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Abstract: Resources are limited, thus improving resource use efficiency is a key objective for
cereal-based cropping systems. This field study was carried out to quantify resource use efficiencies
in selected C3 and C4 cereals under split nitrogen (N) application regimes. The study included
the following treatments: six cereals (three C3: wheat, oat, and barley; and three C4: maize, millet,
and sorghum) and four split N application regimes (NS1 = full amount of N at sowing; NS2 = half
N at sowing + half N at first irrigation; NS3 = 1

3 N at sowing + 1
3 N at first irrigation + 1

3 N at
second irrigation; NS4 = 1

4 N at sowing + 1
4 N at first irrigation + 1

4 N at second irrigation + 1
4 N

at third irrigation). Results revealed that C4 cereals out-yielded C3 cereals in terms of biomass
production, grain yield, and resource use efficiencies (i.e., radiation use efficiency (RUE) and nitrogen
use efficiency (NUE)), while splitting N into three applications proved to be a better strategy for
all of the selected winter and summer cereals. The results suggest that C4 cereals should be added
into existing cereal-based cropping systems and N application done in three installments to boost
productivity and higher resource use efficiency to ensure food security for the burgeoning population.

Keywords: barley; maize; millet; oat; radiation use efficiency; sorghum; wheat

1. Introduction

Cereals constitute a large proportion of food supplements. These are used in diets as end-products
and provide greater than 70% of the worldwide caloric intake. Wheat (Triticum aestivum L.), oat
(Avena sativa L.), barley (Hordeum vulgare L.), maize (Zea mays L.), millet (Pennisetum americanum L.),
and sorghum (Sorghum bicolor L.) are the main C3 winter and C4 summer cereals being grown in
Asia [1–4]. The classification and physiological characteristics of cereals are presented in Table 1 [5].
The historical area and production of first-, second-, and third-order cereals in Pakistan is presented in
Figure 1 [6]. Currently, productivity and resource use efficiency of C3 winter and C4 summer cereals

Agronomy 2018, 8, 69; doi:10.3390/agronomy8050069 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
https://orcid.org/0000-0002-7223-5541
http://www.mdpi.com/2073-4395/8/5/69?type=check_update&version=1
http://dx.doi.org/10.3390/agronomy8050069
http://www.mdpi.com/journal/agronomy


Agronomy 2018, 8, 69 2 of 16

are low in Pakistan compared to other countries in the region [7–17], indicating a substantial potential
to increase resource use efficiencies [6,18–26].

Table 1. Classification of commonly grown C3 and C4 cereal crops in Asia.

Agronomy 2018, 8, x FOR PEER REVIEW  2 of 16 

 

winter and C4 summer cereals are low in Pakistan compared to other countries in the region [7–17], 
indicating a substantial potential to increase resource use efficiencies [6,18–26]. 

Table 1. Classification of commonly grown C3 and C4 cereal crops in Asia. 

Crop/Botanical Name 

Fa
m

il
y 

Li
fe

 c
yc

le
 

Se
as

on
 

Ph
ot

op
er

io
d 

G
ro

w
th

 h
ab

it
 

Po
lli

na
tio

n 

Pr
op

ag
at

io
n 

Ph
ot

os
yn

th
es

is
 

N
ut

ri
en

t u
pt

ak
e 

R
oo

t s
ys

te
m

 

Wheat (Triticum aestivum L.) 

Po
ac

ea
e 

A
nn

ua
l 

W
in

te
r 

Lo
ng

-d
ay

 

D
et

er
m

in
at

e Se
lf-

po
lli

na
te

d 

Se
ed

 

C
3 

Ex
ha

us
tiv

e 

Fi
br

ou
s 

Oat (Avena sativa L.) 

Barley (Hordeum vulgare L.) 

Maize (Zea mays L.) 
Su

m
m

er
 D
ay

- 
 

ne
ut

ra
l 

C
ro

ss
- 

 
po

lli
na

te
d 

C
4 

Millet (Pennisetum americanum L.) 
Sh

or
t-

da
y 

Sorghum (Sorghum bicolor L.) 

Se
lf-

po
l

lin
at

ed
 

Rice (Oryza sativa L.) C
3 

Source: Nazir et al. [5]. 

The world nitrogen-use efficiency (NUE) for cereal production is around 33% [27,28]. Reported 
N losses (Figure 2) are presented in Table 2 [29–38]. Lower production is due to the meager use of all 
available resources along with climate variability and change [3,39–42]. Paradoxically, growers 
growing C3 and C4 cereals adopt conventional practices instead of approved practices that make 
more efficient use of resources [43–50]. Nitrogen is the key constituent of agricultural inputs to 
maintain production of these cereals throughout their lifecycle [51–54] (Figure 3). Surplus N and/or 
N applied without splitting can be lost through pathways such as nitrification and volatilization 
[8,40,41] (Figure 1). Principally, it is essential to boost NUE through better approaches to increase 
RUE. So, split N application regimes result in considerable boost in NUE, production, and 
resultantly RUE by reducing losses and improving uptake [41]. It is a rising concern that most of the 
available or applied N is lost, thereby reducing NUE, which is just 29% for cereals in developing 
agrarian economies [55,56]. This research study was carried out to validate the influence of split N 
application on biomass accumulation, grain yields, and resource use efficiencies such as NUE and 
RUE for C3 winter and C4 summer cereals. 

Table 2. Losses of N fertilizer in cereal crops. 

N losses Loss (%) Crop/Condition Reference 

Nitrate 52–73 Corn [30] 
>21 Winter wheat [31] 

Denitrification 
9.5 Winter wheat [32] 
10 Rice [33] 

>10 Corn [34] 
Runoff 1–13  [35,36] 

Volatilization 40 Without incorporated [37,38] 
Drainage  23 Tile [39] 

Source: Raun et al. [28]. 
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The world nitrogen-use efficiency (NUE) for cereal production is around 33% [27,28]. Reported N
losses (Figure 2) are presented in Table 2 [29–38]. Lower production is due to the meager use of all
available resources along with climate variability and change [3,39–42]. Paradoxically, growers growing
C3 and C4 cereals adopt conventional practices instead of approved practices that make more efficient
use of resources [43–50]. Nitrogen is the key constituent of agricultural inputs to maintain production of
these cereals throughout their lifecycle [51–54] (Figure 3). Surplus N and/or N applied without splitting
can be lost through pathways such as nitrification and volatilization [8,40,41] (Figure 1). Principally, it
is essential to boost NUE through better approaches to increase RUE. So, split N application regimes
result in considerable boost in NUE, production, and resultantly RUE by reducing losses and improving
uptake [41]. It is a rising concern that most of the available or applied N is lost, thereby reducing NUE,
which is just 29% for cereals in developing agrarian economies [55,56]. This research study was carried
out to validate the influence of split N application on biomass accumulation, grain yields, and resource
use efficiencies such as NUE and RUE for C3 winter and C4 summer cereals.

Table 2. Losses of N fertilizer in cereal crops.

N losses Loss (%) Crop/Condition Reference

Nitrate
52–73 Corn [30]
>21 Winter wheat [31]

Denitrification
9.5 Winter wheat [32]
10 Rice [33]

>10 Corn [34]
Runoff 1–13 [35,36]

Volatilization 40 Without incorporated [37,38]
Drainage 23 Tile [39]

Source: Raun et al. [28].
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Figure 1. Wheat, rice, and maize area and production in Pakistan from 1960 to 2016. Source: Government
of Pakistan [7].
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Figure 3. A simplistic schematic chart of N in C3 and C4 cereal crop plants representing different
transformations that occur during the life span from sowing to harvesting of C3 and C4 cereal crops.
The N uptake, absorption, remobilization, and redistribution are represented with different lines in
relation to various growth stages. (Source: Modified and adapted from [54].)

2. Materials and Methods

2.1. Site and Experiment Description

Research experiments were carried out at the Agronomic Research Area at Bahauddin Zakariya
University, Pakistan (30◦15′ N latitude, 71◦30′ E longitude, and 126.6 m a.s.l.). The research site was
situated under irrigated conditions in an arid environment of a silt clay loam textural class. The detailed
description of the physical and chemical features of the soil has been published previously [1,10].
The meteorological conditions for C3 winter and C4 summer cereal seasons are presented in Figure 4,
and the treatments and experimental details are outlined in Table 3. There were three replications and
net plot size has been mentioned in Table 3.



Agronomy 2018, 8, 69 5 of 16

Table 3. Agronomic practices for C3 winter (wheat, oat, and barley) and C4 summer (maize, millet,
and sorghum) cereals.

Crops/Cultural
Practices

Wheat Oat Barley Maize Millet Sorghum

C3 Cereals C4 Cereals

Sowing date November 14 August 18

N (kg ha−1) 125 115 50 227 170 100

Irrigations December 7, January 14, February 1,
March 11

September 12, September 28, October 17,
October 31

Fertilizer dates November 14, December 10, January 17,
February 3

August 18, September 12, September 28,
October 31

Split N
treatments

NS1 = whole N at sowing; NS2 = 1
2 N at sowing + 1

2 N at first irrigation;
NS3 = 1

3 N at sowing + 1
3 N at first irrigation + 1

3 N at second irrigation; NS4 = 1
4 N at sowing + 1

4
N at first irrigation + 1

4 N at second irrigation + 1
4 N at third irrigation

Net plot size 2 m × 5 m 2 m × 5 m 2 m × 5 m 8 m × 10 m 6 m × 10 m 3.5 m × 10 m

Soil properties
Sand 28%, silt 52%, and clay 20%, pH 9.6, EC

3.42 ds m−1, OM 0.74%, total N 0.033%, P
4.92 ppm, and K 255 ppm

pH 8.02, EC 2.3 ds m−1, Corg 0.76%, Ntot 0.039%,
POlsen 5.1 mg kg−1, and Kext 110 mg kg−1

Harvest date 24 April 26 April 22 April 11 December 6 December 14 December

EC = Electrical conductivity; OM = Organic matter; Ntot = Nitrogen total; POlsen = Phosphorus Olsen;
Kext = Potassium extractable.

2.2. Data Collection

Common techniques were employed to record growth data. The leaf-area index (LAI) of a sample
(10 g) of fully expanded fresh leaves for C3 winter and C4 summer cereal crops were taken, and leaf-area
was recorded by means of a leaf-area meter. LAI was recorded using the methodology of Watson [57].

LAI (C3, C4 Cereals) = Leaf area (C3, C4 Cereals)/Land area (C3, C4 Cereals) (1)

The RUE was computed for C3 winter and C4 summer cereal crops as follows:

RUE TDM (C3, C4 Cereals) = TDM (C3, C4 Cereals)/∑Sa (C3, C4 Cereals) (2)

where ∑Sa is the cumulative photosynthetically active radiation PAR for C3 winter and C4 summer
cereal crops that was anticipated to be half of the total daily instance radiation, and TDM is total
aboveground biomass [58] and calculated using the following equation:

Sa (C3, C4 Cereals) = Fi (C3, C4 Cereals) × Si (C3, C4 Cereals) (3)

where Si is the incident PAR for C3 winter and C4 summer cereal crops, and Fi was appraised from
corresponding cereal crop LAIs by means of the Monteith and Elston [59] equation.

Fi (C3, C4 Cereals) = 1 − exp (−k (C3, C4 Cereals) × LAI (C3, C4 Cereals)) (4)

where Fi is the fraction of intercepted radiation, k is an extinction coefficient for the total solar radiation,
and the LAI is for C3 winter and C4 summer cereal crops [60]. The standards of k for wheat, oat,
barley, maize, sorghum, and millet were 0.70, 0.63, 0.74, 0.65, 0.63, and 0.52, respectively [61–64].
Multiplying the totals by proper estimates of Fi plus Si produced the quantity of intercepted radiation
(Sa) for C3 winter plus C4 summer cereals.

The NUE was calculated as the ratio of grain yield (GY) to quantity of N application [1,10,65]:

NUE (C3, C4 Cereals) = Grain yield (NX (C3, C4 Cereals))/N application rate (C3, C4 Cereals) (5)



Agronomy 2018, 8, 69 6 of 16

2.3. Statistical Analysis

Data thus collected after field experiments were analyzed by Statistix 8.1 (Tallahassee, FL, USA)
for ANOVA. Treatment differences were addressed through the methodology of Steel et al. [66].
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Figure 4. (a) Daily maximum (upward triangles) and minimum (downward triangles) temperatures,
precipitation (unfilled bars), and solar radiation (unfilled stars) (b) during C3 and C4 cereal seasons
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3. Results

3.1. Biomass

Seasonal differential accumulation of biomass occurred throughout the life cycle (including
vegetative and reproductive stages till maturity) in all C3 winter and C4 summer cereals (Figure 5).
Almost half of the biomass was accumulated till anthesis by all the C3 and C4 cereal crops. Overall, C4

cereals performed better than C3 cereals. Across winter and summer cereals and split N regimes, average
biomass varied from 425 to 703 g/m2 and 1083 to 1660 g/m2 among C3 and C4 cereals, respectively
(Figure 5). Among these cereals, wheat and maize produced higher biomass compared to other C3 and
C4 crops, respectively. The biomass productivity of these cereal crops was higher when N was applied
in three equal doses compared to other regimes. The lowest biomass was recorded when N was applied
in four splits. These selected C3 winter and C4 summer cereals reached peak LAI just before the anthesis
stage, which varied substantially among crops and split N application regimes (statistics not given).
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Figure 5. Total biomass production of winter C3 (A–C) and summer C4 (D–F) cereals under split N
application regimes. Bars and letters represent standard error and significance, respectively.
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3.2. Grain Yield (GY)

The data for GY for these winter and summer cereals significantly differed among crops with split
N application regimes (Figure 6). Overall, GY ranged from 198 to 883 g/m2 in the case of cereals and
split N application regimes. The C4 cereals also out-yielded C3 in terms of GY, and it varied from 198 to
338 g/m2 and 205 to 883 g/m2 for the C3 winter and C4 summer cereals, respectively. Among winter
and summer cereal wheat (338 g/m2) and maize (883 g/m2), crops produced higher GY, respectively,
compared to other cereal crops. However, in all C3 winter and C4 summer cereals, higher GY was
recorded when N was applied in three splits compared to other regimes. The lowest GY was observed
for oat (198 to 253 g/m2) and millet (205 to 266 g/m2) crops. Among N application regimes, the lowest
GY was recorded when N was applied in four splits.
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Figure 6. Grain yield of winter C3 (A–C) and summer C4 (D–F) cereals under split N application
regimes. Bars and letters represent standard error and significance, respectively.
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3.3. Radiation Use Efficiency (RUE)

The RUE for wheat, oat, barley, maize, sorghum, and millet crops and split N application regimes
significantly differed (Figure 7). Overall, among all these cereal crops, C4 summer cereals also
out-yielded C3 winter cereals in terms of capturing photosynthetically active radiation. The RUE
varied from 0.90 to 1.42 g MJ−1 and 1.95 to 2.31 g MJ−1 in the case of C3 and C4 cereals, respectively.
Among split N application regimes, the maximum RUE (2.31 g MJ−1) was found in the treatment where
N was applied in three splits, and the lowest (0.90 g MJ−1) was recorded for the four splits condition.
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millet, and sorghum) cereals under split N application regimes. Bars represent standard error.
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3.4. Nitrogen Use Efficiency (NUE)

The NUE for C3 (wheat, oat, barley) and C4 (maize, millet, sorghum) cereal crops and split N
application regimes differed significantly (Figure 8). Overall, among all these cereal crops, C4 summer
cereals also out-yielded C3 winter cereals in terms of NUE, varying from 17.84 to 38.88 kg kg−1 and
17.18 to 51.86 kg kg−1 in the case of C3 plus C4 cereals. Among split N application regimes, the highest
NUE (51.86 kg kg−1) was found in the treatment where N was applied in three splits, while the lowest
(17.84 kg kg−1) was recorded for four splits. The 1:1 lines between the RUE and NUE of C3 and C4

cereals are presented in Figure 9.
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Multan, Pakistan.

4. Discussion

C4 summer cereals (maize, millet, and sorghum) having C4 carbon metabolism were found to be
superior in accumulating biomass to C3 winter cereals at different split N application regimes. The C4

cereals produce higher biomass and grain yields as compared to C3 cereal crops. This variation for
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biomass and grain yield was possibly due to the supremacy of C4 cereals as compared to C3 cereal
crops towards harnessing higher resource use efficiencies for N [67,68].

The N application in three splits proved to be an effective strategy for all six C4 and C3 cereal crops
as compared to other split application regimes. N application at sowing without splitting likely increases
the losses through volatilization, nitrification, denitrification, and leaching (Figure 1). However, N
application in four splits creates hidden hunger and did not fulfil the optimum nutrient requirements
of all C4 and C3 summer and winter cereals during the crop lifetime. This deficiency is reflected in the
form of low biomass, grain yields, NUE, and RUE in this study as well as elsewhere [69,70].

Growth dilution effect with variations in N in C4 and C3 cereal crops necessitate the splitting of
N. The N is directly linked with leaf photosynthesis as well as higher NUE [40,71]. Variation in N
dynamics as well as NUE has substantial effects on photosynthetic efficiency and growth [72].

In this study, C4 summer cereals out-yielded C3 winter cereal in terms of RUE and NUE. The RUE
and NUE varied from 0.90 to 2.31 g MJ−1 and 17.84 to 51.86 kg kg−1 for the C3 and C4 cereals.
Among split N application regimes, the highest RUE and NUE were found in the treatment in which N
was applied in three splits, possibly due to the continuous and optimum availability of resources. It is
a well-established fact that at optimum availability of N, the RUE of C3 and C4 cereals is enhanced,
producing more height, LAI, light interception, and canopy development [1,10,73–75]. Similar trends
of RUE against applied N in C4 cereals indicated that RUE might be even somewhat better on a
total biomass basis. The C4 cereals displayed additional LAI compared to C3. Conversely, it seems
inadequate for C3 cereals to accrue leaf N to obtain the level of C4 cereals. Splitting N approach for C3

and C4 crops will increase productivity in the form of grain yield, then likewise increase NUE as well
as biological harvest. The strategies in which the N losses of C3 and C4 crops are reduced will boost
the C3 and C4 crop productivity in future.

5. Conclusions

Reduced resource use efficiencies, such as NUE and RUE, in selected C3 winter (wheat, oat,
barley) and C4 summer (maize, millet, sorghum) cereal crops could be augmented through splitting N
fertilizer in irrigated arid conditions. The poor resource use efficiencies are due to lesser NUE in cereal
crops and its possible losses by nitrification and runoff as well as leaching. Therefore, N application in
three splits (at sowing time and first irrigation as well as second irrigation) to C3 winter (wheat, oat,
barley) and C4 summer (maize, millet, sorghum) cereals may be considered as a substitute strategy to
enhance resource use efficiencies by decreasing N losses in irrigated arid conditions.
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