in metabolites in the ion source, complicates
feature annotation owing to the inherent diversity of metabolites [12]. Among the technical
advances of the last decade, certain novel tools have attempted to address this challenge
by focusing on improving the grouping of fragments with parental features; these tools
include CAMERA, RAMClust and MS-CleanR [15–17]. MS-CleanR, as the most recently
developed tool, utilizes full-featured generic filters and feature-clustering functions, and
produces a user-friendly peak table [17]. Unfortunately, any inaccuracies in the selection
of parental features will yield a peak table of poor quality. Given these potential issues, it
is vital that a rule be implemented for accurate screening and selecting parental features
among the inherent abundance of potential features with the purpose of “one feature to
one metabolite”.

Chemical diversity is generated through the evolution of biosynthesis pathways
in plants [18]. Although mass spectrometry can yield more structural information, the
recognition of real features among thousands of features derived from diverse metabolites
is still a significant obstacle in plant metabolomics. Here, we have developed a workflow
which contains a self-developed tool named MetaboFR, aiming to obtain high quality peak
tables in metabolomics. We demonstrate the efficiency of our workflow on the 14 different
species from genus Isatis. Genus Isatis is a widely distributed plant, comprising 80 species
from the Middle East to the Mediterranean region [19]. In China, Isatis indigotica Fort is
important in traditional Chinese medicine (TCM), and is used for the treatment of fever,
flu, and inflammation [20]. Its derivatives played a key role as an antiviral medicine in the
SARS outbreak in 2002. Previous studies revealed the main compounds in Isatis indigotica,
including indole alkaloids, organic acids, flavonoids, lignans, nucleosides, etc. Indigo, as a
principal indole alkaloid in I. indigotica, has long been used as a natural dye around the
world [21]. In addition, Isatis tinctoria, better known as woad, is widely used as a source
of indigo and has been used as a medicinal plant in Europe for centuries. Modern studies
show that it has anti-inflammatory, antitumor, antimicrobial and antioxidant activities [19].
However, only Isatis tinctoria and Isatis indigotica have attracted much attention, and little is
known about the chemistry of other species in this genus. By employing our workflow, we
are able to provide comprehensive chemical annotations based on real features screening
(Table S1), which will give us metabolic insights into the chemical diversity and plant
evolution of secondary metabolites in Isatis L. genus.
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2. Materials and Methods
2.1. Materials and Chemicals

In June 2018, the following Isatis species were planted on our behalf by the private
company (Zealquest, Shanghai, China): Isatis indigotica Fort. (ind), Isatis buschiana (bus),
Isatis cappadocica (cap), Isatis cappadocica subsp. Steveniana (capS), Isatis costata C. A. Mey.
(cosC), Isatis tinctoria L.(tin), Isatis tinctoria L. var. tinctoria (tinV), Isatis japonica Miq. (jap),
Isatis lusitanicaL. (lus), Isatis glauca Aucherex Boiss. (glaA), Tetraploid Isatis indigotica
Fort. (4n = 28), (4ind), Isatis oblongata DC. (obl), Isatis violascens Bunge. (vio), and Isatis
minima Bunge. (min). Information regarding the source of the seeds (14 species) is shown
in Table S2. Leaves of these 14 species were harvested four months after planting. All
voucher specimens were deposited in the Institute of Chinese Materia Medica, Shanghai
University of Traditional Chinese Medicine (SHUTCM, Shanghai, China). The phenotypes
of 14 species are presented in Figure S1.

Pure distilled water used for LC-MS analysis was purchased from Watsons Water (Wat-
sons, Hong Kong, China). HPLC-grade methanol, acetonitrile, and formic acid were purchased
from Fisher Scientific (Thermo, Waltham, MA, USA). Warfarin and analytical-grade ammo-
nium acetate were obtained from Sigma-Aldrich (Sigma-Aldrich, Darmstadt, Germany).

2.2. Standard Solution Preparation

A test mixture containing 74 reference standards was selected for validation of our
workflow, and was prepared at three levels of concentration, i.e., 10, 50, and 100 ug mL−1 in
MeOH. Seventy-four reference standards were purchased from Sigma-Aldrich (Darmstadt,
Germany, purity ≥ 98%); detailed information is shown in Table S3.

The following 12 reference standards for the characterization of genus Isatis were
purchased from Dalian Meilun Biotechnology (Meilun, Dalian, China) and prepared at
100 ug mL−1 in MeOH: isovitexin, vicenin-2, guanosine, indigo, indicant, indirubin, in-
doxyl, isatin, pheophorbide a, pinoresinol, pinoresinol-4-O-D-glucose, and matairesinol-4-
O-D-glucose (purity ≥ 98%).

2.3. Sample Preparation

Leaves of Isatis species were freeze-dried and passed through a 40-mesh sieve. The
extract method from our previous study [22] was applied with some modifications. Briefly,
the ground leaves (20.0 mg) were extracted in 8.0 mL methanol containing warfarin
(200 ng mL−1) as an internal reference. The mixture was vortexed for 30 s and sonicated for
30 min (40 kHz, 250 W). The extract was then centrifuged at 4 ◦C for 10 min at 20,000× g. A
3-µL aliquot was subjected to analysis with UHPLC-QTOF-MS/MS (QTOF, quadrupole-
time-of-flight). Finally, a blank sample (methanol) and a quality-control (QC) sample
(aliquot of all samples) were also prepared for the LC-MS analysis.

2.4. LC-MS Analysis

For metabolic data acquisition for 14 species in genus Isatis, 1290 UHPLC combined
with 6530 QTOF-MS (Agilent, Santa Clara, CA, USA) system was used. The samples were
separated through ACQUITY BEH C18 (2.1 × 100 mm, 1.7 µm) (Waters Technologies,
Milford, MA, USA) with a column temperature of 35 ◦C. In this research, gradient elution
was applied using 2 mM ammonium acetate in water (A) and acetonitrile (B) as the elution
phase. The elution procedure was conducted as follows: 95–90% A from 0 to 2 min; 90–48%
A from 2 min to 10 min; 48–25% A from 10 min to 15 min; 25–5% A from 15 min to
25 min; and 5% A sustained from 25 min to 35 min. Another 4 min 95% A was used for
re-equilibration, and the flow rate was set as 0.3 mL min−1. In addition, QC samples
were employed every 10 injections to monitor the system stability. The mass spectrometer
parameters were set according to our previous study with positive-ion as the acquisition
mode [23].
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2.5. Data Processing

The data processing workflow, shown in Figure 1, was divided into three steps. In
step 1, the AnalysisBaseFileConverter (https://www.reifycs.com/AbfConverter/, accessed
on 16 January 2022) software was used for raw mass spectrum data extraction, and MS-
DIAL version 4.24 (https://prime.psc.riken.jp/compms/msdial/main.html, accessed on
16 January 2022) was used for MS peak detection and alignment with the following pa-
rameters [10]: retention time range, 1–30 min (1–18 min for reference standard samples);
retention time tolerance, 0.15 min; MS1 mass range, 100–1200 (100–1000 min for reference
standard samples); MS1 tolerance, 0.01 Da; MS2 mass range, 0–1200 (0–1000 min for refer-
ence standard samples); MS2 tolerance, 0.02 Da; minimum peak height, 5000 amplitude
(15,000 for reference standard samples). Other parameters, including mass slice width and
MS/MS abundance cut off, were set according to our previous study [23]. An internal
standard was used for peak heights normalization.

In step 2, MS-CleanR (https://github.com/eMetaboHUB/MS-CleanR, accessed on
16 January 2022) was used to process the peak tables extracted from MS-DIAL [17]. In the
MS-CleanR processing, several parameters, including minimum blank ratio and maximum
retention time tolerance, were set according to our previous study [24], in which the mini-
mum Pearson correlation coefficient was 0.8, and α = 0.05 indicated statistical difference.
The peak table was generated as “MS_peaks-clusters_final” in MS-CleanR and was used
for further MetaboFR processing.

In step 3, the peak table “MS_peaks-clusters_final” was processed by MetaboFR based
on the “feature-rating” (FR) rule. A tutorial of MetaboFR is included in the Supplementary
Information. The mass tolerance of adduct flagging and fragment removal was set to
0.01 and 0.05 Da, respectively. For adduct flagging, six adduct groups were defined and
imported for characterization of genus Isatis: [M + H]+ to [M + NH4]+, [M + H]+ to
[M + Na]+, [M + H]+ to [M + K]+, [M + NH4]+ to [M + Na]+, [M + NH4]+ to [M + K]+ and
[M + Na]+ to [M + K]+.

2.6. Statistical Analysis

The normalized peak tables processed by different processing approaches were im-
ported into SIMCA-P 14.1 (Umetrics AB, Umea, Sweden). All data were scaled by unit
variance scaling, and all variables were pareto-scaled before autofitting. The principal com-
ponent analysis (PCA) model was applied to determine unsupervised pattern recognition
by importing different peak table compositions.

2.7. Metabolite Identification

An in-house library, containing 269 compounds reported from the entire genus
Isatis, was established in order to obtain precise chemical interpretation results. Infor-
mation about the 269 compounds, including chemical names and formulas, is listed in
Table S4, and the structures are displayed in Figures S2–S6. To identify unknown metabo-
lites, we also drew upon major natural product databases, including KNApSAcK, Plant-
Cyc, LipidMaps, NANPDB and UNPD. Conveniently, an in silico software, MS-FINDER
(https://prime.psc.riken.jp/compms/msfinder/main.html, accessed on 16 January 2022),
integrates these databases and provides each compound with Simplified Molecular Input
Line Entry Specification (SMILES) for chemical classification with the Classyfire function
(https://classyfire.wishartlab.com, accessed on 16 January 2022) [25,26].

https://www.reifycs.com/AbfConverter/
https://prime.psc.riken.jp/compms/msdial/main.html
https://github.com/eMetaboHUB/MS-CleanR
https://prime.psc.riken.jp/compms/msfinder/main.html
https://classyfire.wishartlab.com
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Figure 1. Data analysis workflow for comprehensive characterization of complex mixtures of metabo-
lites based on the location of real features. Step 1: MS-DIAL was applied for the peak detection.
Step 2: MS-CleanR was conducted utilizing the generic filters and feature clustering. Step 3: The
developed MetaboFR tool combined with the “feature-rating” rule was applied for adduct flagging
and in-source fragment removal.

3. Results and Discussion
3.1. The Workflow of “Feature-Rating” Rule and MetaboFR

The purpose of our workflow is to remove both the false features from nonsample
sources and interfering metabolites in order to improve the quality of peak tables and
identification results [27]. First, as shown in Figure 1, MS-DIAL was used as a tool for
peak extraction, alignment and normalization to generate a peak table in an untargeted
metabolomics analysis in Step 1 [10]. In Step 2, generic filters and feature-clustering
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from the MS-CleanR tool were used to remove the interference signals and implement
feature-clustering based on an MS-DIAL peak character estimation algorithm and Pearson’s
correlation [28]. Any aberrant features resulting from signals in the “blank” sample, as well
as any other unusual mass defects, were removed by the generic filters, which were also
applied to establish a relative standard deviation threshold among the sample classes for the
purpose of eliminating metabolites in the same sample class that were unstable [17]. Step 3
involves a FR rule based on the screening of real features. The real features are defined as
“top-rated features” (TRFs) and “second-rated features” (SRFs), based on differences in their
MS attributions. TRFs are parental features that either correlated with corresponding adduct
ions or do not have a corresponding quasi-molecular ion, but rather, only corresponding
adduct ions. In contrast, SRFs are defined as parental features that only have isolated
quasi-molecular ions. For TRF screening, orienting the correlations between adducts and
quasi-molecular ions can increase the efficiency of parental-feature identification. Notably,
some molecules have no adduct form, e.g., [M + H]+ or [M − H]− in MS; in such cases, it is
imperative to take advantage of adduct correlations to identify parental features. However,
for SRF screening, in-source fragments pose the greatest challenge when distinguishing
with SRFs because both have isolated quasi-molecular ions in MS, which confounds the
ability to distinguish between the two. In a summary, locating adduct correlations and
reducing the number of fragments are two core concepts in the FR rule when exploring real
features among thousands of MS signals.

Here, an R package called MetaboFR was developed to simultaneously capture adduct
correlations and reduce in-source fragments by embedding the results after MS-CleanR in
step 3 in our workflow. Desirable adduct correlations can be imported into the R package.
The flagging of adduct types is based on the mass difference among each feature cluster, and
the mass tolerance (typically 0.01 Da) is also tunable by user (as detailed in the tutorial on
MetaboFR). All the features flagged with adduct types are regarded as TRFs and are labeled
in the last blank column in the peak table. In addition, the reduction of in-source fragments
to explore SRFs is another function of MetaboFR. Among the peak table generated from
MS-CleanR, if the feature shown in MS1 (Average.Mz after MS-CleanR processing) also
exists in MS2 (MS.MS. spectrum after MS-CleanR processing), based on other features in
each feature cluster, it will be regarded as an in-source fragment and will be removed from
the peak table. The mass tolerance for fragment screening is tunable for users (typically
0.05 Da). After removal of the fragments, the retained features (except retained TRFs)
are regarded as SRFs. Finally, only the most intense TRFs (TRFs most) in each adduct
correlation are manually selected to the final peak table, which are applied, together with
SRFs, for metabolomic analyses.

3.2. Validation of Workflow by Applying Reference Standards

To validate our process, we applied a mixture of 74 reference standards to benchmark
our workflow in negative-ion mode (Figure 2). Detailed information on the reference
standards is shown in Table S3. Three levels of concentrations along with QC and blank
samples were acquired and imported into MS-DIAL for peak detection. The obtained
peak table, containing 248 featuress was processed by MS-CleanR to generate the clustered
peak table, with the result of 96 feature clusters covering 203 features (see Figure 2C and
Table S4). MetaboFR was applied to directly process Table S4; 131 features were retained
after adduct flagging and fragment removal (Figure 2C and Table S5).
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Figure 2. Seventy-four reference standards were used to validate our workflow. (A) A total ion current
(TIC) chromatogram of 74 reference standards in negative−ion mode. (B) Detailed information
about the 74 reference standards (Table S3). (C) The evolution of feature amounts corresponding
to three individual steps in our workflow. (D) The selection of adduct correlations and the rule
of in−source fragment recognition. (E) The effect of our workflow on the final feature table of
74 reference standards.

To locate the TRFs by adduct flagging, 21 adduct correlations derived from seven
adduct types were imported into MetaboFR with a mass tolerance setting of 0.01 Da (see
Figure 2D). Unlike conventional adduct flagging, flagging based on the adduct correlations
is able to label the adduct types even for features without quasi-molecular ions in MS. In
the fragment screening step, 72 features were removed based on the fragment screening
rule shown in Figure 2D, and 40 dehydrogenation features without adducts were explored
as SRFs. It should be noted that the flagged adduct features were defined as TRFs and
were not be screened as fragment candidates. As a result of MetaboFR tool processing,
68 features were flagged as adduct types; the accuracy of flagging was 88.23%, whereas
only five adducts were omitted due to unreasonable feature clustering observed by manual
inspection (Figure 2E and Table S6). Among the total of 131 features, the existence of 49.62%
adduct features revealed that adducts exhibit great values for the screening of parental
features, especially for the MS behavior of five features with no visible quasi-molecular
ions (Table S6). In order to explain the tool performance in more detail, Figure 3A shows a
series of MS features from a retention time 7.41 min after processing by MS-CleanR [17].
Three compounds, i.e., epmedin C, etoposide and prednisolone, were identified among
twelve features, comprising ten adducts and two fragments, by manually annotating.
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Notably, all three compounds exhibited multiple adduct types along with an absence of
quasi-molecular ions, indicated that flagging the adduct types through adduct correlations
is essential and effective. After the application of MetaboFR, nine adduct types were
labeled and were regarded as TRFs, while two fragments derived from epmedin C and
prednisolone were removed due to the existence in the MS2 spectrum of corresponding
parental features. Finally, the most intense of TRFs were selected to represent the parental
features of three compounds for further analysis. As shown in Figure 3B, one compound
named p-hydroxybenzaldehyde (m/z 121.0295) was not detectable, as it was recognized
as a fragment from an interfering feature, i.e., m/z 179.0355. After processing using the
MetaboFR tool, 109 real features according to 73 reference standards within the total of
131 features were retained, including 69 TRFs and 40 SRFs (Table S7), which significantly
increased the ratio of real features in the peak table compared with processed with only
MS-DIAL or MS-CleanR (Figure 2C). After the final selection of the most intense TRFs,
73 parental features and 22 interferences were included in the final peak table with an
accuracy rate of parental features of 76.84% (Figure 2E). A manual inspection of final result
is described in Table S7.

Figure 3. Two instances are illustrated to explain the performance of the tool in more detail. (A) The
effect of MetaboFR and FR rule on the MS features at a retention time of around 7.41 min after
processing by MS−CleanR. (B) One compound named p−hydroxybenzaldehyde (m/z 121.0295)
could not be detected as it was recognized as a fragment from an interfering feature, i.e., m/z 179.0355.

3.3. Application of Workflow on Multicomplex Samples

To evaluate the application of our workflow on multicomplex samples, we set up an
experiment for the metabolic profiling of 14 different species in plants of genus Isatis. Key
chromatographic conditions were optimized to improve both the sensitivity and resolution.
The ACQUITY BEH C18 column in positive-ion mode was selected because it has greater
column capacity and yields better resolution and peak distribution (see Figure S7). The use
of 2 mM ammonium acetate as the aqueous phase increased the number of detected ions and
suppressed signal noise (Figure S8). According to published information on metabolites,
the accepted standard mixture for metabolomics studies contains two flavonoids, five
indole-related derivatives, one nucleoside, one chlorophyll and three lignans [29–31].
Such a mixture was injected into LC-MS to determine the m/z values and adduct types
(Figure S9). Isovitexin, pheophorbide a, isatin and guanosine have common adduct types
in positive-ion mode, in terms of the isolated quasi-molecular ions or after correlating
with the corresponding adduct ions. In particular, pinoresinol 4-O-D-glucose only had
adduct ions but no quasi-molecular ions. Based on the adducts identified in the different



Cells 2022, 11, 907 9 of 16

metabolites, six adduct correlations derived from [M + NH4]+, [M + Na]+, and [M + K]+

were selected to enhance the accuracy of the annotating adducts.
A total of 80 pieces of raw data (i.e., 71 leaf samples from 14 Isatis species, 1 blank

sample and 8 QC samples) were acquired and imported into the MS-DIAL to generate a
peak table (4895 features). The raw data were uploaded to Metabolights (MTBL4254). After
processing in MS-CleanR, a total of 823 features were defined as interferences, and were
removed by generic filters, yielding a new peak table named “MS_peaks-clusters_final”
that contained 4072 features, along with 1935 feature clusters (Table S8). Subsequently,
Table S8 was treated using MetaboFR, together with six imported adduct correlations. A
feature table containing 3426 features covering 1085 adduct flags was obtained. Meanwhile,
646 features were screened as the in-source fragments and removed directly by MetaboFR,
whereas the remaining 2341 features were explored and treated as SRFs. After the final
selection, the most intense TRFs were retained and 2825 features were included in the
final peak table (see Table S9). In order to evaluate the performance of MetaboFR, a
detailed manual annotation of each feature was carried out with the peak table after the
implementation of the generic filters with the rules shown in Figure S10 (Table S9).

3.4. Detailed Annotation of Peak Tables after MetaboFR and FR Analysis of Genus Isatis

Among the 4072 features listed in Table S8, 1105 TRFs, 2020 SRFs, 860 fragments and
87 interferences (unknown adducts, isotopes, etc., referred to as unrecognized interfer-
ences) were annotated following a manual inspection. It should be noted that the feature
attributions of fragments were labeled according to the Pearson’s Correlation (≥0.8) to the
corresponding quasi-molecular ions within a time range of 0.03 min (Figure S5). Figure 4
presents the entire evolution of the peak table; the corresponding features with different
attributions are listed in bar charts by comparing with detailed manual annotations. It is
clear that a large quantity of fragments persisted even after the generic filters had been
applied. After implementing our workflow and comparing the quality of the peak table
obtained from MS-DIAL/MS-CleanR, the accuracy rate of real features was improved to
87.72%, whereas the number of fragments decreased to 9.38% (Figure 5A,B). As shown in
Figure 5C,D, the false annotations compared with the manual inspection were caused from
the false recognition of adducts and fragments by metaboFR processing. In Figure 5E,F,
the occurrences of false recognized and unrecognized adducts or fragments were due to
unreasonable feature clustering and generic filtration. As shown in Figure 5E, feature
m/z 436.0651 (RT: 4.24 min) and m/z 420.0889 (4.30 min) were incorrectly recognized as
[M + K]+ and [M + Na]+ within the same feature cluster. For the manual inspection, feature
m/z 420.0889 exhibited no correlation and a separable retention time (>0.03 min) with m/z
436.0651, which was correlated to another feature, i.e., m/z 691.1317, at the same retention
time in this cluster, indicating that m/z 420.0889 was an in-source fragment of m/z 691.1317.
Among the unrecognized adducts, Figure 5F shows that two features, i.e., m/z 381.1161 (RT:
4.12 min, sodium adduct) and m/z 397.0894 (4.11 min, potassium adduct), exhibited adduct
correlations after peak detection. However, m/z 397.0894 was removed by the generic filter
due to its unstable MS behavior among the sample classes, which was unable to flag both
features by MetaboFR.
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Figure 4. Evolution of the peak table by implementing the FR rule and quantifying the corresponding
features with different attributions following a manual inspection, presented in bar charts. (A) The
peak table generated by peak detection from MS−DIAL. (B) The application of generic filters elim-
inated the recognized interference. (C) MetaboFR combined with the FR rule preserved the most
prominent TRFs and SRFs to yield a peak table that included most of the real features.
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Figure 5. The effect of implementing our workflow to screen real features in metabolomics studies.
(A) The percentage of real features identified by our workflow exceeds that of the co-implementation
of MS−DIAL and MS−CleanR. (B) The existence of in-source fragments decreases substantially
upon implementation of our workflow. (C) The effect of adduct flagging by MetaboFR tool. (D) The
effect of fragment removal by MetaboFR. (E) False adduct recognition led to the false annotation of
corresponding features by MetaboFR. (F) Some unstable features were removed by generic filters to
cause the unrecognition of adduct correlations.

It was also noted that the quality of the imported peak table can greatly influence the
results of a metabolomics study. The two- (2D) and three-dimensional (3D) PCA results
by importing only validated real parental features are shown in Figure 6C, indicating that
14 Isatis species were unsupervised clustered into five groups. Similar clustering results
were observed when the MetaboFR and FR rules were implemented, revealing nearly the
same distribution when validated real features were imported (Figure 6B,C). Interestingly,
only the most intense imported validated TRFs (495 features, Table S10) yielded five clusters,
revealing that TRFs with a relatively high degree of confidence can be applied to output
the most relevant results for complicated datasets (Figure 6D). Figure 6A presents a totally
different distribution of different species in our PCA analysis compared with the other
three PCA results, indicating that the lower ratio of real features may give rise to incorrect
interpretations in metabolomics studies.
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Figure 6. Different peak tables yield differences in the statistical results for metabolomics studies.
(A) The 2D and 3D PCA results after the application of MS−CleanR (4072 features). (B) The 2D and
3D PCA results obtained by importing the features after the application of the MetaboFR and FR rules
(2825 features) (C) The 2D and 3D PCA results obtained by importing only the validated parental
features (2515 features) (D) The 2D and 3D PCA results obtained by importing only the most intense
TRFs (495 features).

3.5. Chemical Analysis of Genus Isatis

Of the 2515 parental features, 109 metabolites were identified in the in-house database.
The identification rate for the most intense TRFs (495 features; see Table S10) was 74.54%,
and that for the SRFs was 65.74%. Consequently, 1697 metabolites were tentatively iden-
tified to give a comprehensive chemical interpretation of 14 Isatis species (see Table S11).
The major metabolites were lipids, phenylpropanoids, organic acids and indole derivatives
(Figure 7A). Five groups were clustered based on our PCA analysis; the relative contents of
major metabolites among the 14 species is presented in Figure 7A. Four species in group I
had a greater proportion of indoles and their derivatives. In particular the 4ind compared
with natural diploid progenitor (ind) had a higher proportion of indoles, alkaloids and
phenylpropanoids. Group II contained four species derived from Europe and exhibited
abundant organic acids and carbohydrates. Compared with groups I and II, groups III
and V had a higher proportion of phenylpropanoids and fewer indole derivatives. The
chemical compositions of cap and capS were similar to those of the two desert species of
vio and min, which were dominated by lipids yet lacked indole derivatives. Based on our
characterization, it was found that the indole-related metabolites, which contain at least
one indole moiety, exhibit tremendous chemical diversity and interspecies differences. As
the representative metabolites in Brassicaceae, indole-related metabolites exhibit multiple
bio-activities and are widely applied as pharmacological molecules [32]. Furthermore,
120 diversified indole-related metabolites were selected (Table S12); their relative contents
among 14 species are shown as a heat-map in Figure 7B. The result clearly shows that
few indole-related metabolites existed in group IV, especially for the bare accumulation in
cap and capS. Figure 7C indicates the relative content of nine metabolites involved in the
indole-related biosynthesis pathways. Accordance semiquantitative results were obtained,
indicating that only small amounts of these metabolites were present in group IV, and
only rarely were any of these metabolites detected in cap and capS, demonstrating that the
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differences in accumulation were derived from the biosynthetic capacities of indole-related
metabolites in plants of genus Isatis. In order to measure the diversity of indole-related com-
pounds, we evaluated the contents of indole in plants of genus Isatis (Figure S11), proving
that the existence of interspecific variability mainly occurred via downstream indole-related
biosynthesis pathways among different species. Therefore, based on metabolomics data
mining from a large dataset, the indole-related metabolites were found to be important
chemical markers for distinguishing individual species of the genus Isatis. In addition, cap
and capS may be used as natural mutants to reveal indole related biosynthesis in plants
of genus Isatis. To summarize, we expect that our approach will facilitate metabolomics
studies involving massive datasets, and as such, will provide more abundant chemical
information in various scientific fields. Also, the proposed method will help to find suitable
plants for the exploration of key metabolites during natural product biosynthesis.

Figure 7. Comprehensive chemical interpretation and distribution of major metabolites among the
14 species of genus Isatis. (A) Bar chart showing the relative content of different classes of metabolites
among the 14 species. (B) A heat-map showing the distribution differences of 120 indole-related
metabolites among the 14 species within the five groups. (C) A heat−map showing the distribution
differences of nine indole−related metabolites belonging to indole−related biosynthetic pathways
among 14 species.
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4. Conclusions

The systematic characterization of complex mixtures of metabolites remains a sub-
stantial challenge, especially for real feature screening. Therefore, combined with the
workflow of real features screening and unbiased identification, we obtained as much struc-
tural information regarding detectable metabolites as possible. In our research, MetaboFR
(Supplementary file S13), based on the MS-DIAL/MS-CleanR suite, was developed to
screen real features and a comprehensive workflow, from raw data to final annotated peak
list, was provided. The utility of this workflow is demonstrated by the fact that by analyzing
secondary metabolites in 14 species of genus Isatis, 87.72% of real features were retained and
69.19% of the in-source fragments were removed. After careful manual checking, 1697 MS
features were tentatively identified. Moreover, indole derivatives, which have been shown
to be the medicinal basis of the use of Isatis indigotica Fort. and Isatis tinctoria L. [22,33], were
explored as chemical markers by comparing differences in metabolites among 14 different
species. More importantly, indole derivatives were rarely found in cap and capS, which may
provide natural mutant plants for indole derivative biosynthesis. Significant differences in
indole derivative biosynthesis also indicated the chemical evolution of indole derivatives
in genus Isatis. To summarize, we expect that our approach will facilitate metabolomics
studies with massive datasets and provide more abundant chemical information for natural
product research and other scientific fields.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11050907/s1, Figure S1. The phenotypes of 14 Isatis species.
Figure S2. Structural information of metabolites for li-1~66. Figure S3. Structural information of
metabolites for li-67~121. Figure S4. Structural information of metabolites for li-122~170. Figure S5.
Structural information of metabolites for li-171~218. Figure S6. Structural information of metabolites
for li-219~269. Figure S7. Investigation of different chromatographic columns for achieving better
separation and peak capacity (ind as an example). Figure S8. Investigation of different mobile phase
additives for achieving better ionization (ind as an example). Figure S9. A standard mixture contains
12 purity compounds with different chemical classifications for the demonstration of mass features
and adducts types before the large-scale acquisition. Figure S10. The operation of detailed manual
annotation of each feature in each cluster. Figure S11 The relative content of indole compound by
applying GC-MS among 12 species. Supplementary Table S1 The tentative metabolites identification
with SMILES. Table S2. The information of the source of the seeds (14 species). Table S3. The detailed
information of 74 reference standards. Table S4. An in-house library covers 269 metabolites from
phytochemical research (up to 2020) in the whole Isatis L. genus. Table S5. The feature table processed
by MSCleanR (reference standards). Table S6. The feature table processed by MetaboFR (reference
standards). Table S7. Validation results of detection of 73 reference standards by application of
feature-rating rule. Table S8. The feature table processed by MSCleanR (Isatis samples). Table S9.
The feature table processed by MetaboFR (Isatis samples). Table S10 Metabolite annotation and
documentation for LC-MS data (495 features). Table S11 The tentative metabolites identification in
14 Isatis. Table S12 Comparation of 120 indole-related metabolites among 14 species. Supplementary
file S13. Tutorial of MetaboFR.
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