
Citation: Ma, Z.; Wang, J.; Wen, S.;

Ren, J.; Hui, H.; Huang, Y.; Yang, J.;

Zhao, B.; Liu, B.; Gao, Z. Evaluation of

Maize Hybrids for Resistance to Ear

Rot Caused by Dominant Fusarium

Species in Northeast China. Agronomy

2024, 14, 855. https://doi.org/

10.3390/agronomy14040855

Academic Editor: Chenggen Chu

Received: 26 March 2024

Revised: 17 April 2024

Accepted: 18 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Evaluation of Maize Hybrids for Resistance to Ear Rot Caused by
Dominant Fusarium Species in Northeast China
Zhoujie Ma 1 , Jianjun Wang 1, Shenghui Wen 1, Jiankai Ren 1, Hongyan Hui 2, Yufei Huang 3, Junwei Yang 1,
Bianping Zhao 1, Bo Liu 2,* and Zenggui Gao 3,*

1 Maize Research Institute, Shanxi Agricultural University, Xinzhou 034000, China; snmzj123@163.com (Z.M.)
2 College of Life Sciences, Yan’an University, Yan’an 716000, China
3 College of Plant Protection, Shenyang Agricultural University, Shenyang 031000, China
* Correspondence: liubo4552@126.com (B.L.); gaozenggui@163.com (Z.G.)

Abstract: Ear rot caused by the Fusarium species has led to a decline in maize yield and kernel quality
worldwide. The changes in the population structure of pathogens and the widespread planting of
susceptible maize varieties have exacerbated the occurrence and harm of ear rot in China. Therefore,
it is very important to establish the species composition of Fusarium and evaluate the resistance
of the main cultivated hybrids. In this study, 366 single conidial isolates of Fusarium spp. were
obtained from three provinces of Northeast China. F. verticillioides, F. subglutinans, F. proliferatum,
F. oxysporum, and F. graminearum species complex (FGSC) were identified, with F. verticillioides being
the most prevalent with a frequency of 44.0%. Based on the TEF-1α gene sequences analysis, the
FGSC populations consisted of two independent species: F. boothii and F. graminearum, which account
for 23.8% and 5.7% of the total isolates, respectively. Additionally, the resistance to ear rot by 97 maize
hybrids commonly planted in Northeast China was evaluated by inoculation with F. verticillioides
during 2021 and 2022. The results showed that the disease parameters of different hybrids varied
significantly (p < 0.05). Approximately half of the hybrids had damage rates ranging from 0 to 15%,
and 79.4% of the hybrids had a severity rating of less than 5.5. In total, 49 (50.5%) hybrids were rated
as moderately resistant, which was the dominant resistance category, and 71 hybrids (73.2%) were
identified as moderately to highly resistant to ear rot. Current research confirms that Fusarium ear
rot in maize is mainly caused by F. verticillioides in Northeast China, and many hybrids are resistant
to the disease. This study will guide growers to scientifically deploy resistant commercial hybrids to
control ear rot.

Keywords: maize; ear rot; population structure; resistance; Fusarium verticillioides

1. Introduction

Maize (Zea mays L.) is an important cereal crop extensively used as a raw material in
forage and edible oil production worldwide. Multiple fungal pathogens can infect maize
ears and kernels, causing whole ears or part of the kernels to rot during the late growth
stage, harvest, or storage. Not only does infection seriously affect maize yield and kernel
quality, it also reduces germination and seedling survival rates [1–3]. Furthermore, fungi
in maize kernels synthesize toxic secondary metabolites, which are a major food and feed
safety hazard, directly threatening the health of humans and livestock [4–7].

In recent years, Fusarium species have threatened maize cultivation, with ear rot fre-
quently occurring in the maize-growing areas of China [8]. Fusarium species represent the
main pathogenic fungi causing maize ear rot globally, including F. verticillioides, F. gramin-
earum, F. subglutinans, F. proliferatum, and F. temperatum. Fusarium verticillioides is one of the
most commonly isolated pathogens on maize ears throughout the world [9–12]. The popu-
lation structure of Fusarium species changes with environmental conditions [13]. In Europe,
F. verticillioides and F. proliferatum are mainly distributed in drier, warmer regions such as
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Italy, France, Belgium, Switzerland, and Spain, while F. subglutinans and F. temperatum are
more dominant in colder, wetter climates [14–20]. Moreover, countries including Canada,
Brazil, South Africa, Ethiopia, and Nepal have also reported that maize ear rot, mainly
caused by F. verticillioides, has caused serious crop losses [21–25]. Previous investigations
have shown that F. verticillioides is the most prevalent of the Fusarium species, followed
by F. graminearum and F. proliferatum, while F. subglutinans, F. temperatum, F. equiseti, and
F. oxysporum have only been isolated in a limited number of regions in China [26–29].
Significantly, some newly described toxigenic species (including F. concentricum, F. sacchari,
F. miscanthi, and F. sporotrichioides) that cause ear rot have been observed in maize kernels
from China in 2021 and 2022 [30–33].

Currently, the most effective and environmentally safe method of controlling maize
ear rot is cultivating genetically resistant hybrids [34,35]. The search for resistant inbred
lines and hybrids has been the focus of many studies [36–40]. Due to the effects of global
warming, conservation tillage technology, and changes to crop rotation systems, the oc-
currence of Fusarium ear rot damage has shown a tendency to increase worldwide [41,42].
Although China is the world’s largest maize producer and consumer after the United States,
few maize hybrids with high resistance to ear rot have been identified in the region [43–46].
Moreover, almost all commercial hybrids in China are developed and sold by private
companies that do not disclose genetic information, which makes it impossible for growers
to predict the resistance of hybrid plants to various diseases. Therefore, this study was
undertaken to clarify the population structure of Fusarium spp., and screen maize hybrids
with superior resistance to ear rot caused by the dominant Fusarium species in Northeast
China under artificial inoculated conditions.

2. Materials and Methods
2.1. Fungal Isolation and Species Identification

In the autumn of 2020, 298 samples of maize ear rot were collected from 15 regions
in Northeast China, including: 101 samples from Yichun (23), jiamusi (22), Qiqihar (16),
Harbin (19), Mudanjiang (21) in Heilongjiang Province; 93 samples from Baicheng (20),
Songyuan (21), Changchun (19), Siping (18), Tonghua (15) in Jilin Province; and 104 samples
from Tieling (22), Huludao (23), Yingkou (21), Dandong (19), and Dalian (19) in Liaoning
Province where severe ear rot has occurred (Figure 1). The samples collected from different
plots (at least three plots per site) were individually packed in kraft paper bags and stored
in a ventilated area at 25 ◦C. To isolate pathogens, one infected maize kernel on each ear
was surface disinfected by soaking in 5% sodium hypochlorite solution for 5 min, rinsed
with sterile water 3 times, dried, and cultivated on potato dextrose agar (PDA: 200 g potato,
20 g glucose, and 20 g agar in 1 L distilled water) with streptomycin (100 µg/mL). The
hyphae growing inside the kernels were transferred to a spezieller närstoffarmer agar (SNA:
1 g KNO3, 1 g KH2PO4, 0.5 g KCl, 0.5 g MgSO4·7H2O, 0.2 g sucrose, 0.2 g glucose, and 20 g
agar in 1 L distilled water) to promote sporulation. Based on the monospore separation
method proposed by Leslie et al. [11], a single spore was transferred onto a Petri dish
containing PDA under a 40× upright microscope (Eclipes E100, Nikon, Tokyo, Japan) using
a simple homemade needle. All isolates were cultured at 25 ◦C under 12:12 h light:dark
cycles for 5 days, and morphological and cultural characterizations were used to identify
Fusarium isolates to the species level [11]. Finally, the mycelial discs were suspended
in 20% glycerol solution and stored at −80 ◦C until plant resistance was evaluated. In
total, 366 isolates (132 from Heilongjiang, 105 from Jilin, and 129 from Liaoning) were
isolated from samples and preserved at the Institute of Plant Immunology, Shenyang
Agricultural University.
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Figure 1. Regions for collection of maize ear rot samples in Northeast China. Squares, triangles, and 
dots indicate the sites in three different provinces, respectively. HLJ = Heilongjiang; JL = Jilin; LN = 
Liaoning. 
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Figure 1. Regions for collection of maize ear rot samples in Northeast China. Squares, triangles,
and dots indicate the sites in three different provinces, respectively. HLJ = Heilongjiang; JL = Jilin;
LN = Liaoning.

Fungal morphological identification was based on the morphology of conidia. Subse-
quently, the isolates were validated by species-specific polymerase chain reaction (PCR) to
support morphological identification. To extract DNA, the purified isolate was transferred
to a sterile conical flask containing 100 mL potato dextrose broth (PDB: 200 g potato and 20 g
glucose in 1 L distilled water) and incubated at 25 ◦C with 150 rpm shaking for 5 days. The
collected mycelia were filtered with sterile gauze, washed three times with sterile distilled
water, transferred to a centrifuge tube, dried with a vacuum freeze dryer (Modulyo-D,
Labconco, Kansas City, MO, USA) for at least 24 h, poured into a cold mortar, and ground
with a pestle in liquid nitrogen. The mycelial genomic DNA was extracted using the Plant
Genomic DNA Kit (Tiangen, Beijing, China), and the relative purity and concentration
of DNA were determined by Ultramicro spectrophotometer (NanoDrop 2000c, Thermo,
Waltham, MA, USA). The specific primer sequences were described in Table 1 and each
PCR reaction system (25 µL) contained 1 µL template DNA, 12.5 µL 2× Power Taq PCR
MasterMix (Takara, Dalian, China), 1 µL each primer, and 9.5 µL double distilled H2O.
PCR amplification conditions were as follows: initiation at 94 ◦C for 4 min; 35 cycles with
denaturation at 94 ◦C for 40 s, annealing (the temperature depended on the primer pairs)
for 40 s, and extension at 72 ◦C for 1 min, and final extension at 72 ◦C for 10 min. The
amplified products and DL2000 DNA marker (Takara, Dalian, China) were electrophoresed
on a 1% agarose gel containing 1× TAE and 4S Green Plus Nucleic Acid Stain (Sangon,
Shanghai, China), and visualized by the gel imaging analysis system (FireReader V10,
UVItec, Cambridge, UK).

Table 1. Specific primer pairs for Fusarium species.

Species Primer Sequences (5′-3′) Annealing
Temperature (◦C)

Product Size
(bp) Reference

Fusarium spp. ITSF AACTCCCAAACCCCTGTGAACATA
58 431 [47]ITSR TTTAACGGCGTGGCCGC

F. oxysporum FoF1 ACATACCACTTGTTGCCTCG
58 340 [48]FoR1 CGCCAATCAATTTGAGGAACG

F. verticillioides
VER1 CTTCCTGCGATGTTTCTCC

56 578 [49]VER2 AATTGGCCATTGGTATTATATATCTA
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Table 1. Cont.

Species Primer Sequences (5′-3′) Annealing
Temperature (◦C)

Product Size
(bp) Reference

F. proliferatum PRO1 CTTTCCGCCAAGTTTCTTC
56 585 [49]PRO2 TGTCAGTAACTCGACGTTGTTG

F. subglutinans SUB1 CTGTCGCTAACCTCTTTATCCA
56 631 [49]SUB2 CAGTATGGACGTTGGTATTATATCTAA

F. culmorum
Fc01F ATGGTGAACTCGTCCTGGC

59 570 [50]Fc01R CCCTTCTTACGCCAATCTCG

F. graminearum
species complex

Fg16NF ACAGATGACAAGATTCAGGCACA
57 280 [50]Fg16NR TTCTTTGACATCTGTTCAACCCA

A partial gene fragment of translation elongation factor 1-alpha (TEF-1α) was amplified
and sequenced to determine Fusarium species in isolates of F. graminearum species complex
(FGSC). The TEF-1α region was amplified using EF1 (5′-ATGGGTAAGGAGGACAAGAC-
3′) and EF2 (5′-GGAAGTACCAGTGATCATGTT-3′) as primers [51]. The PCR reaction
system was the same as in the previous section. PCR amplifications were performed
for 94 ◦C for 2 min; 35 cycles of 94 ◦C for 30 s; 53 ◦C for 30 s; and 72 ◦C for 1 min;
and final extension at 72 ◦C for 10 min. Amplified products were sequenced by Sangon
Biotech (Shanghai, China), and sequence data was assembled using DNAMAN v. 7.0. The
final sequences were BLAST compared to sequences of Fusarium species from GenBank
(http://blast.ncbi.nlm.nih.gov (accessed on 25 October 2021)) and a phylogenetic tree was
constructed using MEGA v. 4.0.

2.2. Field Experiment Design and Inoculum Preparation

The test materials included 97 commercial hybrids mainly planted in Northeast China,
and 2 inbred lines, X178 (resistant) and B73 (highly susceptible), as controls. Evaluation of
the resistance to maize ear rot was carried out at the research base of Shenyang Agricultural
University, which is located at 41.84◦ N and 123.58◦ E, at an elevation of 89.36 m AMSL. The
soil of the test field was loam with a pH of 6.8, and the organic matter content was 2.5%. The
study was repeated twice, with maize seeds sown in experimental fields on 27 April 2021,
and 30 April 2022. Hybrid seeds were randomly distributed, and each row was 4 m long
and repeated three times, with 60 cm between rows and 10 equally spaced hills per row.
Three seeds of the same hybrid were sown in the hills of each plot, and one plant per hill was
maintained for two weeks after emergence. Field management measures, including timely
manual weeding and pesticide spraying, were implemented throughout the growing season.
The preparation of inoculum followed the method proposed by Xu et al. [44]: wooden
toothpicks were washed in boiling water until the water did not contain color solubles, and
then autoclaved and spread over the coagulated PDA medium. The inoculated pathogen
was an isolate of F. verticillioides named TL1803, a proven aggressive toxin-producing isolate
(with a disease index of 89.30 after inoculating the variety Xianyu335) adapted to the
environment of Northeast China. Five mycelium discs with a diameter of 8 mm from
the initially isolated and purified TL1803 isolate were evenly inverted onto toothpicks,
and then the toothpicks were incubated until they were completely covered by mycelia
and conidia.

2.3. Inoculation and Evaluation

One ear from each plant was randomly marked for inoculation approximately 7 days
after silking. Two toothpicks with mycelia were inserted into the cob from the outside of
the bract at the middle part of the ear. Bracts of the 10 inoculated ears of each hybrid were
removed, and the damage rates (DR: ratio of infected kernels areas to total kernels areas)
were recorded at growth stage R6 of the maize plants. The severity rating (SR) of maize
ear rot was measured on a five-point scale (1 = 0–1%; 3 = 2–10%; 5 = 11–25%; 7 = 26–50%;
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and 9 = 51–100% of total kernels showing visual symptoms of infection) proposed by Yang
et al. [45]. Five resistance categories (RC) were evaluated based on the average SR of the
10 ears from each hybrid, where values between 0.1 and 1.5, 1.6 and 3.5, 3.6 and 5.5, 5.6 and
7.5, and 7.6 and 9.0 were defined as highly resistant (HR), resistant (R), moderately resistant
(MR), susceptible (S), and highly susceptible (HS) responses, respectively. When control
B73 showed HS to ear rot in the field test, inoculation was considered effective. Where the
average SR was inconsistent between the two planting years, the higher value was used as
the criterion for evaluating the final resistance category. The frequency and distribution of
different Fusarium species, as well as the average values of DRs and SRs of each hybrid,
were calculated using Microsoft Excel 2007. SAS version 9.4 was used for statistical analysis,
and the mean comparisons were performed using LSD(p = 0.05) test. Separate analysis was
conducted on the annual disease parameters data due to the interaction between genotype
and year.

3. Results
3.1. Weather Conditions

During the maize growth season (May to September), the average temperature in 2021
and 2022 were 22.08 ◦C and 21.75 ◦C, respectively, and the temperature fluctuated slightly
in different months of the same year (Figure 2). The total precipitation in the summer (June
to August) of 2022 was 347.32 mm, which was significantly lower than the 527.90 mm in
2021. Furthermore, the precipitation in August had increased significantly compared with
other months in the past two years, and it was in the R2 and R3 stages of maize plants,
which was conducive to the occurrence and prevalence of ear rot.
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3.2. Occurrence Frequency and Distribution of Different Species of Fusarium

In this study, F. verticillioides, F. subglutinans, F. proliferatum, F. oxysporum, and FGSC
were identified through morphological structural analysis and species-specific PCR, respec-
tively, and no other Fusarium species were detected in Northeast China (Figure 3). The
TEF-1α gene sequences of 108 FGSC isolates were BLAST compared with the standard
reference isolates of Fusarium in GenBank and a phylogenetic tree was constructed, indicat-
ing FGSC isolates that were divided into two distinct clades, with 87 isolates (e.g., LN011,
JL032, and HLJ053) expressing 99% to 100% homology with F. boothii (KX269073.1 and
KX269077.1), while the other 21 isolates (e.g., LN004, LN078, and HLJ019) exhibited 99% to
100% homology with F. graminearum (KX269094.1 and MW620073.1) (Figure 4). However,
the isolation frequency of each species varied greatly (Table 2). Fusarium verticillioides was
the dominant species with a frequency of 44.0%, followed by F. boothii with a frequency
of 23.8%. In addition, F. subglutinans, F. proliferatum, F. graminearum and F. oxysporum were
only found at a few study sites, accounting for 12.0%, 9.8%, 5.7% and 4.6% of total isolates,
respectively.
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of F. oxysporum, 1–5: LN044, JL036, JL059, HLJ028; HLJ041.
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Table 2. Frequency and distribution of different species of Fusarium in various regions of North-
east China.

Province Name Site Name No. of Species
No. of Isolates a

All Species b
Fv Fs Fp Fo Fb Fg

Heilongjiang Yichun 4 9 7 8 . . . 8 . . . 32
Jiamusi 5 13 6 5 1 10 . . . 35
Qiqihar 4 6 . . . . . . 2 4 4 16
Harbin 3 9 . . . . . . . . . 7 6 22

Mudanjiang 4 11 3 . . . 3 10 . . . 27
All sites c 6 48 16 13 6 39 10 132

Per site (%) - 36.4 12.1 9.8 4.5 29.5 7.6 -

Jilin Baicheng 4 11 9 . . . 3 2 . . . 25
Songyuan 4 7 5 9 . . . 3 . . . 24

Changchun 3 9 6 7 . . . . . . . . . 22
Siping 2 14 . . . . . . . . . 5 . . . 19

Tonghua 3 9 . . . . . . 2 4 . . . 15
All sites c 5 50 20 16 5 14 . . . 105

Per site (%) - 47.6 19.0 15.2 4.8 13.3 . . . -

Liaoning Tieling 3 13 . . . . . . 3 9 . . . 25
Huludao 4 11 6 . . . . . . 8 6 31
Yingkou 5 15 2 7 1 . . . 3 28
Dandong 4 10 . . . . . . 2 6 2 20

Dalian 2 14 . . . . . . . . . 11 . . . 25
All sites c 6 63 8 7 6 34 11 129

Per site (%) - 48.8 6.2 5.4 4.7 26.4 8.5 -

All provinces d 6 161 44 36 17 87 21 366
Per province (%) - 44.0 12.0 9.8 4.6 23.8 5.7 -

a Fusarium species. Fv = F. verticillioides; Fs = F. subglutinans; Fp = F. proliferatum; Fo = F. oxysporum; Fb = F. boothii;
and Fg = F. graminearum. b The total number of isolates from different regions. c The total number of isolates of
each species in various regions. d The total number of isolates of each species in all provinces.

The frequencies and distributions of Fusarium species varied within and among
provinces. All six identified species were found in Heilongjiang and Liaoning, while
all except F. graminearum were found in Jilin. Fusarium verticillioides was the most prevalent
species in Heilongjiang, Jilin, and Liaoning provinces, and its frequency of occurrence was
36.4%, 47.6%, and 48.8%, respectively. The number of F. boothii isolates detected in Jilin was
only higher than that of F. oxysporum and F. graminearum, while in the other two provinces,
this species was the second most prevalent species after F. verticillioides. The population
structure was also different within and between each site. Fusarium verticillioides was
present in all 15 sites, whereas F. boothii was described for 13 sites, F. subglutinans and F. oxys-
porum for 8 sites, and F. proliferatum and F. graminearum for 5 sites. Significantly, five species
of Fusarium were distributed in Jiamusi of Heilongjiang and Yingkou of Liaoning, while
only F. verticillioides and F. boothii were detected in Siping of Jilin and Dalian of Liaoning.

3.3. Evaluation of Maize Hybrids

All hybrids showed visible symptoms of ear rot after being inoculated with F. verti-
cillioides, and the disease parameters DR and SR of different hybrids planted in the same
year varied significantly (p < 0.05; Table 3). In 2021 and 2022, the lowest disease parameters
occurred in the Huanong887 hybrid, which had DR of 1.07% and 0.54%, and SR of 1.20
and 1.00, respectively. The Jiudan318 hybrid had the highest disease parameters in 2021
(DR and SR were 64.07% and 8.20, respectively), while the Jinyuan15 hybrid demonstrated
the highest disease parameters in 2022 (DR and SR were 59.97% and 8.07, respectively).
The proportion distribution of maize hybrids in the two disease parameters in different
years is shown in Figure 5. The DR values of the tested hybrids were distributed between
1.07 and 64.07% in 2021, and 0.54 and 59.97% in 2022, of which approximately half varied
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within a range of 0 to 15%. The resistance response of each hybrid was sorted into different
categories based on the SR value investigated during the R6 growth stage of the maize
plants. The RC distribution results indicated that 79.4% of the hybrids had values below
5.5 in 2021 and 2022, which were determined to be resistant to ear rot (evaluated as HR,
R and MR). The resistance categories of all hybrids fluctuated slightly between 2021 and
2022, and 52.6% of hybrids were observed to have the same resistance response in both
sowing years. Significant correlation existed between disease parameters (r > 0.95), and the
control inbred lines B73 and X178 achieved theoretical HS and R responses, respectively.
This indicated that the field environment was suitable for the occurrence of ear rot, and the
evaluation results were true and effective.
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Statistical analysis of the resistance category for all tested hybrids in this study con-
firmed that MR hybrids were most common (n = 49; 50.5%), followed by R (n = 20; 20.6%),
and S (n = 20; 20.6%) hybrids. In contrast, only six HS and two HR hybrids were observed,
with identification frequencies of 6.2% and 2.1%, respectively. Overall, 71 hybrids (73.2%)
were identified as resistant (HR, R, MR) to ear rot, and 26 hybrids (26.8%) were rated as HS
or S. The distribution of resistance categories for the planted maize hybrids varied between
each province (Figure 6). Compared with other provinces, more hybrids in Heilongjiang
were classified as MR and HS, accounting for 53.1% and 9.4% of the total, respectively.
Among the planted hybrids in Jilin, 27 were identified as resistant to ear rot (including 10 R
and 17 MR hybrids), with a resistance level of 77.1%, which was significantly higher than
that of the other two provinces. Conversely, up to 30% of the hybrids in Liaoning were
designated as S or HS.
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Table 3. Disease parameters and resistance evaluation of maize hybrids in Northeast China infected by Fusarium verticillioides.

No. Hybrid Name Province a
2021 2022

FRC e No. Hybrid Name Province a
2021 2022

FRC e

DR b (%) SR c RC d DR b (%) SR c RC d DR b (%) SR c RC d DR b (%) SR c RC d

1 Damin3307 HLJ 41.73 6.40 S 40.04 6.20 S S 52 Jinongda598 JL 46.17 7.07 S 49.17 7.47 S S
2 Demeiya1 HLJ 11.54 3.67 MR 6.26 3.07 R MR 53 Jinongyu1881 JL 5.30 2.80 R 4.34 2.47 R R
3 Demeiya3 HLJ 6.03 3.07 R 4.61 2.47 R R 54 Jinongyu719 JL 14.73 4.33 MR 13.08 4.00 MR MR
4 Dika517 HLJ 53.54 7.60 HS 38.75 6.53 S HS 55 Laike818 JL 7.72 3.40 R 7.10 3.07 R R
5 Dongnong254 HLJ 21.67 4.87 MR 23.68 5.20 MR MR 56 Liaoke38 JL 26.31 5.00 MR 22.32 5.07 MR MR
6 Dongnong259 HLJ 5.11 3.13 R 18.13 4.53 MR MR 57 Limin33 JL 14.63 3.73 MR 18.64 4.33 MR MR
7 Dunyu213 HLJ 15.23 4.00 MR 8.39 3.13 R MR 58 Nonghua101 JL 8.47 3.33 R 14.46 4.00 MR MR
8 Fuer116 HLJ 16.24 4.00 MR 33.21 6.07 S S 59 Pingan169 JL 11.75 3.60 MR 11.11 3.47 R MR
9 Hetian4 HLJ 18.86 4.47 MR 13.80 4.00 MR MR 60 Tianyu108 JL 7.24 3.07 R 16.24 3.73 MR MR

10 Heyu27 HLJ 19.08 4.27 MR 38.06 5.47 MR MR 61 Xiangyu998 JL 32.34 5.67 S 53.36 7.87 HS HS
11 Huamei2 HLJ 4.94 2.73 R 3.62 2.27 R R 62 Xiongyu581 JL 6.32 3.07 R 12.37 3.53 MR MR
12 Huanong887 HLJ 1.07 1.20 HR 0.54 1.00 HR HR 63 Yinghe165 JL 30.25 5.40 MR 22.93 4.53 MR MR
13 Jingnongke728 HLJ 55.91 7.07 S 56.42 7.53 HS HS 64 Youdi519 JL 6.87 3.20 R 6.43 3.00 R R
14 Jinongda935 HLJ 17.04 4.20 MR 10.38 3.20 R MR 65 Youdi599 JL 39.12 5.73 S 44.15 6.47 S S
15 Jiudan318 HLJ 64.07 8.20 HS 55.55 7.60 HS HS 66 Youdi919 JL 55.93 7.00 S 48.97 6.60 S S
16 Keyu16 HLJ 14.65 3.93 MR 8.26 3.13 R MR 67 Zeyu517 JL 25.95 5.07 MR 17.90 4.47 MR MR
17 Longdan86 HLJ 16.03 4.47 MR 22.03 5.20 MR MR 68 Danyu402 LN 22.43 5.07 MR 15.61 4.13 MR MR
18 Longfuyu9 HLJ 8.42 2.80 R 3.47 2.27 R R 69 Danyu405 LN 31.75 6.07 S 24.08 5.20 MR S
19 Longken10 HLJ 11.74 3.73 MR 29.79 5.53 S S 70 Dongdan118 LN 30.16 5.33 MR 22.15 4.73 MR MR
20 Longyu10 HLJ 12.40 3.87 MR 11.08 3.13 R MR 71 Dongdan1501 LN 6.19 3.00 R 9.13 3.47 R R
21 Longyu828 HLJ 3.85 2.47 R 3.45 2.33 R R 72 Dongdan60 LN 10.16 3.27 R 7.54 2.53 R R
22 Lvdan2 HLJ 23.54 4.73 MR 34.54 6.00 S S 73 Dongdan6531 LN 27.73 5.67 S 21.88 4.73 MR S
23 Nendan18 HLJ 35.67 6.07 S 29.97 5.27 MR S 74 Dongdan70 LN 36.71 6.13 S 40.79 6.67 S S
24 Ruifuer1 HLJ 17.69 4.13 MR 11.33 3.67 MR MR 75 Dongtiannuo100 LN 10.72 3.07 R 15.70 3.67 MR MR
25 Suiyu23 HLJ 5.72 3.00 R 18.75 4.13 MR MR 76 Hongkai49 LN 1.63 1.47 HR 0.93 1.13 HR HR
26 Xianyu335 HLJ 54.02 7.13 S 43.32 6.20 S S 77 Hongshuo1798 LN 13.84 4.07 MR 7.64 3.20 R MR
27 Xianyu696 HLJ 11.81 3.20 R 8.24 2.73 R R 78 Hongshuo899 LN 3.62 1.80 R 1.36 1.40 HR R
28 Xianzhengda408 HLJ 4.84 2.47 R 18.09 4.07 MR MR 79 Jiaduoxing939 LN 11.80 3.13 R 10.28 2.80 R R
29 Xinkeyu1 HLJ 6.21 2.73 R 22.21 4.60 MR MR 80 Jinshi566 LN 20.55 4.53 MR 14.57 4.27 MR MR
30 Yinongyu10 HLJ 17.60 4.27 MR 13.17 3.20 R MR 81 Jinyuan15 LN 50.43 7.33 S 59.97 8.07 HS HS
31 Zhitai3 HLJ 15.64 4.27 MR 11.07 3.47 R MR 82 Lianda288 LN 13.57 4.20 MR 9.34 3.13 R MR
32 Zhongdan909 HLJ 8.85 3.33 R 16.82 4.27 MR MR 83 Liangyu88 LN 32.83 6.20 S 26.05 5.40 MR S
33 Changdan551 JL 24.67 5.07 MR 17.68 4.40 MR MR 84 Liangyu911 LN 10.38 3.87 MR 7.13 2.87 R MR
34 Deyu919 JL 5.85 3.00 R 5.34 2.53 R R 85 Liangyu99 LN 20.23 4.67 MR 25.25 5.20 MR MR
35 Dika159 JL 8.69 3.33 R 14.63 4.00 MR MR 86 Liaodan565 LN 7.34 3.47 R 13.37 3.93 MR MR
36 Dika516 JL 28.33 5.07 MR 21.37 4.47 MR MR 87 Liaohe308 LN 43.79 6.73 S 43.72 6.80 S S
37 Fulai77 JL 20.48 4.47 MR 11.56 3.33 R MR 88 Shenhai49 LN 31.81 5.80 S 48.84 7.73 HS HS
38 Fulai818 JL 22.72 4.53 MR 33.73 5.73 S S 89 ShennongT100 LN 2.73 1.67 R 7.76 2.47 R R
39 Fumin105 JL 43.07 6.60 S 38.04 6.20 S S 90 Shennuo18 LN 27.84 5.33 MR 14.21 3.40 R MR
40 Fumin108 JL 23.61 5.27 MR 27.82 5.53 S S 91 Shenyu35 LN 26.27 5.13 MR 33.20 5.73 S S
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Table 3. Cont.

No. Hybrid Name Province a
2021 2022

FRC e No. Hybrid Name Province a
2021 2022

FRC e

DR b (%) SR c RC d DR b (%) SR c RC d DR b (%) SR c RC d DR b (%) SR c RC d

41 Heyu301 JL 25.60 4.93 MR 26.67 5.20 MR MR 92 Tieyan120 LN 12.10 3.53 MR 6.38 2.80 R MR
42 Heyu9 JL 9.07 3.07 R 15.03 3.53 MR MR 93 Tieyan358 LN 13.32 3.73 MR 19.33 4.47 MR MR
43 Huadan398 JL 10.32 3.20 R 9.75 3.00 R R 94 Tieyan38 LN 9.75 3.67 MR 14.74 4.27 MR MR
44 Jidan1402 JL 7.13 2.53 R 1.76 1.40 HR R 95 Tieyan58 LN 35.68 5.80 S 33.46 5.40 MR S
45 Jidan551 JL 8.75 3.33 R 8.29 3.13 R R 96 Xindan336 LN 17.91 4.07 MR 23.99 4.67 MR MR
46 Jidan558 JL 9.11 3.47 R 8.64 3.27 R R 97 Zhengdan958 LN 9.82 3.20 R 15.82 3.93 MR MR
47 Jidan56 JL 5.32 2.80 R 6.73 3.20 R R B73 Control 66.17 8.27 HS 69.13 8.40 HS HS
48 Jidan96 JL 24.85 5.47 MR 11.34 2.80 R MR X178 Control 4.82 2.73 R 4.48 2.53 R R
49 Jingke968 JL 6.54 2.93 R 5.78 2.87 R R Mean . . . 19.86 4.32 . . . 20.22 4.29 . . . . . .
50 Jinkai7 JL 30.72 5.53 S 28.58 5.13 MR S LSD(p=0.05)

f . . . 2.98 0.30 . . . 3.01 0.32 . . . . . .
51 Jinongda585 JL 27.76 5.40 MR 21.76 4.73 MR MR CV (%) . . . 75.27 34.87 . . . 74.57 37.74 . . . . . .

a HLJ = Heilongjiang; JL = Jilin; LN = Liaoning. b DR = Damage rate: infected kernels area as a percentage of the total kernels area. c SR = Severity rating: the damage rates between 0
and 1%, 2 and 10%, 11 and 25%, 26 and 50%, and 51 and 100% were recorded as severity levels of 1, 3, 5, 7, and 9, respectively. d RC = Resistance category: the severity rating mean
values between 0.1 and 1.5, 1.6 and 3.5, 3.6 and 5.5, 5.6 and 7.5, and 7.6 and 9.0 were defined as highly resistant (HR), resistant (R), moderately resistant (MR), susceptible (S), and highly
susceptible (HS) responses, respectively. e FRC = Final resistance categories: the higher severity rating mean value in 2021 and 2022 was used as the standard for the final evaluation of
the resistance category. f LSD = least significant difference.
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4. Discussion

Ear rot caused by Fusarium spp. poses a serious threat to maize yield and kernel
quality. Fusarium verticillioides was the most frequently observed and widely distributed
Fusarium species in this study, which concurs with a previous report on the isolation and
identification of maize ear rot pathogens in Northeast China [52]. However, the popu-
lation structure of Fusarium that causes ear rot in maize varies widely across countries
and regions. The dominant species was F. verticillioides in Switzerland, Poland, Ethiopia,
Iran, and Eastern China; F. graminearum in France and Belgium; and F. subglutinans in the
Harbin area of China [16,18,20,25,28,41,53–55]. The frequency and distribution of Fusarium
species varied among provinces and sites, which was closely related to environmental con-
ditions [41]. In general, dry and hot conditions are conducive to infection by F. verticillioides
and F. proliferatum, while F. subglutinans and F. graminearum prefer frequent rainfall and
cold temperatures [1,3]. In summer, high temperature lasted for an extended period in
the Liaoning Province (http://ln.cma.gov.cn/zfxxgk/zwgk/zcwj/gfxwj/202106/t20210
607_3387749.html (accessed on 16 March 2022)), which may be a reason for the highest
isolation frequency of F. verticillioides being observed in this area. The population structure
of Fusarium has changed significantly over time, demonstrated by a change in the dominant
fungus in Northeast China from F. semitectum in 2011 [56], to F. verticillioides in this study.
The isolation frequency of various species in the same region also fluctuated in different
years. In 2015, ear rot caused by F. subglutinans did not occur in maize-producing areas of
Liaoning [57]; however, by 2020, F. subglutinans was the fourth most dominant species in
the area with a frequency of 6.2%, which may have been influenced by cultivated hybrids,
location and time of sample collection. The population structure of Fusarium was influenced
by the sources of collected maize ear rot samples. Furthermore, the samples were only
collected from 15 regions in 2020, which could have led to a bias in the results, and more
samples across regions and years should be examined in future studies.

The toxicity of Fusarium species, the complexity of the population structure, and
current production practices strongly influence the occurrence and development of ear
rot [58–60]. An aggressive fumonisin-producing F. verticillioides adapted to the local envi-
ronment was selected for artificial inoculation to accurately evaluate the disease resistance
of these plants in Northeast China. Experiments conducted in greenhouses do not reflect

http://ln.cma.gov.cn/zfxxgk/zwgk/zcwj/gfxwj/202106/t20210607_3387749.html
http://ln.cma.gov.cn/zfxxgk/zwgk/zcwj/gfxwj/202106/t20210607_3387749.html
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the true resistance levels of maize hybrids in the diverse cultivation environments of differ-
ent regions. Therefore, the experiment conducted by Reid et al. [61] was carried out under
field conditions to evaluate the resistance of maize hybrids to ear rot caused by F. verticil-
lioides. The selection of an inoculation method suitable for local conditions was particularly
important for the identification of resistance to maize ear rot. Since the inoculum was easy
to culture, and the amount of inoculum could be accurately controlled, pathogens were in
direct contact with the ears and kernels; thus, double toothpick inoculation proved to be a
relatively simple and effective method [44,62]. Moreover, climatic conditions in different
years have a profound impact on the response of plants to ear rot [13,63]. In our study, the
resistance category controls X178 and B73 reached the theoretical level of using double
toothpicks to inoculate maize ears in both years.

As a fungal disease commonly occurring in maize-producing areas of the world,
ear rot has attracted more and more attention from growers. Planting resistant hybrids
is considered to be the most economical and effective way to prevent ear rot, but the
resistance of maize hybrids to ear rot differs greatly [64,65]. Many countries and regions
have carried out evaluations of the resistance of maize inbred lines and hybrids to ear
rot. Inoculation trials undertaken in Urbana, Illinois, evaluated the severity of Fusarium
ear rot in 68 food-grade dent maize hybrids, and found 13 had a consistent ear rot rate of
less than 5% over two years [38]. A total of 103 maize inbred lines were inoculated with
F. verticillioides in Ikenne and Ibadan, Nigeria, during 2003 and 2004. Results of the study
showed that 02C14683, 02C14624, 02C14606, 02C14603, 02C14593, and 02C14585 were
consistently highly resistant to ear rot across years and locations [36]. Maize materials from
Canada and the United States have been reported to show significant genotypic differences
in resistance to F. verticillioides [37]. After analyzing the germplasms from the Misión
Biológica de Galicia Bank, Spain, in 2010 and 2011, 61 inbred lines were determined to have
the highest resistance to Fusarium ear rot and fumonisin accumulation [40]. Inoculated by
the toothpick method, the flint maize proved to be more easily infected by F. verticillioides
than dent maize [66]. The responses of three maturity groups (early, mid-late, late) of
maize inbred lines to ear rot was studied in France, Germany, Hungary, and Italy during
the 2003 and 2004 crop seasons. The focus of the analysis was on the correlation between
resistance to F. verticillioides and F. graminearum. The results indicated that the severity of ear
rot caused by F. graminearum was significantly higher than that caused by F. verticillioides,
with the moderate correlation occurring in early maturing dent and flint lines [39]. In this
study, 71 hybrids were ultimately evaluated as MR, R, and HR in their resistance to ear rot
caused by F. verticillioides. However, ear rot is often caused by a combination of multiple
Fusarium species under natural conditions in the field. Thus, it is necessary to increase the
inoculation analysis of other Fusarium species.

In recent years, the incidence of maize ear rot in China has increased annually, which
may be due to changes in climate and cultivation systems, increased insect vector activity,
and large-scale planting of susceptible hybrids [34,41,42]. In this study, 97 maize hybrids
commonly planted in Northeast China were inoculated with the dominant fungal species
F. verticillioides under natural field conditions. These trials found that 79.4% of the hybrids
were resistant (HR, R, or MR) to ear rot in 2021 and 2022, and response levels were slightly
higher than previously reported [43,67]. Only two hybrids were designated as HR, which
was consistent with there being almost no reports of maize hybrids with high resistance
to ear rot [44,62]. The resistance of maize to ear rot varies under different environmental
conditions and management practices [68,69], which may be an important reason for the
differences in maize resistance levels among provinces. Multiyear and multisite resistance
monitoring should be conducted to evaluate the more accurate resistance level of maize
hybrids in future studies. Significantly, up to 30% of the hybrids in Liaoning province were
susceptible to ear rot caused by F. verticillioides, indicating a higher epidemic risk of ear rot
appearing in Liaoning province; therefore, the monitoring of ear rot, and the screening of
resistant hybrids should be strengthened.
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The data showed that although DR and SR disease parameters differed among hybrids,
significant correlations occurred within the same hybrids, one of which can be used to
evaluate the resistance of maize hybrids to ear rot. Moreover, despite the monthly average
temperature during the maize growing season having remained relatively stable, the
rainfall had plummeted from 527.90 mm in 2021 to 347.32 mm in 2022, which may affect
the severity of maize hybrid infections. Unexpectedly, individual hybrids evaluated as
HS were already widely planted with an expanding range in Northeast China, which may
promote outbreaks and increased prevalence of ear rot. In summary, our study suggests
that on the basis of strengthening field disease management measures, resistant hybrids
should be actively cultivated and promoted to sustainably control ear rot.

5. Conclusions

In conclusion, our study showed that the population structure of Fusarium causing
maize ear rot in Northeast China had changed significantly over time, with the dominant
fungus shifting from the past F. semitectum to F. verticillioides, the F. graminearum species
complex populations consisted of F. boothii and F. graminearum, and the isolation frequency
of various species in the same region also fluctuated in different years. Moreover, the field
evaluation of common maize hybrids inoculated with the dominant fungus F. verticillioides
confirmed that disease parameters differed among hybrids, and 73.2% of hybrids were
moderately to highly resistant to ear rot. Finally, individual highly susceptible hybrids were
widely planted in some areas of Northeast China, which indicated the need to strengthen
the screening of resistant varieties and reasonable layout to prevent the further occurrence
and spread of Fusarium ear rot.
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