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Abstract: The addition of organic materials is pivotal for the efficacy of reductive soil disinfestation
(RSD). However, data on the influence of varying amounts of organic matter during RSD on soil-
borne disease mitigation, yield increase, and rhizosphere microecological health in the current flue-
cured tobacco season remain limited. This study analyzed various organic material addition rates
(CK, G0.8, G1.0, and G1.2) at two experimental sites (K and Y). The results indicated that increasing
the application of organic material improved the soil physicochemical properties (pH, AN, AP, AK,
OM, and C/N), mitigated the severity of black shank and Fusarium root rot, and amplified the tobacco
yield. The K/YG1.2 treatment significantly reduced the Shannon and Sobs fungal indices across both
sites, and enhanced the relative abundance of the bacteria Actinobacteria, Chloroflexi, Firmicutes,
and Acidobacteriota, while decreasing the relative abundance of Ascomycota. The bacterial genera
were predominantly represented by Sphingomonas and Bacillus, whereas the fungal genera were
represented by Saitozyma, Mortierella, and Fusarium. The addition of organic materials during RSD
substantially decreased the relative abundance of Mortierella and Fusarium. Using FUNGGuild and
Tax4Fun to evaluate the application of adding organic matter during the RSD process, we identified
that rhizosphere fungi in high application rates of flue-cured tobacco were primarily saprophytic or
pathogenic saprophytes, which were mainly involved in the metabolism, environmental information
processing, genetic information processing, and cellular processes. The results of the two experimental
sites indicate that applying 15 t·ha−1 (K/YG1.2) of solid residues such as vegetables during RSD
emerges as the optimal choice. This strategy is highly effective in guaranteeing the sterilization
and pest control effect of the RSD process, facilitating the reconstruction of microbial community
diversity, lowering pathogen abundance, managing soil-borne diseases that are prevalent in the
current flue-cured tobacco season, and leading to an increase in tobacco yield.

Keywords: reductive soil disinfestation; organic materials; pathogenic fungi; disease control;
microbial community

1. Introduction

Flue-cured tobacco (Nicotiana tobacum L.), the primary raw material for cigarette prod-
ucts, is a globally prevalent cash crop with a significant cultivation in China [1]. The
robustness and sustainability of the tobacco industry are closely related to the quality of to-
bacco planting soil and its micro-ecological environment. Motivated by economic interests,
the continuous cropping of flue-cured tobacco has led to pressing issues, such as soil-borne
diseases, suboptimal plant growth, and declines in both yield and quality [2]. Continuous
soil cropping obstacle issues are primarily attributed to a single soil microbial composition
and the proliferation of pathogenic fungi, bacteria, nematodes, and other pathogens [3,4].
The composition and functionality of soil microbial communities determine the incidence of
plant diseases [5] and growth patterns [6]. Maintaining a healthy microecosystem is crucial
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for optimal crop growth. Previous methods, such as crop rotation, chemical pesticides,
and biocontrol bacteria, have been employed to counteract diseases and soil microbial
imbalances caused by the continuous cropping of flue-cured tobacco. However, the limited
efficiency of crop rotation, the safety concerns associated with chemical pesticide residues,
and the unstable antagonistic effect of biocontrol bacteria have led growers to view these
measures unfavorably [7].

Reductive soil disinfection (RSD) technology, employed to mitigate soil-borne pathogens
and improve continuous cropping resilience, has been successfully implemented in several
countries, including Japan, the Netherlands, and the United States [8–10]. Previous studies
have indicated that RSD can effectively inhibit a variety of soil-borne pathogens, including
Ralstonia solanacearum [9], Phytophthora cacto rum [11], Fusarium oxysporum f. sp. cubense
(FOC) [12], and Phytophthora cassici Leonian [13]. To eliminate soil-borne pathogens and
reshape soil microbial communities, RSD relies on introducing easily degradable organic
matter to the soil, irrigating to maximum field capacity, mulching, and rapidly inducing
anaerobic and high-temperature conditions [14]. The judicious selection and application
of organic materials are crucial to the efficacy of this method as a substitute for chemical
fumigation [15].

As a pre-planting soil remediation technology, RSD has been applied to diverse
economic crops, including watermelon, eggplant, okra, and chili pepper, resulting in
enhanced yield and disease mitigation [13,16,17]. Khadka et al. [16] demonstrated that
adding different organic materials during RSD reduced Fusarium wilt and root knot
nematode incidences while increasing okra and eggplant yields. Zhu et al. [15] found
through pot experiments that the application of organic materials during RSD signif-
icantly improved the microbial community ecology of chili peppers and suppressed
Fusarium oxysporum. Strauss et al. [18] discovered that incorporating local crop straw
into the soil, particularly at 20.2 t·ha−1, created an environment that was detrimental to
pathogenic bacteria. Wen et al. [19] have reported that both 1.5 and 3 t·ha−1 straw additions
can effectively inhibit Fusarium oxysporum growth. It is evident that the organic material
type and quantity added during RSD are pivotal for microbial community alterations.
However, these studies, generally greenhouse- or pot-based, primarily only focused on
the control effects of specific pathogenic microorganisms. The literature on the application
of RSD to the rhizosphere soil microenvironment and flue-cured tobacco field disease
management remains limited.

Yunnan Province, which contributes to over 35% of the annual tobacco production
in China, is a significant hub for flue-cured tobacco cultivation [20]. The incorporation of
organic materials and the induction of an anaerobic environment during RSD treatment can
modify soil physicochemical properties, mitigating the issues associated with continuous
cropping [14]. However, there are currently insufficient data regarding the influence of
RSD on the rhizosphere soil microbiota of crops in the current season, especially the effects
of varying organic material inputs during RSD on microbial traits and disease prevalence
in tobacco rhizosphere soil under distinct field conditions. We hypothesized that adding
organic materials during RSD can promote microbial diversity and the relative abundance
of beneficial bacteria in the rhizosphere soil of flue-cured tobacco, thereby inhibiting soil-
borne diseases. Therefore, field experiments were established based on long-term flue-cured
tobacco continuous cropping with different rates of organic material application across two
sites. We aimed to explore the impacts of increasing the application of organic material
on (1) the physicochemical properties of the rhizosphere soil of flue-cured tobacco; (2) the
prevalence of soil-borne diseases in flue-cured tobacco and their influence on yield; and
(3) the alterations in microbial communities in the rhizosphere soil of flue-cured tobacco,
and the relationship between the communities and environmental factors. This study
was conducted to elucidate the relevant mechanisms through which RSD modulated the
rhizosphere soil microecology of flue-cured tobacco. Hence, this study can provide the
theoretical foundation for RSD technology in controlling soil-borne diseases in flue-cured
tobacco and enhancing crop yields.
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2. Materials and Methods
2.1. Overview of the Experimental Site and Materials

This study focused on two primary flue-cured tobacco planting regions in Chuxiong
City, Yunnan Province: the Donghua town modern tobacco agricultural base (24◦55′20′′ N,
101◦30′37′′ E, 3657 m ASL) and the Nanhua county tobacco-scale planting base (25◦19′22′′

N, 101◦27′35′′ E, 3092 m ASL). Both are situated in the northern subtropical monsoon
climate zone and are approximately 28 km apart on a straight line. The annual average
temperatures for the Donghua (K) and Nanhua (Y) sites are 23.2 ◦C and 20.2 ◦C, respectively,
with closely matched annual rainfalls of 864.1 mm and 864.8 mm. The temperature and
precipitation patterns during the planting season are shown in Figure 1. Each site has
witnessed the continuous cultivation of flue-cured tobacco for 7–8 years. The soil properties
at the K site included a pH of 6.54, AN (alkali-hydrolyzable nitrogen) of 17.29 mg·kg−1,
AP (Olsen-P) of 8.90 mg·kg−1, AK (NH4OAc-exchangeable K) of 86.5 mg·kg−1, and OM
(organic matter) of 19.27 g·kg−1. Correspondingly, the Y site has values of pH 6.75, AN
19.29 mg·kg−1, AP 8.78 mg·kg−1, AK 83.25 mg·kg−1, and OM 19.01g·kg−1. The flue-
cured tobacco variety selected for testing was “Yunyan 87”. Seedlings were transplanted
after approximately 30 d of cultivation at the base. The organic materials utilized in the
experiment were derived from the fermented biogas residues of cabbage roots and stem
waste from a vegetable-planting base. These materials had a TOC content of 34.85%, a TN
content of 1.63%, and a C/N ratio of 21.4. Before soil incorporation, the organic materials
were dried, ground, and sieved through a 50-mesh sieve.
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Figure 1. Daily average temperature and monthly cumulative precipitation during the planting
season at two experimental sites.

2.2. Experimental Design

This experiment adopted a complete randomized block design with four organic
material application rates at each experimental site. These rates were defined as K site or Y
site (i.e., K/YCK 0.8, 1.0, and 1.2 represent the application rates per 667 m2, respectively,
and the same applies for the other treatments) without organic material added; K/YG0.8
with 12 t·ha−1 of organic materials; K/YG1.0 with 15 t·ha−1 of organic materials; and
K/YG1.2 with 18 t·ha−1 of organic materials. Each treatment was repeated three times,
with 12 cells at each experimental site, each measuring 38.7 m2 (6.45 m × 6.00 m). The
flue-cured tobacco was planted in single rows, spaced 1.2 m apart. Each row housed
11 plants with a spacing of 0.5 m between plants. The rows were demarcated by ditches,
0.4 m deep and 0.2 m wide. All other chemical management practices for flue-cured tobacco
production, not specified here, adhered to the local technical specifications for high-quality
tobacco cultivation [21].
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The experiment commenced 30 d before the transplantation of flue-cured tobacco. After
field leveling, organic materials were uniformly distributed across each plot’s soil surface,
followed by tilling at a depth of 10–20 cm. Upon thorough mixing and irrigation to maxi-
mum field capacity, the plots were sealed with plastic film for a 30 d anaerobic treatment.
Subsequently, the film was removed, and the soil was aerated for 10 d. During the anaerobic
treatment with film covering, the soil temperature ranged between 20 and 30 ◦C.

2.3. Indicator Measurement and Methods
2.3.1. Evaluation of Black Shank Disease and Fusarium Root Rot in Flue-Cured Tobacco

Disease assessment was conducted when the flue-cured tobacco approached its har-
vest period, approximately 60 d post-transplantation. The diagonal survey method was
employed for disease investigation, with five points selected per plot and two plants sam-
pled per point, totaling 10 plants. Disease prevalence for black shank and Fusarium root rot
was enumerated in accordance with the GB/T23222-2008 standard for “Classification and
Investigation Methods for Tobacco Diseases and Pests” [21]. The severity of the tobacco
diseases was then categorized, and the disease severity index was calculated using the
following formula.

Disease index =
Σ(number of diseased plants at each level × corresponding disease level value)

total number of surveyed plants × highest level value
× 100

2.3.2. Evaluation of Flue-Cured Tobacco Leaf Yield

During the tobacco harvest period, leaves from each plot were collected and bundled
before being sent to the curing chamber. They were classified and processed in accordance
with the three-tier tobacco leaf curing technique, including the upper, middle, and lower
parts. Subsequent to product grading, both the total yield for each plot and the yield for
each grade were calculated and then normalized to a per-unit-area basis.

2.3.3. Soil Sample Collection

Upon entering the harvesting phase for flue-cured tobacco (approximately 60 d post-
transplantation of seedlings), we collected rhizosphere soil samples (0–20 cm depth) from
the plants. Employing the five-point sampling method, soil closely adhering to the roots
was collected as rhizosphere soil from each plot. The soil from five plants was combined
and homogenized, then sieved through a 20-mesh sieve, ensuring a minimum collection of
1.5 kg of rhizosphere soil from each community. The sieved samples were categorized into
two parts: one portion was dried for the assessment of the primary soil physicochemical
properties, and the other was stored at −80 ◦C for microbial analysis.

2.3.4. Detection of Basic Physicochemical Properties

The indicators included pH, organic matter (OM), total nitrogen (TN), alkaline nitrogen
(AN), available phosphorus (AP), and available potassium (AK). The specific methods and
steps can be found in Bao’s [22] “Soil agrochemical analysis”.

2.3.5. Soil DNA Extraction and Microbial Detection

The soil microbial genomic DNA was determined using an E.Z-N.A® Soil DNA kit
(Omega Biotek, Norcross, GA, USA). The DNA concentration and purity were assessed
using 2% agarose gel electrophoresis. Genomic DNA samples were submitted to GE-
NEWIZ for bacterial community sequencing, targeting the high-variation regions of the
16S rRNA gene. The selected primers were 338F (5′-ACTCCTACGGGGGGCAGG-3′)
and 806R (5′-GACTACHVGGGTWTCTAAT-3′), focusing on the V3-V4 regions [23]. For
fungal sequencing, primers ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R
(5′-GCTGTGTTCATCGATGC-3′) were used, targeting the ITS1 region [24]. The PCR
conditions followed the methods outlined by Xiong et al. [25]. The post-PCR procedures,
including sequencing, operational taxonomic unit (OTU) clustering, and species annotation,
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were facilitated via the cloud platform of Shanghai Meiji Biopharmaceutical Technology
Co., Ltd. (Shanghai, China) (https://cloud.majorbio.com accessed on 10 March 2023) [26].
The initial sequence data were archived in the SRA (sequence reading archive) of the NCBI
(National Biotechnology Information Center), with subsequent analysis conducted using
the Quantitative Insight Microbial Ecology (QIIME) software package version 1.8.0 [27]. The
accession numbers for the sequences were PRJNA1011446 (Bacteria) and PRJNA1011012
(Fungi).

2.4. Data Analysis and Statistical Methods

The data were analyzed using Microsoft Excel 2010. Significant differences (p < 0.05)
among treatments were determined via a one-way analysis of variance (ANOVA) and least
significant difference (LSD) multiple comparison tests using SPSS 20.0. Sequence quality
control was performed using Fastp 0.19.6, and the remaining sequences were clustered
into OTUs based on 97% similarity. After clustering, the sequences were aligned to the
Silva and Unite databases using QIIME, enabling community composition analyses across
taxonomic levels. Community richness and diversity, represented by the Chao and Shannon
indices, were calculated using the mothur software (version 1.30.2). Principal coordinate
analysis (PCoA) and correlation heat maps were generated using R packages, specifically
Vegan and Pheatmap. The pathogen data, derived from the OTU table statistics, were
visualized using GraphPad Prism 7.0. Variations in the community structures across the
samples were assessed to determine the correlation between the microorganisms and the
environmental factors. In addition, following a linear discriminant analysis (LDA) based on
group distinctions, key species with significant sample partitioning differences were identified
using Lefse multi-level species difference analysis (http://huttenhower.sph.harvard.edu
accessed on 10 March 2023). Functional predictions for the bacterial and fungal communities
were facilitated via Tax4Fun and FUNGuild, with subsequent data analysis conducted on
the ShengxinCloud Platform provided by Shanghai Meiji Biomedical Technology Co., Ltd.
(Shanghai, China) (https://cloud.majorbio.com accessed on 10 March 2023).

3. Results
3.1. Physicochemical Properties of Tobacco Rhizosphere Soil

The effect of the addition of organic material during the RSD process on the physico-
chemical properties of tobacco rhizosphere soil is shown in Table 1. For both experimental
sites, K: Donghua and Y: Nanhua, an increase in the quantity of organic materials during
the RSD process enhanced the soil physicochemical properties to varying degrees (pH,
AN, AP, AK, OM, and C/N). Specifically, compared to the CK treatment, both the YG1.2
and KG1.2 treatments significantly increased the pH, AN, AP, AK, OM, and C/N values
(p < 0.05). The increments in pH, AN, AP, and C/N at the Y site exceeded those at the K
site, recording increases of 2.8%, 0.8%, 4.1%, and 1.2%, respectively. However, AK and OM
peaks were observed at the K site, achieving values of 93.45 mg·kg−1 and 27.34 g·kg−1,
respectively.

Table 1. Effect of adding organic materials on soil physicochemical properties.

Treatments pH AN (mg·kg−1) AP (mg·kg−1) AK (mg·kg−1) OM (g·kg−1) C/N

KCK 6.54 ± 0.22 c 17.29 ± 0.55 c 8.90 ± 1.21 b 86.75 ± 3.21 c 19.27 ± 1.25 d 23.02 ± 0.12 b
KG0.8 6.62 ± 0.21 bc 19.24 ± 1.25 b 9.21 ± 0.75 b 89.25 ± 1.21 b 21.15 ± 2.12 c 23.91 ± 0.12 b
KG1.0 7.04 ± 0.31 ab 21.33 ± 0.85 b 10.01 ± 0.95 ab 90.12 ± 2.10 ab 23.85 ± 2.41 b 24.01 ± 0.20 ab
KG1.2 7.17 ± 0.30 a 23.79 ± 0.45 a 12.25 ± 1.29 a 93.45 ± 1.89 a 27.34 ± 1.58 a 24.75 ± 0.15 a
YCK 6.75 ± 0.22 c 19.29 ± 0.75 b 8.78 ± 1.01 b 83.25 ± 1.21 c 19.01 ± 0.75 d 22.82 ± 0.12 b

YG0.8 6.90 ± 0.24 bc 19.95 ± 1.23 ab 9.07 ± 0.85 b 83.75 ± 2.11 b 20.19 ± 2.02 c 23.78 ± 0.12 b
YG1.0 7.14 ± 0.23 ab 22.13 ± 0.63 a 10.21 ± 0.75 ab 86.12 ± 2.00 ab 22.95 ± 2.01 b 24.77 ± 0.20 ab
YG1.2 7.37 ± 0.43 a 23.99 ± 0.48 a 12.75 ± 1.04 a 90.45 ± 1.59 a 25.84 ± 1.88 a 25.05 ± 0.15 a

Note: different letters in the same column for the same experimental site indicate significant differences among
treatments at p < 0.05.

https://cloud.majorbio.com
http://huttenhower.sph.harvard.edu
https://cloud.majorbio.com
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3.2. Occurrence of Flue-Cured Tobacco Diseases and Tobacco Leaf Yield

The influence of the addition of organic material during the RSD process on the
occurrence of soil-borne disease in flue-cured tobacco and tobacco leaf yield is shown in
Figure 2. At both experimental sites, there was a significant decline in black shank disease
and Fusarium root rot in the flue-cured tobacco with an increase in the application of
organic material. Compared to KCK and YCK, the KG1.2 and YG1.2 treatments notably
decreased the black shank disease index by 26.8% and 70.0% and lowered the Fusarium
root rot disease index by 207.6% and 104.9%, respectively (p < 0.05). Employing organic
materials during the RSD process not only diminished the soil-borne disease indices, but
also enhanced the tobacco yields. Compared to the CK treatment, the KG1.2 and YG1.2
treatments increased the tobacco yields by 6.7% and 12.2%, respectively (p < 0.05). Although
the G0.8 treatment significantly reduced the prevalence of both diseases at the K and Y sites,
it did not notably enhance the tobacco yield. The overall efficacy of the G1.2 treatment was
better at the K and Y sites, demonstrating its superior performance in disease mitigation
and yield augmentation.
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3.3. Characteristics of Microbial Community in the Rhizosphere Soil of Flue-Cured Tobacco
3.3.1. α Diversity

The influence of the application of organic material during the RSD process on the
α-diversity of the fungi and bacteria in the rhizosphere soil of flue-cured tobacco is shown
in Figure 3. The results from both experimental sites indicated that compared to the CK
treatment, the application of organic material increased the Chao, Shannon, and Sobs
indices for bacteria. Notably, the KG1.2 and YG1.2 treatments exhibited peak values for
the Chao, Shannon, and Sobs indices. Furthermore, the enhancement of the bacterial
diversity index was more pronounced at the K site than at the Y site. In terms of the
fungal α-diversity, the application of organic material led to a significant decline in both
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the Shannon and Sobs indices (p < 0.05). However, the Chao index demonstrated an initial
increase followed by a decrease as the application of organic material increased.
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3.3.2. Comparison of OTUs

The impact of adding organic materials on the OTU abundance distribution of mi-
croorganisms (fungi and bacteria) in the rhizosphere soil of flue-cured tobacco is illustrated
in Figure 4. For fungi, adding organic materials during the RSD process reduced the total
OTU count. Compared to the KCK and YCK, the G1.2 treatment at both sites recorded
352 and 305 shared OTUs, and 30 and 21 unique OTUs, respectively. The KG12 and YG12
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treatments displayed the lowest counts for both total and unique OTUs compared to KCK
and YCK. In the bacterial domain, although there was a decline in shared OTUs with the
addition of organic materials, the effects on the unique OTU counts across the two sites
varied. In contrast to the CK treatment, the KG1.2 treatment resulted in a reduction of 517,
whereas the YG1.2 treatment led to an increment of 477 unique OTUs.
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Figure 4. Distribution of OTU abundance of fungi and bacteria in the rhizosphere soil of flue-cured
tobacco ((A): fungi at the K site; (B): fungi at the Y site; (C): bacteria at the K site; (D): bacteria at the
Y site).

3.4. Changes in Microbial Community Structure in the Rhizosphere Soil of Flue-Cured Tobacco
3.4.1. Community PCoA Analysis

Based on the PCoA analysis at the OTU level, samples that were treated by adding
organic materials during the RSD process exhibited evident variations, although the distri-
bution density of the replicate soil samples remained relatively low (Figure 5). In addition,
the results at both experimental sites revealed no significant disparity in the fungal commu-
nity across the organic material treatments. However, the bacterial community structure
at the K site showed significant alterations, a phenomenon that was absent at the Y site
(p < 0.05, Figure 5C,D). Variations in the bacterial community structure at the Y site were
predominantly affected by three principal coordinate components, accounting for 33.33%,
17.46%, and 49.21% of the variance, respectively. The difference between the coordinate
components PCoA1, PCoA2, and PCoA3 reached a significant degree. This suggests that the
application of organic material at the K site substantially affected the bacterial community
structure in the rhizosphere soil of the flue-cured tobacco.
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Figure 5. PCoA analysis of fungi and bacteria in the rhizosphere soil of flue−cured tobacco ((A): K site
fungi; (B): Y site fungi; (C): K site bacteria; (D): Y site bacteria).

3.4.2. Abundance of Rhizosphere Soil Microbial Communities

Figure 6 illustrates the microbial community abundance in the rhizosphere soil of
flue-cured tobacco at the phylum and genus levels when organic materials were added
during the RSD process. In terms of the bacteria, compared to the CK treatment, the
KG12 and YG12 treatments increased the relative abundance of Actinobacteria, Chloroflexi,
Firmicutes, and Acidobacteriota at the phylum level, while reducing that of Proteobacteria.
At the genus level, the dominant bacterial genera included unclassified_f_Micrococcaceae,
Sphingomonas, Bacillus, norank_f_norank_o_Gaiellales, and Terrabacter. Their relative abun-
dance under KG1.2 and YG1.2 exceeded 3.00%, constituting 20.26% and 24.19% of the
entire bacterial population, respectively. Adding organic materials increased the prevalence
of the genera unclassified_f_Micrococcaceae, Bacillus, and norank_f_norank_o_Gaiellales.
Regarding the fungi, the principal phyla were Ascomycota, Basidiomycota, Mortierel-
lomycota, and unclassified_K_Fungi. Compared with the KCK and YCK treatment, the
addition of organic material significantly reduced the relative abundance of Ascomycota and
unclassified_k_Fungi (p < 0.05) and increased that of Basidiomycota and Mortierellomycota.
At the genus level, the dominant fungi spanned 28 genera, including Saitozyma, Mortierella,
Fusarium, Cephalotrichum, and Chaetomium. Compared to the CK treatment, the KG1.2
and YG1.2 treatments significantly promoted the relative abundance of Saitozyma while
reducing that of Mortierella and Fusarium, with the latter two reaching statistical significance
(p < 0.05).
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3.4.3. Relative Abundance of Pathogenic Phytophthora nicotianae and Fusarium spp.

Figure 7 depicts an in-depth analysis of the relative abundance of the primary pathogenic
genera associated with tobacco black shank disease (Phytophthora nicotianae) and Fusarium
root rot (Fusarium spp.). The application of organic materials during the RSD process appeared
to reduce the relative abundance of these pathogenic microbes. Compared to the CK treatment,
the KG1.2 and YG1.2 treatments at the two experimental sites significantly reduced the relative
abundance of these pathogens (p < 0.05). Specifically, the reductions in Phytophthora nicotianae
were 31.4% and 43.3%, and those for Fusarium spp. were 22.9% and 55.7%, respectively.
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3.4.4. LEfSe Multi-Level Species Difference Discriminant Analysis

Based on a previous study, Figure 8 illustrates the LEfSe multi-level species difference
discriminant analysis, highlighting significant microbial species differences from the phylum
to genus level (including unclear classification at the genus level). In Figure 8, the distinct
colored nodes represent microbial groups that are significantly enriched in the corresponding
groups, exerting a pronounced impact on intergroup variations. In contrast, the light-yellow
nodes represent microbial groups without substantial influence across the groups. Sequentially,
from the innermost to the outermost circle, the species levels represented are phylum, class,
order, family, and genus. For the fungi, distinctions at the class level between the KCK and
KG12 treatments were evident, with o__Agaricales, g __Agaricomycetes, o__Agaricomycete,
f __Agaricomycetes, and g__Lecanicillium indicating significant variances (p < 0.05). However,
YCK and YG1.2 did not exhibit notable differences. Regarding the bacteria, a substantial
discrepancy (p < 0.05) between the CK and YG1.2 treatments was observed at the phylum level,
where f__JG30-KF-CM66, c__JG30-KF-CM66, o__JG30-KF-CM66, and g__JG30-KF-CM66 were
significantly different (p < 0.05).
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3.4.5. Correlation between Microbial Communities and Environmental Factors

Figure 9 illustrates the correlation statistics between the predominant 50 fungal and
bacterial genera and the environmental factors following the identification of distinct
microbial species. The fungi were notably influenced by the AK (one genus), pH (five
genera), OM (one genus), and C/N (one genus). In particular, five genera significantly
affected the yield and eleven affected the occurrence of black shank, though the occurrence
of Fusarium root rot remained unaffected. For the bacteria, the key influencing factors
included the AN (five genera), OM (two genera), pH (two genera), and C/N (one genus).
Specifically, 16 genera substantially affected the yield, 20 affected the occurrence of black
shank, and five affected the occurrence of Fusarium root rot. Notably, the fungal genera
Cercophora, Cylindrocarpon, and unclassified_C__Agaricomycetes demonstrated a substantial
positive correlation with black shank disease occurrence. Among the bacteria, Marmoricola
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exhibited a pronounced negative correlation with the soil physicochemical properties, a
highly significant negative correlation with the yield (p < 0.01), and a positive relationship
with both the occurrences of black shank disease and Fusarium root rot. In addition, genera
such as norank_f__norank_o__B12-WMSP1, Bryobacter, Conexibacter, and Acidothermus
demonstrated a positive correlation with diseases but a significant inhibitory effect on the
yield (p < 0.01) (Figure 9B).
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3.4.6. Function Prediction

Figure 10A illustrates the composition of the fungal functional groups derived from
the FUNGuild database. The predominant functional groups included Fungal Parasite—
Undefined Saprotroph, Undefined Saprotroph, and Endophyte—Litter Saprotroph–Soil
Saprotroph–Undefined Saprotroph. These groups, primarily of the saprophytic trophic or
pathological saprotroph types, constituted over 50% of the total abundance. Compared
to CK, increasing the application of organic material notably enhanced the abundance of
fungal parasite—undefined saprotroph. This increase was the maximum in the KG1.2 and
YG1.2 treatments, achieving statistical significance (p < 0.05). The predominant contributors
to this trend include Trimorphomyceae, Mortierellomycetes, and Sortariomycetes.

Based on the bacterial communities, KEGG function prediction using Tax4Fun
(Figure 10B) revealed that the primary functions of each sample community were dis-
tributed among four categories: metabolism (62.30%, 11 pathways), environmental in-
formation processing (18.45%, three pathways), genetic information processing (11.54%,
four pathways), and cellular processes (4.79%, five pathways). The application of various
organic materials induced distinct functional abundance differences within the bacterial
communities across the treatments. When compared to the CK treatment, the KG1.2 and
YG1.2 treatments exhibited no notable differential abundance across most functions. How-
ever, there was a substantial increase in pathways related to carbohydrate metabolism,
glycan biosynthesis and metabolism, and nucleotide metabolism. Moreover, the amino acid
metabolism, energy metabolism, and xenobiotic biodegradation and metabolism pathways
demonstrated significant reductions in the KG1.2 and YG1.2 treatments compared to the
CK treatment.
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flue-cured tobacco ((A): fungi; (B): bacteria).

3.5. RDA Analysis

Figure 11 reflects the contribution of the soil physicochemical properties (pH, AN,
AP, AK, OM, and C/N), soil-borne diseases (black shank and Fusarium root rot), and
tobacco yield to the structure of the fungal and bacterial communities. RDA analyses
suggested that after the application of organic materials, the physicochemical properties of
the soil had assorted positive contributions to the fungal and bacterial communities, mainly
driven by the AN, AP, AK, and OM. There was a noticeable positive association between
the yield of flue-cured tobacco and its physicochemical properties. However, within the
fungal communities, the yield exhibited a negative relationship with the pH. Notably,
a pronounced negative correlation between the yield and soil-borne diseases adversely
affected the community structure, with this effect being more pronounced in the bacterial
communities.

Agronomy 2023, 13, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 11. RDA analysis of microorganisms and environmental factors in the rhizosphere soil of 
flue−cured tobacco. 

4. Discussions 
4.1. Physicochemical Properties, Disease Occurrence, and Yield Characteristics of Tobacco Rhizo-
sphere Soil under RSD and Application of Organic Materials 

Continuous soil cropping obstacles caused by monoculture and excessive agricul-
tural chemical utilization currently impede sustainable agricultural development [28]. To 
avoid this in tobacco cultivation, strategies have primarily focused on plant growth and 
fertilization management to sustain yield without directly addressing the persistent issues 
of continuous cropping [29]. Soil RSD technology, which can improve soil fertility and 
reshape microbial communities under soil culture and greenhouse conditions, has 
emerged as a potential solution to these continuous cropping challenges [15,18]. However, 
there is a noticeable shortage of studies on RSD treatment for the improvement of field 
crop disease control and yield. This study at two experimental sites suggested that adding 
organic materials during the RSD process increased the pH, AN, AP, AK, OM, and C/N 
levels in the rhizosphere soil of flue-cured tobacco. Notably, when compared to the CK 
treatment, higher applications of organic material (KG1.2 and YG1.2) significantly en-
hanced the soil physicochemical properties (Table 1) (p < 0.05), aligning with previous 
findings [30,31]. The introduction of small-molecule organic matter, resulting from or-
ganic material decomposition during the RSD process not only increased the organic mat-
ter content in the soil but also modified the NH4+, the NO3−-N levels, the NH4+ microbial 
fixation, and the NH4+ to NO3−-N transition, consequently boosting the soil’s pH, AN, AP, 
and AK levels [17,32]. In addition, as the application of organic material increased, the 
abundant carbon sources elucidated the observed increase in C/N in the rhizosphere soil 
of the flue-cured tobacco. Despite applying equivalent quantities of organic material, the 
effectiveness of enhancing the physicochemical properties varied due to inherent differ-
ences in the initial soil characteristics and types. However, higher application rates (KG1.2 
and YG1.2) proved more beneficial in ameliorating soil physicochemical properties post-
harvest; this may be related to the fact that the organic materials selected in this study are 
easily decomposable and can be quickly decomposed. 

RSD technology, with the advantages of short-term consumption, ease of material 
procurement, and pronounced control over soil-borne diseases, is a potent intervention 
for controlling soil-borne pathogens and reconstructing soil health prior to planting [33–
35]. The addition of organic materials is pivotal for RSD efficacy and serves as the nutrient 
foundation, facilitating an enhanced nutrient uptake and yield improvement in crops 

Figure 11. RDA analysis of microorganisms and environmental factors in the rhizosphere soil of
flue−cured tobacco.



Agronomy 2023, 13, 2458 14 of 19

4. Discussions
4.1. Physicochemical Properties, Disease Occurrence, and Yield Characteristics of Tobacco
Rhizosphere Soil under RSD and Application of Organic Materials

Continuous soil cropping obstacles caused by monoculture and excessive agricul-
tural chemical utilization currently impede sustainable agricultural development [28]. To
avoid this in tobacco cultivation, strategies have primarily focused on plant growth and
fertilization management to sustain yield without directly addressing the persistent issues
of continuous cropping [29]. Soil RSD technology, which can improve soil fertility and
reshape microbial communities under soil culture and greenhouse conditions, has emerged
as a potential solution to these continuous cropping challenges [15,18]. However, there is a
noticeable shortage of studies on RSD treatment for the improvement of field crop disease
control and yield. This study at two experimental sites suggested that adding organic
materials during the RSD process increased the pH, AN, AP, AK, OM, and C/N levels in
the rhizosphere soil of flue-cured tobacco. Notably, when compared to the CK treatment,
higher applications of organic material (KG1.2 and YG1.2) significantly enhanced the soil
physicochemical properties (Table 1) (p < 0.05), aligning with previous findings [30,31]. The
introduction of small-molecule organic matter, resulting from organic material decomposi-
tion during the RSD process not only increased the organic matter content in the soil but
also modified the NH4

+, the NO3
−-N levels, the NH4

+ microbial fixation, and the NH4
+ to

NO3
−-N transition, consequently boosting the soil’s pH, AN, AP, and AK levels [17,32].

In addition, as the application of organic material increased, the abundant carbon sources
elucidated the observed increase in C/N in the rhizosphere soil of the flue-cured tobacco.
Despite applying equivalent quantities of organic material, the effectiveness of enhancing
the physicochemical properties varied due to inherent differences in the initial soil char-
acteristics and types. However, higher application rates (KG1.2 and YG1.2) proved more
beneficial in ameliorating soil physicochemical properties post-harvest; this may be related
to the fact that the organic materials selected in this study are easily decomposable and can
be quickly decomposed.

RSD technology, with the advantages of short-term consumption, ease of material
procurement, and pronounced control over soil-borne diseases, is a potent intervention for
controlling soil-borne pathogens and reconstructing soil health prior to planting [33–35].
The addition of organic materials is pivotal for RSD efficacy and serves as the nutrient foun-
dation, facilitating an enhanced nutrient uptake and yield improvement in crops [33,36].
However, few studies have focused on the performance of using this technology in the
field of seasonal crops. Our findings suggest that adding organic materials during the
RSD process mitigated the severity of common soil-borne pathogens, such as Phytophthora
nicotianae and Fusarium spp., in flue-cured tobacco. Notably, the YG1.2 and KG1.2 treat-
ments markedly reduced the disease severity by 26.8% to 1007.6% (p < 0.05). Moreover, the
addition of these organic materials increased the leaf yield of the flue-cured tobacco, thereby
achieving the dual benefits of disease suppression and yield enhancement (Figure 1). The
superior performance of the YG1.2 and KG1.2 treatments suggested that promoting the
amounts of organic material in RSD was effective for controlling soil-borne diseases in flue-
cured tobacco and amplifying the yield, especially when applied at higher rates. Enhanced
levels of organic material application facilitated the decomposition of organic matter by
anaerobic microbes, thereby releasing diverse bactericidal substances, such as acetic acid,
butyric acid, H2S, and NH3, as well as reductive agents, such as Fe2+ and Mn2+. These
agents act deleteriously on pathogenic bacteria, curtailing disease incidence [9,31]. Inter-
estingly, while site Y (Nanhua) displayed a pronounced edge in disease mitigation via
the organic material enhancement, site K (Donghua) shone in terms of its tobacco yield.
This distinction likely resulted from the superior physicochemical properties of the K site,
where ample nutrient resources contributed to a substantial yield. Figure 11 highlights a
significant positive contribution between the tobacco leaf yield and the physicochemical
properties, such as AK, OM, and AN. Conversely, a pronounced inverse relationship be-
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tween the occurrences of Fusarium root rot and black shank disease with the tobacco leaf
yield was observed, aligning with the findings of [33].

4.2. Effect of RSD Treatment and Application of Organic Materials on Changes in Microbial
Community Structure

The balance of the microbial community structure in rhizosphere soil is a critical indi-
cator of soil ecosystem health. Therefore, devising efficacious crop management strategies
to optimize this microbial structure, suppress soil diseases, and increase crop yields is
imperative [28,37]. Adding organic materials during the RSD process not only utilizes a
soil environment abundant in high-temperature anaerobic conditions and small-molecule
organic acids, as well as reducing metal ions to combat soil-borne pathogens, but also
refines the soil microbial community structure [23,31]. In this study, the application of
organic material in the RSD process amplified the unique OTU count of the bacteria and
the Chao, Shannon, and Sobs indices in the soil, while substantially decreasing the total
OTU count, and the Shannon and Sobs indices for the fungi (p < 0.05). This indicated the
modulatory influence of organic materials in RSD on the diversity of rhizospheric fungi and
bacteria during the crop’s current season, aligning with the findings of Huang et al. [35].
Compared with the YCK and KCK treatments, an increased application of organic material
(YG1.2 and KG1.2) led to a pronounced increase in the relative abundance of Actinobacteria,
Chloroflexi, Firmicutes, and Acidobacillus at the phylum level, mirroring Huang et al. [35]
and Rao et al. [33]’s observations. These bacterial phyla are pivotal for augmenting soil
nutrient levels via plant residue degradation, lignin and protein decomposition, and humus
formation [38–40]. Hence, the addition of organic material in the RSD process notably
promoted nutrient levels in the rhizosphere soil of the continuous cropping of flue-cured
tobacco. Moreover, this was further corroborated by the RDA results, which suggested that
the organic material amplification enhanced the abundance of Actinobacteria, Chloroflexi,
Firmicutes, and Acidobacteriota in the rhizosphere soil of flue-cured tobacco during the
current season. In addition, there was a decline in the relative abundance of Ascomycota,
countered by the increased representation of Basidiomycota and Mortierellomycota, diverging
from prior studies [29]. This shift could be attributed to the diminishing easily decom-
posable organic matter and robust anaerobic reducing conditions that occurred with the
escalated organic material input. This reduced Ascomycota thrived in oxidizing environ-
ments that were rich in easily decomposable organic matter [31], whereas Basidiomycota
and Mortierellomycota, via a symbiotic relationship with plant roots, enhanced their nutrient
acquisition, leading to their increased relative abundance [41].

In the RSD process, adding organic materials significantly increased the relative
abundance of Sphingomonas, Bacillus, and Terrabacter at the bacterial level, with YG1.2
and KG1.2 demonstrating superior outcomes. The relative abundance of these beneficial
bacterial genera increased, which not only antagonized the killing of Fusarium spp. and
Phytophthora nicotianae, but also compressed the living space of the pathogenic bacteria,
thereby reducing their number. This was attributed to the organic materials providing
more substrates and energy, promoting the proliferation of these bacterial genera, and
subsequently enhancing the organic matter degradation during the RSD process [5,35,36].
After RSD, these genera became dominant beneficial entities in the rhizosphere soil of
extant crops, defending against pathogens and detrimental microbes via the production
of antibiotics, antifungal agents, and enzymes [42]. In previous studies, Bacillus, which
reduced Fe3+ and Mn4+ during RSD, produced metabolites (H2S, NH3, Fe2+, and Mn2+)
that counteract pathogenic bacteria [35]. As the application of organic material increased,
there was a notable upward trend in the relative abundance of the genera Saitozyma and
Mortierella, whereas Fusarium’s relative abundance decreased (Figure 5). This was poten-
tially due to Saitozyma and Mortierella’s robust competitive niches as beneficial bacteria,
and RSD’s capability to neutralize a majority of Fusarium pathogens. Although Saitozyma,
a member of the Saccharomyces genus, is ubiquitously present, its influence on plant growth
remains limited [43]. On the other hand, Mortierella significantly facilitates soil nutrient
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transformation and availability, profoundly impacting soil fertility and its ecological en-
vironment [44]. Fusarium oxysporum and Phytophthora nicotianae, the principal pathogenic
culprits of soil-borne diseases in flue-cured tobacco, demonstrated a significant positive
correlation between their soil quantity and abundance, and the occurrence of these dis-
eases [32]. The findings across both experimental sites in this study demonstrated that
adding organic materials during the RSD process effectively reduced pathogenic bacterial
abundance, enhanced the diversity and community structure of specific advantageous
bacteria, and restored the soil’s microecological balance and health.

4.3. Effect of RSD Treatment on Microbial Community Function in Tobacco Planting Soil

Differential microbial community structures arise from the adaptive survival strate-
gies of microorganisms to environmental shifts, manifesting prominently in community
functions [17,35]. In this study, as the addition of organic materials increased, the primary
nutritional profiles discerned for fungi were saprophytic and pathogenic saprophytic types.
These fungal categories promoted the degradation and recycling of organic materials,
and there was an increase in the relative abundance of fungi with disease-suppressing
capabilities, enhancing the microbial community’s stability [37]. Concurrently, the applica-
tion of organic material increased the functional abundance of the bacterial carbohydrate
metabolism, the degradation and metabolism of exogenous substances, and the metabolism
of terpenoids and polyketones. Previous studies have indicated that an increased carbo-
hydrate metabolism as well as an increased degradation and metabolism of exogenous
substances facilitate the bacterial community decomposition of added materials and organic
matter accumulation. The enhanced microbial metabolism of terpenoids and polyketones
contributes to the disease resistance and stress tolerance of subsequent crops [45,46].

Higher application rates of easily degradable organic materials (K/YG1.2) markedly
influenced the physicochemical properties and fungal community dynamics of the soil,
diminishing the abundance of soil-borne pathogens. Liu [46]’s research indicated that
environmental factors determine the recombination of bacterial communities and the per-
formance of beneficial bacterial functionalities. Genera such as Cercophora, Cylindrocarpon,
Marmoricola, Bryobater, Conexibacter, and Acidothermus are positively correlated with soil-
borne diseases, while being inversely associated with certain physicochemical factors and
the yield. Notably, Cercophora, Marmoricola, Conexiactor, and Acidothermus undergo the
decomposition of cellulose, lignin, and other organic substrates, enriching the soil’s or-
ganic matter profile [46,47]. Cylindrocarpon and Acidothermus participate in nitrogen and
nutrient cycling processes [48]. Mortierella has the capacity to transform organic matter
into arachidonic acid during fermentation [49], while Bacillus is a pivotal decomposer of
hemicellulose and polycyclic aromatic hydrocarbons, releasing cellulase to decompose
organic matter into low-molecular-weight compounds [50]. These findings demonstrate the
efficacy of the RSD process in controlling diseases and elevating yields in flue-cured tobacco.
This is achieved by promoting the application of organic materials in the RSD process,
reconstructing microbial community diversity, reducing pathogen abundance, increasing
antagonistic taxa, and amplifying the roles of various functional microorganisms [45,46].

5. Conclusions

Field tests from two experimental sites demonstrated that adding organic materials
during the RSD process effectively sterilized the soil and controlled pests. Promoting the
application of organic materials enhanced the physicochemical properties of the rhizosphere
soil for flue-cured tobacco during the growth season. This not only reduced the relative
abundance of soil-borne pathogens, such as Fusarium oxysporum and Phytophthora nicotianae,
mitigating the severity of soil-borne diseases, but also increased the tobacco leaf yield.
Concurrently, this procedure modified the structure and composition of the microbial
community. It enhanced the antagonistic effect of beneficial bacteria such as Sphingomonas
and Bacillus, influenced the relative abundance of Actinobacteria and Chloroflexi, improved
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the organic material decomposition by Cercophora, Marmoricola, Conexiber, and Acidothermus,
and ultimately refined the rhizosphere microbial community and its functionality.
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