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Abstract: The concept of site-specific weed management is based on the assumption that weeds are
aggregated in patches. In this study, we surveyed four plots in four commercial almond orchards for
three years and mapped the locations of Ecballium elaterium, a troublesome weed in Israeli agriculture,
specifically in almond orchards. We analyzed the spatial pattern of the plants’ locations using nearest
neighbor analysis and Ripley’s L function. The number of E. elaterium plants increased by more than
70% in the four plots from 2015 to 2016. In addition, the observed mean distance between nearest
neighbors increased by more than 10% from 2016 and 2017. We found in all four plots that the spatial
pattern of E. elaterium was clustered and that these weed patch locations were consistent over the years
although the density within the patches increased. The extent of these clusters ranged between 40 to
70 m and remained similar in size throughout the study. These features make E. elaterium a suitable
target for site-specific weed management and for pre-emergence patch spraying. Knowledge of the
spatial and temporal pattern of weeds could aid in understanding their ecology and could help target
herbicide treatments to specific locations of the field and, thus, reducing the chemical application.
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1. Introduction

Traditionally, herbicides application is carried out with the assumption that weeds are evenly
distributed in the field. This assumption means that the herbicides are applied uniformly without
accounting to the spatial heterogeneity in the distribution of weeds [1]. However, site-specific weed
management (SSWM) suggest that if weeds are not randomly distributed in the field then farmers
can specifically target weed-infested areas in the field [2]. And indeed, numerous studies have shown
that different weed species, annuals (e.g., Abutilon theophrasti, Solanum nigrum L.), and perennials
(e.g., Sorghum halepense L., Cyperus rotundus L.), in different crop systems tend to spatially aggregate [3–7].

The observed patchy pattern is the result of heterogeneous environmental conditions (e.g., soil
spatial heterogeneity, microclimatic conditions) [8,9], or of processes such as the dispersal rate and
distance from the parent plant [10], competition between species or facilitation processes in which
species mitigate the environmental condition and thus benefit other species (e.g., nurse plants [11]),
or a combination of these factors [12,13]. Patchiness in weed distributions might also reflect differences
in local management actions (e.g., seed dispersal and movement by farm equipment [14] and direction
of tillage and irrigation furrows [15]).

Compared to the relatively well-studied spatial aspects of weeds, the temporal aspect has been
less studied. Some studies have indicated that the spatial distribution of weeds in crop fields is often
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relatively stable between years [9,16–19]. However, not all studies have shown temporal consistency
in the distribution of weeds. For example, Johnson et al. [20] found that the edges of patches varied
considerably in consecutive seasons. Gerhards et al. [17] found that the spatial pattern of foxtail was
unstable and its distribution and density temporal dynamics varied between fields.

Another issue that has gotten less attention is the population dynamics within patches over
time. The concentration of weeds within a patch can increase or decrease as a consequence of biotic
(e.g., competition) and abiotic (e.g., a change in resources or in microclimate conditions) interactions.
This is an important issue as weed density has been shown to affect different aspects of crop management,
such as weed control [21], herbicide application timing [22], or crop yield [23].

Studies on weed distribution have been done mostly in crops systems, mainly soybean and
maize [7,15,24], and not in orchards. In crop systems, an increase in weed seed dispersal is largely
attributed to the combine harvesting process that results in seed dispersal in the direction of crop
rows [25]. In that sense, cropping systems might be relevant when studying weed spatial distribution.
Orchards, for example, need less agro-managements field operations compared to most crop systems,
and thus it is expected that weed distribution would be less affected by the field operations in orchards.

The use of spatial analysis methodologies, spatial statistics, and geostatistical theory to analyze
spatial and temporal properties of weed distribution is an active research area [26]. Because of the
central role of spatial autocorrelation in identifying locations of clusters, proper analysis of spatial
autocorrelation is important to successful statistical analysis of geospatial data. Moran’s I and Geary’s
care global measurements are used to quantify the spatial autocorrelation and to test the tendency of
values to cluster together. When the attribute variable is binary (e.g., presence/absence of a species),
these two methods are not appropriate. Other measurements commonly used to evaluate clustering
include quadrat analysis, nearest neighbor index, and K-function [27]. Ripley’s K-function is used to
indicate when the clustering becomes nonsignificant and to identify the scale of clustering.

In this work we employed geostatistic methods to study the spatial and temporal distribution
of the Ecballium elaterium, squirting cucumber. It is a decumbent, perennial herb restricted to the
Mediterranean Basin. Flowering begins in April and lasts until December [28]. The species is
monoecious (flowers are either male or female, but both can be found on the same plant) and is
pollinated by insects. The squirting cucumber reproduces sexually and use a self-dispersal mechanism
as the seeds are ejected out of the basal opening away from the mother plant by the release of osmotic
pressure that builds up within the ripe fruit [29]. Ecballium elaterium distribution in Israel has increased
rapidly in the last decade mainly in orchards, e.g., citrus, vineyards, almonds, and more. A rapid
acceleration in the infestation of E. elaterium was observed after herbicides from the triazine family
(e.g., simazine) were banned for use in Israel and in Europe. The reduction in herbicide active ingredient
options increases the selection pressure on the weed community, reduces their control efficacy, and may
enhance specific species to become resistant or tolerant to herbicides [30–32].

The objectives of this study were to (1) quantify the spatial distribution of E. elaterium plants
which survived the standard growers’ protocol herbicide treatments, as mentioned in the materials and
methods below, (2) assess if the spatial distribution is stable over time, and (3) measure the temporal
trend in weed density within patches. We studied E. elaterium in four almond orchards in Northern
Israel in three consecutive years. We hypothesized that if E. elaterium can be shown to form patches
within almond orchards and there is some degree of patch stability then it could be considered a
candidate for targeting specific patch spraying.

2. Material and Methods

2.1. Study Sites and Data Collection

Data on E. elaterium spatial distribution was collected in four plots selected randomly within four
commercial orchards in Northern Israel on two farms (Figure 1 and Table 1). The distance between the
two plots in Ein Dor (EDW and EDN) was 850 m and 10 m in Newe Yaar (NYN and NYS). The soil type
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in both farms is Grumosol. The area surrounding the Ein Dor plots is mainly an agricultural landscape
composed of orchards (mainly almonds) and field crops (rotation of wheat, tomatoes, cotton, maize,
onion, legumes, and watermelon). The surrounding landscape around the Newe Yaar plots is orchards
(mainly almonds and pomegranate; Figure 1). The use of herbicides in these commercial plots follow a
standard grower’s protocol according to the manufacturer’s instructions, aiming, among others, to
suppress the E. elaterium population. These treatments include the following chemicals: Diuron (800 gr
ha−1), Oxyfluorfen (595 gr ha−1) and Glyphosate (1200 gr ae ha−1) during the winter, 2, 4 D (937.5 gr
ha−1) and Glyphosate (1800 gr ae ha−1) during the spring and summer. Both farms are located in the
same climatic region and are about 20 km apart. The climate in this region is eastern Mediterranean,
characterized by relatively cool, wet winters and hot, dry summers. The area receives approximately
500 to 600 mm rainfall annually, mainly between November and March (Table 2). Each year, a single
scout surveyed all four plots during May, a month after Ecballium elaterium emergence. In each plot the
scout walked between all the rows and recorded the location of all plant individuals (from seedlings to
mature plants) using a GPS (Trimble Juno 5, accuracy 1–4 m) and ArcPad (ESRI). The data was then
transferred to ArcMap 10.5 software (ESRI, Redlands, CA, USA). It is worth noting that in May most
of the E. elaterium plants are mature and are among the only weeds that have survived the chemical
treatments and thus were easy to identify.
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Figure 1. The location of Newe Yaar (NYN and NYS) and In Dor (EDN and EDW) farms. Square on
the left map indicates the study area. For plots name abbreviations, see Table 1.

Table 1. Fields location and sampled fields size in the commercial orchards studied.

Plot Name Abbreviations Plantation Year Survey Area (m2)

Ein Dor West EDW 2006 24,800
Ein Dor North EDN 2007 32,800

Newe Yaar North NYN 2007 18,900
Newe Yaar South NYS 2007 6600
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Table 2. Average temperature and precipitation in the two studies farms during the three years of the study.

2015 2016 2017

Oct-Dec (2014) Jan–Mar Apr–Jun Oct–Dec (2015) Jan–Mar Apr–Jun Oct–Dec (2016) Jan–Mar Apr–Jun

Newe Yaar
Average Temperature (◦C) 18.2 ± 5.2 13.4 ± 5 21.5 ± 5.9 18.4 ± 6.2 14.3 ± 5.2 23.0 ± 5.9 17.8 ± 6.5 12.4 ± 4.7 22.0 ± 5.7

Precipitation (mm) 186.8 379.9 78.1 141.2 334.6 17 312.1 179.6 23.9
Ein Dor

Average Temperature (◦C) 18.1 ± 5.4 13.3 ± 5.2 21.9 ± 6.3 18.5 ± 6.3 14.2 ± 5.2 23.0 ± 5.9 18.0 ± 6.9 12.4 ± 4.8 22.9 ± 6.1
Precipitation (mm) 178.6 297.7 68.5 122 308.8 13.3 242.1 158.8 20.5
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2.2. Spatially Analyzing Patterns

To analyze spatial patterns and explore spatial clustering of E. elaterium populations, nearest
neighbor analysis was performed using spatial statistic tools in ArcGIS 10.5 (ESRI, Redlands, CA, USA).
We used heatmap to visualize plant density using qGIS v. 2.12.0 software (QGIS Development Team.
Open Source Geospatial Foundation.http://www.qgis.org/). As a first step, we tested the null hypothesis
that E. elaterium plants were randomly distributed throughout our four plots using nearest neighbor
analysis (ANN). Nearest neighbor analysis was performed using the average nearest neighbor function
in ArcGIS to evaluate the degree of clustering. The analysis calculates the ratio of observed average
nearest neighbor distance and expected average Euclidean distance based on random distribution.
If the ratio differs significantly from zero, the null hypothesis is rejected and the spatial pattern is
either dispersed (>1) or clustered (<1) [27]. Heatmaps are a visualization tool for dense point data.
Heatmaps are used to easily identify clusters where there is a high concentration of certain features.
The heatmap uses Kernel density estimation to create a density raster of an input point vector layer.
The density is calculated based on the number of points in a location, with larger numbers of clustered
points resulting in larger values. Some authors have demonstrated that Ripley’s K-function provides
important information about the spatial organization of plants and animals [33,34]. We tested for
spatial randomness of all mapped seedlings in each plot based on Ripley’s L(d) function [35]. L(d) is a
local version of Ripley’s K-function in which L(d) is calculated for each event individually, providing
information concerning local patterns, such as areas of aggregation vs. dispersed distribution in the
same plot. Ninety-five percent confidence interval boundaries were calculated from 99 permutations,
for a p-value < 0.01 confidence interval. Values above the confidence interval boundaries indicate
statistically significant spatial aggregation. K-function analysis provides a measurement that enables
us to test the extent of spatial clustering at defined distance intervals which helps in overcoming the
drawbacks of the global nearest neighbor test [36].

3. Results

The total number of E. elaterium plants ranged between 155 and 768 (Table 3). The number of
E. elaterium plants increased by more than 70% in the four plots from 2015 to 2016, and decreased in
the consecutive year, in more than 10% in all the plots except in EDW. The observed mean distance
between nearest neighbors ranged between 0.72 and 2.89 m (Table 3). ANN increased between 9%
to 24% from 2016 and 2017. The nearest neighbor ratio did not exceed 0.63 for all plots and in the
three years, suggesting that the E. elaterium plants in these plots were clustered (Table 3, Figure 2).
In addition, the locations of the highly dense areas within the plots seem to retain their locations
throughout the years (Figure 3). As illustrated in Figure 3C for the NYN plot, five highly dense areas
are marked and their locations remain constant between 2015 to 2017. Outside this demarcated area, no
new establishment of high dense areas was observed. Ripley’s L shows significant spatial aggregation
in all the plots and years (Figure 4). Interestingly, the overall extent of the spatial clustering remained
similar in size in the three years. The significance of the clustering disappears at distances of ~70 m for
EDN, between 50 to 60 m for EDW, around 40 m for NYS in all three years and between 42 to 48 m for
NYN in 2016 and 2017.

Table 3. Comparing the number of plants, the average distance between individual plants and the
average nearest neighbor ratio.

Plot Name Number of Plants Average Distance between Plants (M) ANN Ratio

2015 2016 2017 2015 2016 2017 2015 2016 2017

EDW 297 505 526 2.89 1.09 1.37 0.63 0.33 0.41
EDN 155 294 191 2.42 1.36 1.87 0.29 0.27 0.33
NYN 443 768 467 1.47 0.72 1.04 0.4 0.34 0.37
NYS 280 515 452 1.62 0.87 1.22 0.56 0.42 0.49

http://www.qgis.org/
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Figure 4. Ripley’s K test for spatial randomness of plants in the three years and four plots. The observed
value of the test statistic L(d) at a given distance is marked by red lines, while expected distance
is presented with a blue line. Observed L(d) greater than expected (L(d) > d) indicates clustering.
The boundaries of the confidence interval on the null hypothesis (complete spatial randomness) are
denoted by thin dashed lines.

4. Discussion

Understanding the spatial temporal dynamics of weeds within fields may be beneficial in trying
to better manage weeds [2]. If weeds are not randomly distributed, and tend to clump in patches,
then the farmer can direct his actions to only the weedy areas in his field. Our study shows that the
size and location of the E. elaterium infested areas remained similar over three years although seeds
could be disperse to all parts of the plot [37]. This information can be used to direct pre-emergence
herbicide treatments (e.g., Indaziflam), when no visual information is available in the field. In this
aspect, the information regarding the spatial distribution of weeds from one year could be used as a
basis for making spraying decisions the following year.

Perennial species generally have more aggregated distribution than annual species [25]. San Martin
et al. [7] studied six species, four annual and two perennial. All six-species showed aggregated patterns.
The perennial, Purple nutsedge, was aggregated significantly in all relevant fields. This robust
aggregation pattern is in line with the results reported by Roham et al. [38]. In the specific case of
purple nutsedge, propagates by tubers formed along underground rhizome, in the vicinity of the
mother plant thus creating patchy distribution patterns. On the other hand, Andújar et al. [5,39] found
that johnsongrass, also a perennial, showed an aggregated pattern distribution, but San Martin et al. [7]
found that the distribution of johnsongrass did not aggregated in all the studied fields. This might be
due to the dispersion by seeds that is a significant mode of dispersal for this species [40], paralleling
rhizomes that are the primary method of johnsongrass reproduction and dispersal. Barroso et al. [41]
showed that the dispersal of johnsongrass seeds, as well as the effect of combine harvesting, may have
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an effect to a less aggregated distribution of this species. In Ecballium elaterium, which distributes solely
by seeds, the patchy distribution might be the results of the unique self-dispersal mechanism that does
not relay on wind or water support, thus most of the seeds are established near the mother plant.

The size and location of the patches remained relatively constant between seasons. This could
result from two major processes: habitat association and dispersal limitation [42–45]. Species–habitat
association is a niche-based process that can give rise to spatial aggregations of species [44,46,47].
For example, soil properties were found to influence weeds growth, distribution, and density [18,48].
Such an association, however, is not the only ecological process that generates spatial aggregation.
Dispersal limitation predicts that spatial aggregation can arise from the fact that propagules are not
able to reach every suitable site in a landscape, regardless of underlying habitat conditions or species
specificities [42,43]. Birger [37] found that the dispersal distance of E. elaterium can reach 10.2m and
stated that this distance is probably a conservative estimation. Thus, we would expect that the spatial
aggregation is not the result of dispersal limitation but rather based on niche limitation. Another
implication to the temporal patch stability can be used in weed mapping. Generally, weeds with a stable
distribution, similar to the distribution of E. elaterium that was discovered in this work, will require
relatively low frequency mapping (e.g., every several years) whereas species whose spatial distribution
changes from year to year will require new mapping in each growing season. This understanding is
specifically important in orchards. Generating maps to direct the sprayer is done by intensive field
sampling or by using remote sensing or UAVs (unmanned aerial vehicles) are used mainly in field crop
systems [7,24,49]. However, the use of UAVs in orchards is limited and using them to map weeds is
confined to areas between rows, and they cannot be accurately used to detect weeds under the canopy.
Thus, in light of this constrain, the issue of temporal consistency in patch location between years might
be even more important in orchards than in crop systems.

Another pattern we identified was the pronounce increase in plant density between 2015 and
2016 (more than 70% increase), which occurred in all the patches. The increase in plant density is
even more striking when considering that 2015 was the rainiest year out of the three (annual rainfall
of 645 and 545 mm in NY and ED, respectively) compared to 493 and 444 mm in NY and ED in
2016 and 516 and 421 mm in NY and ED in 2017. However, the decrease in rainfall might explain
the difficulties for seeds to establish outside the patches, areas that might be less favorable in the
first place. The differences in rain between the two farms might also explain the higher number of
plants in NY compared to ED. This increase in weeds density has direct management implications as
weed density alter the effectiveness of weed control and should be accounted for in implementing
management [21,22]. Whether the increase in weeds density within patches is a general phenomenon
or confined to certain species, is an important question that needs to be addressed in future studies.

Site-specific weed management aims to focus management actions and specifically herbicide
application based on the spatial characteristics of weed distribution within a field. The insights we
identified in this study—E. elaterium patchy distribution, patch temporal stability and weeds density
increase within patches—Can be used to target management actions. By better understanding weed
distribution, SSWM strives to adjusting herbicide application in order to reduce herbicide use [50].
This in turn has obvious cost saving advantages for the farmer and reduces the effects of weed control
on the environment.
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