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Abstract: The study set out to determine changes in the soil air-water properties, the water-stable
aggregate share and organic carbon content as effects of a five-year application of effective
microorganisms (EM-A). The hypothesis that long-term applied EM-A biopreparations have a
positive effect on the soil physical condition has not been confirmed. Haplic Luvisols originating
from silt were studied in a field experiment after EM-A biopreparation treatment. The soil samples
with the natural structure preserved intact were collected three times each year. The properties of
the soil determined in the study were: particle density, total organic carbon content, bulk density,
total porosity, air capacity, air permeability, soil moisture at sampling, field water capacity, available
water content, unavailable water content, and water-stable aggregate content. The ratio of field water
capacity and total porosity (FC/TP) was calculated. It was found that EM-A application primarily leads
to a decrease in the content of organic carbon and water-stable aggregates. This was an adverse effect.
Total organic carbon (TOC) and water-stable aggregates proved to be very sensitive indicators for
assessing the soil physical condition. However, changes in soil compaction and air–water properties
did not show significant deterioration. Our research addresses the data gaps about EM application
to soil.

Keywords: Haplic Luvisol; effective microorganisms; total organic carbon; bulk density; total porosity;
air capacity; air permeability; soil moisture; field water capacity; available water content; unavailable
water content; water-stable aggregate content

1. Introduction

Environmental soil data indicate that arable lands are increasingly exhibiting various forms of soil
degradation, thus the implementation of special measures is needed [1]. Preventing degradation is
considered to be a far better solution than soil remediation. Such a procedure is especially important
in the context of sustainable development, the circular economy, and ensuring food safety for the
world [2–6].

Soil microorganisms display high metabolic activity, which translates into their substantial impact
on most of the processes that take place in the soil, e.g., the detoxification of xenobiotics and the
inhibition of pest and plant pathogen development [7–10]. The degradation and mineralization of
soil organic matter are regarded as the most important among these processes. Therefore, the soil
application of such biopreparations with effective microorganisms (e.g., EM-A) requires serious
consideration [7,8,11,12]. The transformation of soil organic matter also proceeds with the participation
of mesofauna inhabiting the soil, whose activity leads to the breaking down and mixing of organic
residues. The humus formed as a result is one of the elements which determines the capacity of soil
to store water and dissolved plant nutrients. It also affects the formation of the soil structure and
its functional properties. Depending on soil texture, and with a sufficient humus content, a stable
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granular-type soil structure is formed. This type of soil structure ensures the availability and usability
of nutrients for plants and correct gas exchange between the soil and the atmosphere [13–18].

The role played by soil microorganisms in the prevention of soil degradation and the enhancement
of its fertility has encouraged numerous academics to research the use of certain groups of
microorganisms in agricultural practice. As a result, towards the end of the 20th century, the technology
of effective microorganisms (EMs) was developed in Japan [19]. An EM preparation is a biological
mixture composed of microorganisms of natural origin, however, its manufacturers tend not to provide
information on the specific content of microbial groups. The composition is known to include lactic
bacteria (Lactobacillus casei, Streptococcus lactis), photosynthesizing bacteria (Rhodopseudomonas palustris,
Rhodobacter sphaeroides), yeasts (Saccharomyces albus, Candida utilis), actinomycetes (Streptomyces albus,
S. griseus), and molds (Aspergillus oryzae, Mucor hiemalis). Apart from microorganisms, EMs typically
contain organic N [20–23].

Making use of the assumptions of the EM technology, a number of microbiological preparations
have been developed, often referred to as soil improvers or amendments. In Polish agriculture,
regardless of the skepticism of, e.g., microbiologists and ecologists [11,21], the production and
application of biopreparations based on EM technology has begun. Two products widely used in
Poland are EM-A and UGmax. The fairly common use of these preparations in agricultural production
in Poland has raised questions concerning the effects of the use of EMs on soil properties and the
yield of crop plants. The effect of EM application to soil has been intensively investigated, both in the
laboratory [24–28] and in the field in typical agricultural conditions [29–32]. The studies in question
were typically one-year projects predominantly concerned with the biological and chemical properties
of soil and the yield-forming effect of EMs. The results from the studies have shown that EM application
leads to the reduction in the content of organic carbon (TOC) [29,33]. On the other hand, the studies
conducted in Poland have failed to determine the positive or negative effects of soil inoculation with EMs
on the quantity and quality of the yield of the cultivated test plants, e.g., winter wheat, maize, spring
barley, buckwheat, pea, potatoes, lettuce, or sweet basil. Most frequently, the observed differences were
negligible and statistically insignificant [23,29–31,34]. The authors of several experiments [24–28,35]
incubated two different soil types (Haplic Luvisol and Gleyic Chernozem) in 2000 cm3 containers
for 9 or 12 months. The soils were inoculated with three doses (0.05, 0.10, or 0.30 m3 ha−1) of an EM
biopreparation and enriched with an admixture of muck and/or manure. After the period of incubation,
cylindrical samples with a volume of 1 cm3 were collected from the soil in order to determine the water
stability of the structure and selected physical properties of the soil. It was found that the application
of EMs had a beneficial effect on the analyzed properties of the soil. Soil compaction decreased, and
the hydraulic conductivity and soil resistance to the scouring effect of water increased. The effect of
EMs on the capillary and field water capacity and the retention properties of the soil, though positive,
was considered to be only marginal.

Dutch studies were reported in a paper [36] presenting a pot experiment with a sandy soil,
demonstrating the absence of an effect of EMs on the level of grass yield. In Switzerland, Mayer et
al. [37] observed an increase in the yields of crop plants cultivated in the crop rotation: potato–spring
barley–alfalfa–winter wheat. In that study, either EMs, or EMs in combination with another
biopreparation (bokashi) and/or manure were applied. Those authors noted that the effect of the
applied additives to the soil was insignificant. In the Central European climate, statistically insignificant
yield-forming effects, impacts on soil microbial biomass, soil microbial activity parameters, substrate
turnover, and microbial community structure in the soil were observed [37]. A similar study, however,
conducted in dissimilar soil climate conditions in Pakistan [38], showed that EMs added to the soil
had a beneficial impact on cotton yield and the plant nutrient content in soil. That effect was evident
when EMs were complemented, in coordinated doses, with mineral fertilization (NPK) and organic
fertilization with manure (OM). In a two-year study [39] conducted in Saudi Arabia under arid
climate conditions, an effect of the application of an EM biopreparation, green manure (GM), and the
combination of EM + GM on sandy loam soil was observed. Ismail [39] demonstrated that the best
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yield-forming effects on alfalfa and pearl millet were noted on plots undergoing combined fertilization
–EM + GM. The reported results also proved a distinctly beneficial effect of fertilization on the content
of minerals (N, P, K, Fe, and Mg) in soil. The content of soil organic matter increased, while the
compaction and the hydraulic conductivity of the soil decreased. Another recorded favorable change in
soil properties was the increase in the water retention capacity of the soil. The author of that study [39]
indicated that soil inoculation with the EM biopreparation alone caused only insignificant changes.

One can note, therefore, that there have been few studies representing a comprehensive approach
to the estimation of the physical status of soils, especially in the conditions of the long-term application
of EMs in typical agricultural production. It should be emphasized that the physical status of soil
(e.g., compaction, air–water properties, distribution and openness of soil pores, stable aggregate
structure) affects the functioning of the entire pedosphere [2,6,14,40–44]. It shapes the conditions for the
occurrence of chemical reactions or biochemical and microbiological transformations (e.g., processes of
oxidation and reduction, values of redox potential, transfer or immobilization of pollutants in soil) [45].
The authors of numerous studies, e.g., Gajewski et al. [25], Kaczmarek et al. [28], Dziamba et al. [29],
Tyburski and Łachacz [32], Khaliq et al. [38], Ismail [39], and Cóndor-Golec et al. [46], emphasize that
the full assessment of the effect of EM biopreparations on the soil environment requires multi-year
research in various soil climate conditions.

In view of the above, a five-year study was undertaken, the objective of which was to
comprehensively assess the effect of EM-A biopreparations (Greenland Technologia EM Sp. z o.o.,
Trzcianki, Poland) on the air–water properties of Haplic Luvisol (LVha) [47] and on the resistance
of the soil structure to the scouring effect of water. We put forward the hypothesis that long-term
applied EM-A biopreparations have a positive effect on the soil physical condition. The study was
performed as a field experiment in a typical production area with an established crop rotation (spring
barley-buckwheat-winter wheat-pea-spring barley). The field experiment was conducted in the
climate conditions of southeastern Poland. The results of the study call into question existing, often
controversial, opinions on the effect of EM-based biopreparations on the soil environment.

2. Materials and Methods

2.1. Study Area and Sampling

The study was carried out in Central Europe, in southeastern Poland. The field experiment
was conducted in typical soil and climatic conditions for this area. The study area was situated in
a temperate/transitional zone, with a strong influence of the continental climate. Over the study
period, the average annual precipitation was 617.2 mm (751.4–501.7 mm) and the average annual
temperature was +8.2 ◦C (7.5–8.9 ◦C). The average temperature of the warmest month (July) over the
fallow period was +19.4 ◦C, whereas the temperature of the coldest month (January) was −3.1 ◦C
(Figure 1). The five-year (2011–2015) study on the physical properties of Haplic Luvisol [47,48]
originating from silt (SiL) was performed at the Experimental Agricultural Station in Felin—51◦14′ N;
22◦38′ E (the macro-region of the Lubelska Upland, a mesoregion of the Świdnicki Plateau). The particle
size distribution of the arable layer of this soil was constant, as follows: 2.0–0.05 mm fraction—29%;
0.05–0.002 mm fraction—57%, and <0.002 mm fraction—14%. Particle density (PD) was in the
2.61–2.62 Mg ×m−3 range; total organic carbon content TOC = 7.37 g × kg−1; soil reaction pHKCl = 4.7;
and CaCO3 content ≈ 0.0%.
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Figure 1. The average monthly air temperature and precipitation during the years of the experiment 
(a–e) and months of the research (I–V). 

 

Figure 2. Scheme of field experiment. Control means soil without effective microorganism (EM-A), 
TEM means soil with EM-A application. 
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Figure 1. The average monthly air temperature and precipitation during the years of the experiment
(a–e) and months of the research (I–V).

In the field experiment, the biopreparation EM-A, based on the technology of effective
microorganisms (EMs), was used. The field experiment was set up in a randomized block design with
five replicates, on plots 10 × 20 m in size. Five test plots were treated with an EM-A biopreparation
(0.02 m3

× ha−1) and five Control plots were left untreated (Figure 2).
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Figure 2. Scheme of field experiment. Control means soil without effective microorganism (EM-A),
TEM means soil with EM-A application.

In the study, the following crop rotation was adopted: spring barley (Hordeum sativum L.)—plant
density 680–700 plants per m2; buckwheat (Fagopyrum esculentum M.)—320–350 plants per m2;
winter wheat (Triticum aestivum L.)—70–400 plants per m2; pea (Lathyrus sativus L.)—110–120 plants
per m2; spring barley (Hordeum sativum L.).

The manufacturer of EM-A guaranteed the maintenance of a constant microbiological composition
of the biopreparation. The first application was done in April 2011, before sowing spring barley.
Soil inoculation with EM-A was performed each year in early spring (March/April), prior to the sowing
of spring crops. In the case of winter wheat, EM-A was applied at the beginning of the vegetation season,
in the phase of tillering. In research year III, after the winter wheat harvest, the entire experimental
field (2000 m2) was fertilized with manure at a dose of 30 t × ha−1. Subsequently, in the post-harvesting
period in year IV, a pea aftercrop (white mustard, Sinapis alba) was used as a green fertilizer.

The soil under study has been in use as arable land for over 100 years. The applied primary soil
tillage system was the conventional plough tillage system: stubble cultivator (10 cm) + harrowing,
moldboard ploughing (18–20 cm) + harrowing, sowing + harrowing.

Soil samples with preserved structure were collected three times during the vegetation season
on the following dates: i—April–May (after the emergence of spring crops, and in the case of winter
wheat, in the heading phase); ii—June–July (phase of milk or wax maturity); iii—July–August (prior to
harvest, in the phase of hull ripeness). Soil samples were extracted from the 0–10 cm layer with 100 cm3

metal cylinders, in two replicates from five TEM and five Control plots (Figure 2), on each sampling
date (n = 20). Three hundred soil samples were collected over 5 years. Bulk soil samples for the
determination of aggregate stability were collected in six replicates in 250 cm3 boxes.

2.2. Analysis

Physical soil properties, such as particle density (PD), bulk density (BD), total porosity (TP),
air capacity (at −15.5 kPa) (FAC), air permeability (at −15.5 kPa) (FAP), soil moisture at sampling
(SM), field water capacity (FC), available water content (AWC), unavailable water content—permanent
wilting point (UWC), and FC/TP ratio, were studied. A soil water retention curve was determined
in the soil samples in cylinders (100 cm3) with the use of a pressure plate apparatus (Soilmoisture
Equipment Corp, Goleta, CA, USA). The level of field soil saturation with water was calculated for soil
moisture level at a potential value of −15.5 kPa and permanent wilting point (UWC) of −1550.0 kPa.

The soil physical properties were determined according to the following procedures [49]:

• particle density (PD), with the pycnometric method [50] (Mg ×m−3);
• bulk density (BD), with the gravimetric method, from the ratio of the mass of soil dried at 105 ◦C

to the initial soil volume of 100 cm3 [51] (Mg ×m−3);
• total porosity (TP) was calculated from the results of particle density (PD) and bulk density (BD),

TP = 1 − BD/PD [52] (m3
×m−3);

• air capacity at the potential of −15.5 kPa (FAC) was derived from the results of total porosity (TP)
and field water capacity (FC) (−15.5 kPa), FAC = TP − FC [52] (m3

×m−3);
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• air permeability at the potential of -15.5 kPa (FAP) was measured using an apparatus for the
measurement of the permeability of molding sand, LPiR-2e. The measurements were conducted on
vertical (upward) airflow through the soil sample. The pressure head in the measurement chamber
was 0.981 kPa (100 mm H2O), and the ambient temperature was stabilized (20 ± 1.0 ◦C). The relative
air humidity was 40 ± 5%. The dynamic air viscosity (10−8

× m2
× Pa−1

× s−1) was not taken
into account in the measurement results. The apparatus was produced by MULTISERW-Morek
(Poland);

• soil moisture at sampling (SM) was calculated from the ratio of the mass of water contained in the
soil during the sampling to the dry matter of soil dried at 105 ◦C [53] (kg × kg−1);

• field water capacity (FC) was calculated from the ratio of the volume of water contained in the
soil at the potential of −15.5 kPa to the soil volume [54,55] (m3

×m−3);
• available water content (AWC) was obtained from FC (−15.5 kPa) and unavailable water content

(−1550.0 kPa)—permanent wilting point (UWC), AWC = FC − UWC [54,55] (m3
×m−3);

• unavailable water content (UWC) was calculated from the ratio of the volume of water contained
in the soil at the potential of −1550.0 kPa to the soil volume [54,55] (m3

×m−3).

Air–water relations of the soil were analyzed by determining the values of the FC/TP ratio [56–58].
For the analysis of the water stability of aggregates, 50 g of air-dried soil were used (at approx.
20 ◦C), after preliminary screening through a sieve with 10 mm mesh. Subsequently, the soil was
wet-sieved for 12 min using a set of flat sieves of 5-mm and 1-mm apertures in 1-L cylindrical containers.
The containers were rotated at a tilt (45◦), at a frequency of two rotations per minute. The aggregates
remaining on each sieve were dried at room temperature and weighed to obtain the percentage of
water-stable aggregate fractions of 5–10, 1–5, and <1 mm. The mean weight diameters (MWD) of
water-stable aggregates were calculated from the screening [59].

The content of organic carbon (TOC) was measured with the use of a Shimadzu TOC-VCSH
analyzer with an SSM-5000A adapter for solid sample combustion.

2.3. Statistical Analysis

The results were processed statistically with the use of analysis of variance (ANOVA). The normality
of the distribution and homogeneity of variance by Shapiro–Wilk and Levene’s tests were investigated.
To normalize the distribution of the FAP results, the natural logarithm (ln) was calculated. All pairs of
means were compared with Tukey’s test and the lowest significant difference (LSD) test. One- and
two-way ANOVA was performed. The factors for one-way ANOVA were (i) Control and (ii) TEM,
and for two-way ANOVA (i) treatment of TEM and Control and (ii) study year. Analysis was performed
on the results from five study years (I–V) for each soil property.

The statistical variation of the results obtained in the experiment was found by calculating the
coefficient of variation (CV = standard deviation (SD)/ arithmetic mean (X) (n = 150)), and the coefficient
of correlation (r) for the studied soil properties (n = 30). The statistical evaluation (ANOVA–LSD) and
the correlation estimation (r) were conducted at the significance level α = 0.05.

Statistica 11 by Statsoft and ARSTAT by the University of Life Sciences in Lublin were used for
the statistical analyses.

3. Results and Discussion

3.1. Total Organic Carbon (TOC)

The content of total organic carbon (TOC) in the soil was characterized by medium variability
(CV = 0.17), and it was shown to drop from 4.86 g × kg−1 (EM) to 10.11 g × kg−1 (Control) (Table 1).
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Table 1. Mean values of soil properties on sampling dates.

Years Date

TOC BD TP FAC FAP
g × kg−1 Mg ×m−3 m3

×m−3 m3
×m−3 10−8 ×m2

× Pa−1 × s−1

Control TEM Control TEM Control TEM Control TEM Control

I
i 8.69 6.21 1.43 1.51 0.452 0.421 0.134 0.086 44.3
ii 7.95 5.66 1.47 1.47 0.437 0.437 0.098 0.071 3.1
iii 6.87 5.36 1.38 1.39 0.471 0.467 0.141 0.136 195.9

II
i 7.94 5.65 1.32 1.45 0.494 0.444 0.172 0.112 49.4
ii 7.39 5.32 1.15 1.39 0.559 0.467 0.278 0.178 46.9
iii 7.42 4.86 1.41 1.43 0.46 0.452 0.143 0.157 72.2

III
i 7.23 6.19 1.46 1.47 0.441 0.437 0.105 0.1 3.2
ii 5.99 5.88 1.45 1.55 0.444 0.406 0.145 0.096 17.2
iii 6.26 5.94 1.46 1.5 0.441 0.425 0.149 0.128 68.6

IV
i 9.86 7.95 1.48 1.53 0.433 0.414 0.087 0.075 2.9
ii 9.12 7.64 1.46 1.5 0.422 0.444 0.099 0.113 14.6
iii 8.76 7.46 1.53 1.54 0.414 0.409 0.08 0.069 5.3

V
i 10.11 7.65 1.29 1.31 0.494 0.489 0.16 0.167 35.6
ii 10.02 7.72 1.19 1.2 0.535 0.531 0.191 0.19 124.7
iii 10.03 7.81 1.36 1.52 0.468 0.407 0.169 0.08 26

CV 0.17 0.17 0.08 0.07 0.09 0.08 0.35 0.35 1.12

I–V: study year, i–iii: sampling date, Control: soil without EM-A, TEM: soil with EM-A application, TOC: total
organic carbon content, BD: soil bulk density, TP: total porosity, FAC: air capacity at −15.5 kPa, FAP: air permeability
at −15.5 kPa, CV: the coefficient of variation. Number of replicates: Control: n = 10, TEM: n = 10, i, ii, iii: n = 20, I,
. . . V: n = 60.

The application of the EM-A preparation to the soil at a dose of 0.02 m3
× ha−1 caused a distinct

decrease in TOC. That was true for each of the dates of the analyses (Table 1). The decrease in the
content of TOC was largely statistically significant (Figure 3; Table 2). There was also an observable
variation in the TOC results between the individual years of the study (Figure 3; Table 1). The highest
mean annual content of TOC was noted in year V of the study when it amounted to 10.05 g × kg−1

(Control) and 7.73 g × kg−1 (EM). The increase in TOC content (years IV and V) (Figure 3; Table 1)
was probably caused by manure fertilization (year III) and the use of an aftercrop as a green fertilizer
(year IV).
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Figure 3. The annual mean values of soil total organic carbon content (TOC) during the five-year
study. Notes: Control: soil without EM-A (n = 150), TEM: soil with EM-A application (n = 150), I–V:
study year. Each letter (a, ab, bc and d) means a significant difference (Control or TEM × study year)
according to Tukey’s lowest significant difference (LSD).
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Table 2. The mean values of the investigated properties of the five-year experiment.

Properties Control TEM LSD0.05

TOC (g × kg−1) 8.24a 6.49b 0.3498

BD (Mg ×m−3) 1.39a 1.45a 0.0586

TP (m3
×m−3) 0.464a 0.443a 0.0223

FAC (m3
×m−3) 0.143a 0.117a 0.0275

FAP (10−8
×m2

× Pa−1
× s−1) 47.3a 24.1a 37.382

SM (kg × kg−1) 0.166a 0.154a 0.0291

FC (m3
×m−3) 0.321a 0.321a 0.0142

AWC m3
×m−3) 0.240a 0.247a 0.0134

UWC (m3
×m−3) 0.079a 0.078a 0.0053

FC/TP 0.69a 0.73a 0.0433

A5–10, % 3.31a 0.89b 0.9498

A1–5, % 15.03a 6.38b 2.4756

A<1, % 87.70a 92.75b 3.1660

MWD, mm 0.85a 0.45b 0.1104

Control: soil without EM-A (n = 150), TEM: soil with EM-A application (n = 150), TOC: total organic carbon content,
BD: soil bulk density, TP: total porosity, FAC: air capacity at −15.5 kPa, FAP: air permeability at −15.5 kPa, SM: soil
moisture at sampling, FC: field water capacity, AWC: available water content, UWC: unavailable water content,
FC/TP: field water capacity/total porosity ratio, A5–10, A1–5 and A<1: water-stable aggregate content, MWD: mean
weight diameter, LSD: lowest significant difference. Each letter (a, b) means a significant difference (Control × TEM)
according to Tukey’s lowest significant difference (LSD).

The lowest organic carbon content was noted in year III: 6.49 g × kg−1 (Control) and
6.01 g × kg−1 (EM), which in the latter case can be attributed to the accelerated mineralization of
the organic matter. It is likely to have decreased as a result of an increase in the size of the population
of soil microorganisms. Such effects of the application of TEM have also been reported by the authors
of similar studies, e.g., Damh et al. [7], Martyniuk and Księżak [11], Gajewski et al. [25], Dziamba
et al. [29], Tołoczko et al. [33], Mayer et al. [37], and Cóndor-Golec et al. [46]. As numerous studies
emphasize, the reduction in the content of organic carbon in soil will typically lead to numerous changes
in the physical properties of soil, including increased compaction [17,44,45,60–63]. The increased soil
compaction hinders tillage treatment and has a negative effect on the distribution and openness of
soil pores [18,63–66]. As a result, the storage of agriculturally valuable categories of water in soil
deteriorates and gas flow between the soil and the atmosphere is limited [62,63,67–70]. It needs to
be stressed that soil organic carbon plays an important role in the formation of aggregate structure.
Humus stabilizes and holds elementary soil particles together. Thus, it also determines the resistance
of soil aggregates to the scouring effect of water [13,14,71–74]. The correlation analysis conducted in
this experiment confirmed the existence of correlations between the physical properties of soil and its
content of TOC (Table 3). The content of organic carbon in the studied soil had a beneficial effect on the
amount of water available for plants—AWC (r = 0.489)—and on the water stability of aggregates of
5–10 mm–A5–10 (r = 0.511) and the weight mean diameter of aggregates—MWD (r = 0.383) (Table 3).
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Table 3. The correlation coefficient values for the investigated soil properties (significance value |r| > 0.368).

Properties TOC SM BD TP FC FC/TP AWC UWC FAC FAP A5–10 A1–5 A<1

SM −0.271

BD −0.284 0.125

TP 0.288 −0.106 −0.988 *

FC 0.355 −0.335 0.083 −0.084

FC/TP 0.021 −0.087 0.814 * −0.828 * 0.610 *

AWC 0.489 * −0.392 * −0.199 0.156 0.751 * 0.305

UWC −0.316 0.083 0.653 * −0.605 * 0.144 0.536 * −0.468 *

FAC 0.072 0.061 −0.892 * 0.906 * −0.444 −0.952 * −0.149 −0.586 *

FAP 0.023 0.117 −0.565 * 0.573 * 0.098 −0.422 * 0.115 −0.179 0.486 *

A5–10 0.511 * 0.119 −0.335 0.337 −0.021 −0.289 −0.010 −0.123 0.348 0.279

A1–5 0.239 0.211 −0.214 0.247 −0.164 −0.275 −0.372 * 0.181 0.324 0.075 0.788 *

A<1 −0.302 −0.199 0.245 −0.273 0.137 0.284 0.308 −0.127 −0.338 −0.121 −0.860 * −0.991 *

MWD 0.383 * 0.163 −0.210 0.228 −0.086 −0.233 −0.241 0.110 0.282 0.077 0.886 * 0.959 * −0.979 *

TOC: total organic carbon content, BD: soil bulk density, TP: total porosity, FAC: air capacity at −15.5 kPa, FAP: air permeability at −15.5 kPa, SM: soil moisture at sampling, FC: field water
capacity, AWC: available water content, UWC: unavailable water content, FC/TP: the field water capacity/total porosity ratio, A5–10, A1–5 and A<1: water-stable aggregate content, MWD:
mean weight diameter, *: significant correlation coefficient.
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3.2. Bulk Density (BD), Total Porosity (TP), and Soil Air Properties (FAC and FAP)

Throughout the entire measurement period, the values of soil density (BD) displayed low
variability (CV = 0.08), which ranged from 1.15 Mg ×m−3 (Control) to 1.55 Mg ×m−3 (EM) (Table 1).
The observed differences were most often statistically insignificant (Figure 4a, Table 2). Additionally,
in the multi-year comparison, a minor variation was recorded (Table 1). The lowest mean annual
value of BD was noted in year V of the experiment, when it amounted to 1.28 Mg ×m−3 (Control) and
1.34 Mg ×m−3 (EM).
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Figure 4. The annual mean values of soil bulk density (BD) (a) and total porosity (TP) (b) during
the five-year study. Notes: Control: soil without EM-A (n = 150), TEM: soil with EM-A application
(n = 150), I–V: study year. Each letter (a, ab, abc, and c) means a significant difference (Control or TEM
× study year) according to Tukey’s lowest significant difference (LSD).

The lowest BD in year V (Table 1; Figure 4a) may be explained by the increase in TOC after
soil organic fertilization (years III and IV). The highest bulk density of the soil was noted in year IV:
1.49 Mg ×m−3 (Control) and 1.52 Mg ×m−3 (EM) (Figure 4a). Soil inoculation with EM-A caused only
a slight change in BD, however, it typically resulted in an increase in its value. Different observations
can be found in studies by other researchers [28,35,39], who indicated a decrease in soil density as a
result of the application of EMs. From the obtained results for BD, it can be seen that they corresponded
with the changes in the content of TOC (r = −0.284). It should be emphasized that over 2/3 of all
the results of soil density were higher than 1.40 Mg × m−3. According to the studies by Jones [75],
Drewry et al. [60], and Reynolds et al. [44], the studied soil was characterized by moderate density.
The calculations of Pranagal [63] indicate that, after taking into account the limit value of the parameter
S > 0.035 [42,76] in maintaining a good physical quality of soil, the BD of silty soils should be less than
1.48 Mg × m−3. However, according to the classification of the density of soil developed from silts
proposed by Paluszek [62], the analyzed soil is characterized primarily by “high” and “very high”
values of BD. As indicated in the studies by Reynolds et al. [44,57], Drewry et al. [60], Pranagal [63],
Jones [75], Carter [77], and McQueen and Shepherd [78], at a given a level of bulk density, the following
should be expected: difficulties in soil aeration, limited access to soil for plants, increased mechanical
resistance to root movement within the soil mass, and disturbance in the development of the root
systems of plants. These disturbances in the functioning of the soil–plant–atmosphere system lead,
in consequence, to a reduction in yields. That deterioration of the properties of the soil also found
confirmation in the conducted analysis of correlation (Table 3). The increase in bulk density of the
analyzed soil strongly reduced the field air capacity (FAC, at −15.5 kPa) (r = −0.892), limited the flow
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of gases through the soil (FAP) (r = −0.565), and caused an increase in the content of water unavailable
for plants (UWC) (r = 0.653) (Table 3).

The volume of all soil pores—total porosity (TP)—did not vary strongly (CV = 0.09), and its value
varied from 0.406 m3

×m−3 (EM) to 0.559 m3
×m−3 (Control) (Table 1). The effect of the application of

the EM inoculant was unfavorable, as in nearly every case (13/15) it was seen to cause a decrease in
the volume of soil pores. However, the analyzed differences (ANOVA–LSD) were not confirmed by
statistical significance (Figure 4b, Table 4). The lowest mean value of TP was calculated for year IV of
the experiment, when it amounted to 0.422 m3

×m−3 (EM) and 0.423 m3
×m−3 (Control). The highest

volume of free spaces in the soil was noted in year II, in the case of the control soil (0.504 m3
×m−3)

and in the soil with EM-A in year V of the study (TP = 0.476 m3
× m−3) (Figure 4b). Kowda [79]

and Thompson and Troeh [80] accepted that the optimum value of TP is at least 0.500 m3
× m−3.

In the reported study, only in three out of 15 cases was mean TP higher (Table 1) than the indicated
minimum [79,80]. According to the classification proposed by Paluszek [62], the TP of the analyzed
soil was usually “low” or “very low”. It should be emphasized that ensuring air–water conditions in
soil that are beneficial for plants depends to a large extent on, not only the value of TP, but also on
the favorable distribution of soil pores and their openness [16,17,56–58,81,82]. The observations of
these researchers are supported by the analysis of correlation in the present study (Table 3). It was
demonstrated that total porosity is a property whose value depends on the same factors that determine
soil density. It is a nearly linear relation (r = −0.988), and the correlation between TP and BD was
negative. Analogously, as in the case of BD, every change in TP had a strong impact on the air properties
of soil (FAC, FAP) and on the numerical value of UWC—permanent wilting point (Table 3).

Table 4. Mean values of soil properties on sampling dates.

Years Date

SM FC AWC UWC FC/TP
kg × kg−1 m3

×m−3 m3
×m−3 m3

×m−3

Control TEM Control TEM Control TEM Control TEM Control TEM

I
i 0.095 0.081 0.318 0.335 0.229 0.245 0.089 0.091 0.7 0.79
ii 0.151 0.144 0.338 0.314 0.247 0.223 0.091 0.091 0.77 0.72
iii 0.213 0.202 0.332 0.329 0.242 0.243 0.086 0.088 0.7 0.71

II
i 0.199 0.177 0.323 0.332 0.213 0.26 0.079 0.073 0.65 0.75
ii 0.189 0.185 0.284 0.289 0.21 0.227 0.07 0.063 0.51 0.62
iii 0.193 0.161 0.318 0.294 0.231 0.215 0.086 0.08 0.69 0.65

III
i 0.168 0.164 0.337 0.335 0.251 0.262 0.085 0.075 0.76 0.77
ii 0.175 0.166 0.303 0.308 0.211 0.212 0.088 0.098 0.68 0.76
iii 0.184 0.174 0.295 0.296 0.218 0.222 0.074 0.075 0.67 0.7

IV
i 0.129 0.122 0.346 0.335 0.263 0.246 0.083 0.09 0.79 0.81
ii 0.141 0.138 0.321 0.33 0.241 0.251 0.082 0.08 0.76 0.74
iii 0.216 0.203 0.334 0.338 0.245 0.258 0.086 0.082 0.81 0.83

V
i 0.154 0.138 0.333 0.322 0.279 0.258 0.055 0.064 0.67 0.66
ii 0.102 0.091 0.347 0.341 0.28 0.288 0.064 0.053 0.65 0.65
iii 0.176 0.172 0.286 0.316 0.239 0.259 0.06 0.068 0.61 0.8

CVs 0.22 0.23 0.06 0.05 0.09 0.09 0.14 0.16 0.11 0.09

SM: soil moisture at sampling, FC: field water capacity, AWC: available water content, UWC: unavailable water
content, the FC/TP ratio. For I–V, i–iii, Control, TEM, CV, and number of replicates, see Table 1.

Air capacity (FAC), determined at the value of field water capacity (−15.5 kPa), is also equivalent
to the content of macropores (Φ > 20 µm). Over the course of the five-year experiment, it varied
considerably (CV = 0.35), and its values ranged from 0.069 m3

×m−3 (EM) to 0.278 m3
×m−3 (Control)

(Table 1). The application of the biopreparation EM-A contributed to a decrease in the air content
in soil, observed in 12 out of 15 cases, shown by the compared pairs of mean values. According to
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Tukey’s lowest significant difference (LSD) test, the statistical significance was established only in the
case of two pairs (Figure 5a).
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Figure 5. The annual mean values of field air capacity (FAC) (a) and air permeability (FAP) (b) of soil
(at −15.5 kPa) during the five-year study. Notes: Control: soil without EM-A (n = 150), TEM: soil with
EM-A application (n = 150), I–V: study year. Each letter (a, ab, and b) means a significant difference
(Control or TEM × study year) according to Tukey’s lowest significant difference (LSD).

The lowest mean annual value of FAC was observed in year IV of the study: 0.086 m3
×m−3 (EM)

and 0.089 m3
×m−3 (Control), and the highest in year II: 0.149 m3

×m−3 (EM) and 0.198 m3
×m−3

(Control) (Figure 5a). The air capacity of soil (FAC) at the level of field water capacity is an important
criterion, of great use in the estimation of the physical quality of soil. The value of FAC provides
information on the conditions prevailing in the soil, concerning, e.g., oxygenation, gas exchange,
nutrient uptake by plants, microbial activity, and the processes of oxidation and reduction. An air
deficit in soil usually leads to plant growth inhibition, as reported in numerous studies [45,62,81–86].
The researchers above indicated that the value of FAC = 0.100 m3

×m−3 is a critical value—below that
value, the soil conditions become highly unfavorable, resulting from an air deficit in the zone of plant
root development. In the analyzed soil, in the majority of measurements (19/30) FAC > 0.100 m3

×m−3.
Air deficits occurred more often (7/15 cases) in the soil with EM-A, compared to Control—four cases
out of 15 (Table 1). The specialist literature provides different critical values of FAC. Drewry [83] and
Mueller et al. [86] claim that, in loamy soils, critical conditions occur when FAC < 0.140 m3

×m−3.
Walczak et al. [82] maintained that FAC < 0.120 m3

×m−3 should be considered as a low value, at which
a distinct disturbance in soil respiration can occur. These critical values of the air capacity of soil relate
primarily to its state of field saturation with water (e.g., −15.5 kPa). In natural conditions, such a
level of soil moisture occurs sporadically over the entire vegetation season, and when it appears, it is
usually short-lived [16,17,45,62,63]. The analysis of correlation revealed that, apart from the strong
correlation of FAC with BD, TP and UWC, FAC was shown to correlate with the field water capacity–FC
(r = −0.444) (Table 3).

The air permeability of soil at the state of field saturation with water (FAP) (at a soil potential of
−15.5 kPa) is an important parameter describing the air properties of soil. FAP is a physical indicator
of soil pore space, describing the actual vertical transport of gases in the soil and their exchange
between the soil and the atmosphere [18,64,66,69]. The results of the FAP measurements differed
from the other analyzed properties, as they showed high variation (CV > 1) in a broad range from
1.8 × 10−8

×m2
× Pa−1

× s−1 (EM) to 195.9 × 10−8
×m2

× Pa−1
× s−1 (Control) (Table 1). The variation

of the results was not only found with respect to different years of study (I–V), but also to the particular
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dates of soil sampling (i–iii). The lowest mean annual FAP was noted in year IV of the experiment:
4.8 × 10−8

× m2
× Pa−1

× s−1 (EM), and 7.6 × 10−8
× m2

× Pa−1
× s−1 in Control, whereas the

highest value of air permeability was measured in year I: 81.1 × 10−8
× m2

× Pa−1
× s−1 (Control)

and 45.5 × 10−8
× m2

× Pa−1
× s−1 (EM) (Figure 5b). The application of EM-A to the soil caused a

marked decrease in FAP, which was, furthermore, true for all of the compared pairs of mean values
(Control–EM) (Table 1). Nevertheless, the conducted statistical analysis (ANOVA) did not reveal
significant differences. The lowest significant difference determined for the mean annual values was
LSD = 141.96 × 10−8

×m2
× Pa−1

× s−1. Such a high value of LSD resulted probably from a very high
variation in the fragmentary measurements of FAP (Table 1), and, in consequence, a high standard
deviation (SD = 48.03). Air permeability at FC (at −15.5 kPa) is a highly sensitive parameter of changes
in the state of the soil environment. It changes rapidly in response to modifications of the proportions of
the individual components forming the soil, oscillations of moisture, and density [66,70,87]. In studies
by Paluszek [62] and Pranagal [63], it was demonstrated that sufficient gas flow in soil occurs when FAP
amounts to the minimum of 35.0 × 10−8

×m2
× Pa−1

× s−1. According to the quality classes proposed
by Paluszek [62], Pranagal [63], and Pranagal et al. [45], with respect to FAP values, the soils inoculated
with EM-A (EM), in 10 cases out of 15 represent the classes “very low” and “low”. However, the soil
without EM-A (Control) could be classified, also in 10/15 cases, in the “medium” and “high” classes
of permeability. It should be stressed that the soil with EM-A was usually characterized (13/15) by a
lower FAP than the indicated limit value [45,62,63]. The distribution of FAP results clearly showed
how the application of EM-A affected the value of that soil property in the individual years of the study
(Tables 1 and 2, Figure 4b). The statistical analysis revealed a significant correlation of air permeability
(FAP) with, primarily, soil density (BD–r = −0.565), total porosity (TP–r = 0.573), air capacity (FAC at
−15.5 kPa–r = 0.486), and the ratio FC/TP–r = 0.422 (Table 3).

Among the threats rooted in a substantial increase in the air permeability of soils, other studies
in the field [18,64,66,69,87] investigated factors that may deteriorate the soil condition, thus fostering
excessive “ventilation” and, in consequence, drying. In the case of the analyzed soil, the risk of
excessive drying as a result of a FAP increase is small. Soils with the particle size distribution of silts
are usually characterized by very good water properties and far worse air properties.

3.3. Soil Water Properties (SM, FC, AWC, and UWC) and the FC/TP Ratio

Soil moisture at sampling (SM) is a highly dynamic property, primarily affected by changes in
atmospheric precipitation, transpiration/water evaporation from the soil surface, and tillage treatments.
In addition, SM has been found to display a relationship with particle size distribution, soil structure,
and its state of compaction during precipitation deficits [88–91]. In the course of the experiment,
SM showed considerable variation (CV = 0.23), especially between the individual dates of the
measurements (i–iii), where the values of SM varied from 0.081 kg × kg−1 (EM) to 0.216 kg × kg−1

(Control) (Table 2). The lowest mean annual value of SM was noted in year V of the study. In the case
of the soil with EM-A, it was 0.134 kg × kg−1, and of the control soil, 0.144 kg × kg−1. The highest
water content in the soil during sampling was observed in year II of the experiment: 0.194 kg × kg−1

(Control) and 0.174 kg × kg−1 (EM) (Figure 6a).
The conclusion could therefore be that the effect of the application of EM-A to the soil is

unfavorable, as in all compared pairs (15/15 (Control/EM) results), the soil with EM-A contained
less water. An analogous effect of such a comparison was obtained for the mean annual values of
SM (Figure 6a). The statistical analysis (ANOVA) showed no significant differences (LSD) resulting
from the addition of the biopreparation EM-A to the soil (Figure 6a, Table 2). Finally, the analysis of
correlation revealed a significant correlation of SM only with the content of water available for plants
(AWC) (r = −0.392) (Table 3).



Agronomy 2020, 10, 1049 14 of 24

0.00

0.10

0.20

0.30

I II III IV V

AW
C

, m
3

m
-3

Sampling year

Control

TEM

LSD = 0.0507

a a

a

a
a a

aa
a a

0.00

0.10

0.20

0.30

I II III IV V

U
W

C
, m

3
m

-3

Sampling year

Control

TEM

d
LSD = 0.0203

b b b b b b

a a
ab ab

0.10

0.12

0.14

0.16

0.18

0.20

I II III IV V

SM
, k

g 
kg

-1

Control

TEM

LSD = 1.1104

a

a

a

a a

a
a

a

a

a

0.20

0.24

0.28

0.32

0.36

0.40

I II III IV V

FC
, m

3
m

-3

Control

TEM

b
LSD = 0.0540

a a

a a
a a

a a
a

a

a

c

Figure 6. The annual mean values of soil water properties: soil moisture (SM) (a), field water capacity
(at −15.5 kPa) (FC) (b), available water content (AWC) (c), and unavailable water content (UWC)
(d) during the five-year study. Notes: Control: soil without EM-A (n = 150), TEM: soil with EM-A
application (n = 150), I–V: study year. Each letter (a, ab and b) means a significant difference (Control
or TEM × study year) according to Tukey’s lowest significant difference (LSD).

What may additionally explain the scatter in the values of SM is the effect of cultivated plant
species and the related cultivation treatments. The highest value of SM was recorded under buckwheat
and pea (years II and III) and the lowest under spring barley (years I and V). The differences could
also result from changes in the density of vegetation and water interception by plants: the higher the
density of plants, the higher the water uptake from the soil (Figure 6a, Table 4). It needs to be taken
into account that SM is also subject to spatial variation, even over small areas, which was indicated by,
e.g., Kutílek [88], Leśny [89], Petrosyants [90], White [91], and Usowicz and Usowicz [92]. It should be
emphasized that the experiment was conducted in an area with a dominant precipitation-type water
economy (Figure 1). Therefore, SM depended primarily on the volume and distribution of atmospheric
precipitation and air temperature [89,90]. Those factors cause repeated soil wetting–drying cycles, and,
in the winter period, freeze–thaw cycles. The cyclic character of those processes is conducive to the
formation of natural soil aggregates [13,14,62,63,93].

The variation in the results of field water capacity (FC) (at −15.5 kPa) [54,55,82] was low
(CV = 0.06)—FC ranged from 0.284 m3

×m−3 (Control) to 0.347 m3
×m−3 (Control) (Table 4). The lowest
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mean annual value of FC was noted in year II of the study, in the soil with EM-A (0.305 m3
×m−3)

and 0.308 m3
×m−3 in Control soil. The highest value of FC was noted in year IV, when it amounted

to 0.334 m3
×m−3 and was equal in both experimental treatments (Control and EM) (Figure 6b).

The mean value for the five-year period (I–V) showed no difference in both analyzed soils, amounting
to 0.321 m3

×m−3 (Table 2). The results indicate that soil inoculation with EM-A biopreparation did
not have any significant effect on the value of FC, and the seasonal variation was also negligible.
Furthermore, the latter was reflected by the results from the statistical analysis (ANOVA) (Figure 6b,
Table 2), which indicated a strong correlation of FC with the soil content of organic carbon (TOC)
(r = 0.355), the content of water available for plants (AWC) (r = 0.751), air content (FAC, at −15.5 kPa))
(r= −0.444), and FC/TP (r = 0.610) (Table 3). In 24 out of 30 cases (Table 4), the field water capacity
(FC) of the analyzed soil (0.300–0.350 m3

× m−3) was optimal, according to Reynolds et al. (2008).
However, following the classifications proposed by Walczak et al. [82] and Paluszek ([62,94]), the soil
would be primarily classified in the “high” class of FC. A similar assessment and a minor effect of
soil inoculation with EM-A on the value of FC were also indicated by Gajewski [26], Ismail [39],
and Kaczmarek et al. [28,35,95] in their respective studies.

Another important parameter describing the physical status of soil is the retention of water
available for plants (AWC) [17,45,62,63,65,67]. Over the five-year period of measurements, AWC was
characterized by low variability (CV = 0.09), and its results varied from 0.210 m3

×m−3 (Control) to
0.288 m3

× m−3 (EM) (Table 4). Analyzing the results, it was noted that in 11 out of the 15 cases of
compared pairs (Control–EM), higher AWC occurred in the soil with EM-A (Table 4). Considering
the mean annual values, the lowest capacity for the accumulation of water available for plants was
found in year II of the study, where in the control soil, AWC = 0.218 m3

× m−3, while the soil
inoculated with EM-A performed better, with AWC = 0.244 m3

× m−3. The highest value of AWC
was noted in year V of the experiment, amounting to 0.266 m3

×m−3 in the control soil, and in the
soil with EM-A, 0.268 m3

×m−3 (Figure 6c). The differences in AWC indicated a positive effect of the
biopreparation EM-A on the capacity for water storage in the soil. The analysis of variance (ANOVA),
however, disproved the hypothesis of significance between the observed differences (Figure 6c, Table 2).
The value of AWC was significantly determined by the content of organic carbon (TOC) (r = 0.489),
soil moisture at sampling (SM) (r = −0.392), and field water capacity (FC) (r = 0.751). AWC was
shown to substantially reduce the unavailable water content (UWC) (r = −0.468) and the content of
1–5 mm (A1–5) water-stable aggregates (r = −0.372) (Table 3). A similar increase in the amount of water
resources available for plants as a direct effect of the application of effective microorganism technology
(EM) was described in the works referenced in the preceding sections [26,28,35,39,95]. As compared
with the studies by Cockroft and Olsson [81] and Craul [96], the analyzed soil exhibited very good
retention properties—in the AWC results (Table 4) for both the control soil (Control) and the soil
inoculated with EM-A (EM). The AWC value of the studied soils can be classified in the “high” class
according to the criteria by Walczak et al. [82], in the “very high” class by Paluszek [62], and in the
“ideal” class by Reynolds et al. [57].

The content of water unavailable for plants (UWC) (at −1550 kPa) [54,55] shows moderate
variability (CV = 0.15). During the five-year period of measurements, the value of UWC varied
from m 0.053 m3

× m−3 (EM) to 0.098 m3
× m−3 (EM) (Table 4). According to Walczak et al. [82]

the values are typical (0.050–0.100 m3
× m−3) for soils developed from silts with a low content of

organic carbon (TOC < 10.0 g × kg−1). The effect of applying EM-A to soil on the value of UWC
was hard to identify. The differences in the value of UWC were subject mainly to seasonal variation.
In the mean annual approach, the largest amounts of adsorbed water were noted in year I of the
experiment, at 0.090 m3

×m−3 (EM) and 0.089 m3
× m−3 (Control). The lowest mean annual UWC

was noted in year V of the study. In the case of the soil with EM-A, it was 0.062 m3
× m−3, and in

the control soil, it was 0.060 m3
× m−3 (Figure 6d). The values of UWC obtained in the final year

of the experiment were significantly lower in comparison with the results from years I, III, and IV
(ANOVA–LSD) (Figure 6d). The analyzed Haplic Luvisol was characterized by a small contribution of
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UWC to FC. On average, that amounted to approx. 24.5%. From the comparison of the results of FC,
AWC, and UWC, it can be seen that soil inoculation with an EM-A biopreparation contributed to an
increase in AWC [26,28,35,39,95] as a result of the decrease in UWC, while simultaneously maintaining
constant FC (Figure 6b–d). The statistics calculated for the criteria in question have confirmed a close
correlation between UWC and BD (r = 0.653), TP (r = −0.605), AWC (r = −0.468), and FAC (r = −0.586)
(Table 3). Similar relations between the values of FC, AWC, and UWC in soils with silt and a loamy
particle size distribution were also indicated by the authors of other studies [17,18,44,63,82,94].

The scope of the five-year experiment included an evaluation of the air–water relations in the
soil. For that purpose, the FC/TP ratio was calculated [45,56–58,62,94]. The value of that index for the
analyzed soil varied from 0.51 (Control) to 0.83 (EM), at low statistical variation (CV = 0.10) (Table 4).
In terms of the mean annual values, the lowest value was noted in year II of the study in the control
soil (FC/TP = 0.62) and in the soil with EM-A, the value of the index was 0.67 (Figure 7). According
to the criteria given in Olness et al. [56], Reynolds et al. [57], and Paluszek [94], this particular soil
property was optimal for plants. However, in most cases, the FC/TP ratio was >0.70, and attained the
highest mean values in year IV, amounting to 0.79 in EM-A, and 0.78 in Control (Figure 7).
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Figure 7. The annual mean values of the FC/TP ratio during the five-year study. Notes: Control: soil
without EM-A (n = 150), TEM: soil with EM-A application (n = 150), I–V: study year. Each letter
(a, ab and b) means a significant difference (Control or TEM × study year) according to Tukey’s lowest
significant difference (LSD).

As reported by the authors of other studies [45,57,62,94], the optimal relation between the liquid
phase and the gaseous phase in soil occurs when FC/TP is in the range of 0.60–0.70. Exceeding the
optimal level (FC/TP > 0.70) is indicative of an air deficit and inhibited aeration in the plant root zone
of the soil. Values of FC/TP < 0.60, in turn, provide an indication of the excessive aeration of soil
and a water deficit. The application of EM-A to the soil caused an increase in the values of the index
(Table 4, Figure 7). Therefore, the resulting deterioration of the air properties of the analyzed soil
determines the soil conditions to be unfavorable [56–58]. The only statistically significant difference
derived from the statistical analysis (ANOVA–LSD) was observed between the extreme values of FC/TP
(maximum–minimum) (Figure 7). The determined coefficients of correlation revealed that the value of
the FC/TP ratio is strongly correlated with soil density (BD: r = 0.814; TP: r = −0.828), water properties
(FC: r = 0.610; UWC: r = 0.536), and the air properties of the soil (FAC: r = −0.952; FAP: r = −0.422)
(Table 3). The results from the correlation analysis fully support the suitability of the FC/TP ratio as an
index for the estimation of the air–water relations in soil.
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3.4. Aggregate Stability (A5–10, A1–5, and A<1) and Mean Weight Diameter (MWD) of Aggregates

The stable aggregate structure of soil depends on the content of water-stable aggregates, especially
those of 5–10 and 1–5 mm in size. The presence of water-stable 1–10-mm aggregates ensures access
to water and nutrients for plants, the free movement of roots in the soil mass, and proper gas
exchange between the soil and the atmosphere, as well as the reduction of soil susceptibility to
water erosion [13,14,97]. In the course of the five-year experiment, the content of of 5–10-mm (A5–10)
aggregates ranged from 0.12% (EM) to 7.02% (Control) with medium variation (CV = 0.20) (Table 5).

Table 5. Mean values of the water-stable aggregate content (A5–10, A1–5, and A<1) and mean weight
diameters (MWDs) on sampling dates.

Years Date

Water-Stable Aggregate Distributions, % MWD

A5–10 A1–5 A<1 mm
mm mm mm

Control TEM Control TEM Control TEM Control TEM

I
i 2.12 0.24 9.92 8.72 87.96 91.04 0.62 0.44
ii 2.56 0.12 16.12 6.6 81.32 93.28 0.8 0.43
iii 2.84 0.44 10.56 4.04 86.6 95.52 0.63 0.33

II
i 2.47 0.22 18.08 6.23 79.45 93.55 0.82 0.43
ii 4.74 1.08 30.42 6.45 64.84 92.47 1.33 0.48
iii 7.02 1.78 25.93 9.81 67.05 88.41 1.27 0.61

III
i 0.77 0.6 9.21 6.12 90.02 93.28 0.55 0.41
ii 1.93 0.5 10.42 5.45 87.65 94.05 0.71 0.4
iii 4.02 0.5 18.93 6.92 77.05 92.58 0.98 0.44

IV
i 5.96 2.24 18.24 12.61 75.8 85.15 1.23 0.7
ii 1.84 0.89 15.26 8.48 82.9 90.63 0.88 0.54
iii 3.56 1.02 15.59 5.89 80.85 93.13 0.92 0.48

V
i 3.76 0.28 9.56 2.27 86.68 97.45 0.71 0.32
ii 2.78 2.77 9.76 3.98 87.46 93.45 0.69 0.43
iii 3.28 0.64 7.41 2.19 89.91 97.18 0.54 0.33

CVs 0.22 0.18 0.39 0.43 0.08 0.07 0.26 0.27

MWD: mean weight diameter of water-stable aggregates. For I–V, i–iii, Control, TEM, CV, and number of replicates,
see Table 1.

The lowest mean annual content of A5–10 was measured in the soil with EM-A in year I of the
study (0.27%) and in Control soil in year III (2.24%). The highest means of A5–10 were noted in the
soil inoculated with the biopreparation addition (EM, 1.38%) (year IV) and in the soil without EM-A
(Control, 4.74%) (year II) (Figure 8a). From the obtained results, it can be observed that soil inoculation
with EM-A caused a notable weakening of the stability of the soil structure, which applied to all the
compared pairs of mean values (Control-EM) (Tables 2 and 5). The statistical analysis (ANOVA-LSD)
revealed significant differences between the levels of A5–10 (Figure 8a; Table 2).

The correlation analysis supported the literature reports [13,14,63,97–101] that the content and
stability of soil aggregates is determined by the soil content of organic carbon (r = 0.511) (Table 3).
The content of water-stable aggregates (A5–10) determined, though to a limited extent, the air properties
of the soil (FAC: r = 0.348) and its density (BD: r = −0.335; TP: r = 0.337). The effect of the group
of aggregates in question (A5–10) on soil density and the state of the aeration of the soil was also
demonstrated in previous works [62,63,97,98].
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Figure 8. The annual mean values of water-stable aggregate content: A5–10 (a), A1–5 (b), A<1 (c),
and mean weight diameter (MWD) (d) during the five-year study. Notes: Control: soil without EM-A
(n = 150), TEM: soil with EM-A application (n = 150), I–V: study year. Each letter (a, ab, abc, b, bc, c,
cd and d) means a significant difference (Control or TEM × study year) according to Tukey’s lowest
significant difference (LSD).

The distribution of the 1–5 mm water-stable aggregate content (A1–5) was similar to that of A5–10.
However, the results were more diversified (CV = 0.41) and, in general, higher. The content of A1–5 in
soils ranged between 2.19% (EM) and 30.42% (Control) (Table 5). The lowest mean annual values of
A1–5 were observed in year V of the study in the soil inoculated with the biopreparation (EM, 2.81%),
and in Control soil (8.91%). However, the highest mean annual value for the soil with EM-A was
recorded in year IV (8.99%), and in Control soil in year I, when it amounted to 24.81% (Figure 8b).
In the case of A1–5, a negative effect of the application of EM was also observed, which affected all 15/15
pairs of mean values (Control-EM) (Table 5). The analysis of variance for A1–5 (ANOVA-LSD) provided
similar results as for A5–10, however, it also revealed numerous significant differences (Figure 8b;
Table 2). The calculated coefficient of correlation indicated that an increase in the content of aggregates
A1–5 causes a significant decrease (r = −0.372) in the amount of water available for plants (AWC) and a
substantial increase (r = 0.324) in the volume of air (FAC) (Table 3).

The content of the smallest of the analyzed aggregates, A<1 (<1 mm) showed low variability
throughout the measurements, CV = 0.07. The A<1 content ranged between 64.84% (Control) and
97.45% (EM) (Table 5). The lowest annual mean content was observed in Control soil (year II of the
study, 70.45%), and in the soil with EM-A (year IV, 89.64%). The highest mean values of A<1 were noted
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in year V of the experiment in the soil inoculated with the biopreparation (EM, 96.03%), and in the soil
without EM-A (Control, 88.02%) (Figure 8c). The addition of the content of A<1 brings the sum of the
aggregates, including A5–10 and A1–5, to 100%. This is a close correlation confirmed statistically (A5–10:
r = −0.860; A1–5: r = −0.991) (Table 3). It should be emphasized that the fraction of <1 mm aggregates
includes not only small aggregates but also elementary particles of the fraction of sand originating
from dispersed aggregates [14,62,63,97]. The relationship between the shares of particular fractions of
aggregates affected all compared pairs of mean annual values and the content of aggregates A<1 was
higher in the soil inoculated with EM-A than in Control soil (Table 5). This indicates an unfavorable
effect of EM-A on the aggregate structure of soil. The statistical analysis (ANOVA–LSD) provided
additional evidence by proving the statistical significance of differences (Figure 8c; Table 2).

The mean weight diameter (MWD) of aggregates, calculated on the basis of the shares of
water-stable fractions of aggregates, is an index that is considered by experts as a useful estimator of the
stability of the aggregate structure of soil [71,72,102,103]. The MWD values showed certain statistical
variations (CV = 0.27) within the range of 0.32 mm (EM) to 1.33 mm (Control) (Table 5). The lowest
mean annual values of MWD were noted in year V of the study, amounting to 0.36 mm for the soil with
EM-A and 0.65 mm for Control soil. On the other hand, the highest mean values for the soil inoculated
with EM-A were recorded in year IV (MWD = 0.57 mm) and for the control soil in year II, with MWD
= 1.14 mm (Figure 8d). What emerges from the comparative analysis of the results is a destructive
effect of EM-A on soil structure. In the comparison of 15 pairs of results, in each case, the MWD for the
control soil was higher than for MWD of the soil with EM-A (Table 5). This was, moreover, confirmed
by the results from the analysis of LSD (ANOVA), as the MWD for the soil with EM-A often had the
lowest statistical significance (Figure 8d; Table 2). The correlation analysis (Table 3) revealed a positive
and significant effect of organic carbon on the formation of a stable aggregate structure in the soil
(r = 0.383).According to the classification of the stability of aggregates separated in water, as in Le
Bissonnais [72] and Paluszek [100,101], the soil after the application of EM-A could be classified, in 12/15
cases, as “poor”, and in 3/15 cases as “very poor”. However, Control soil, in 8/15 cases, was classified
as “medium”, and in 7/15 cases as “poor”. The results show good correspondence with other studies
in the field [62,63,101,104]. The referenced studies were conducted in the same soil climate conditions,
and with respect to the results of the water stability of aggregates, they were the closest to the results
obtained for the soil without EM-A (Control). What is important to remember is that any decrease in the
stability of soil aggregates increases the risk of soil crusting, which may cause accelerated surface runoff

of precipitation waters, and thus an increase in soil susceptibility to water erosion [62,71,72,100–103].
The results from our study are in contrast with the laboratory tests carried out as part of model studies
on 1-cm3 cylindrical soil samples. The studies in question [25,27,28] reported that the application of the
biopreparation EM-A to the soil enhanced the resistance of aggregates to the scouring effect of water,
increased the soil retention capacity, and caused a decrease in its density. Their results exemplify that
model experiments cannot necessarily be confirmed in the field. Experiments conducted in the natural
environment or the actual conditions of a cultivated field will always constitute the best method for
the verification of the impact of various factors on soil.

4. Conclusions

The deterioration of the stability of soil structure, observed in this study, did not have any
significant effect on the density of the soil and its total porosity (BD and TP), air properties (FAC
and FAP), water properties (FC, AWC, and UWC), or the FC/TP ratio. It was found that the degree
of their changes was rather small and statistically insignificant. The reduction in the water stability
of aggregates should be attributed primarily to the distinctly reduced content of organic carbon
(TOC) in the soil after the application of the biopreparation EM-A. As can be concluded from the
experiment, the content of organic carbon (TOC) and the water stability of aggregates proved to be
sensitive indicators of changes occurring in the soil. The content of the water-stable aggregates of
the fractions of 5–10 and 1–5 mm was shown to be a good and useful indicator for the estimation
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of the physical status of soil. In the ecological approach, the introduction of any colonies of foreign
organisms and/or components, organic or mineral, to soil can cause a disturbance in the functioning of
the soil environment. Therefore, the application of such biopreparations as EM-A requires serious
consideration, because they accelerate the decomposition of soil organic matter. Carbon sequestration
in soil humus is a positive phenomenon. It increases resistance to physical degradation. Variations in
yield levels between vegetation seasons can usually be explained by weather conditions. However, the
progressing degradation of soil, i.e., the deterioration of its numerous properties, is difficult to observe
in year-to-year comparisons. The reported study has shown that the answer to the question posed
by Cóndor-Golec et al. [46]: “Effective Microorganisms: Myth or reality?”, should rather be “myth”.
Bearing in mind the economic aspect of the application of EMs, it has been found, in field experiments,
that the yield-forming effect of the application of preparations containing effective microorganisms
is negligible and statistically insignificant, and as such, it is economically non-viable. Therefore, an
entirely unexpected implication from this study is that the dissemination of knowledge and research
results among farmers is of great importance for numerous reasons. It is typically the marketing
activity of the producers of various soil “improvers” that meets with a warmer reception. One of
the more significant findings to emerge from this study is that, instead of plant production, EM-type
preparations could be put to better use in wastewater treatment, the stabilization of sewage sludge, or
in the composting of biodegradable waste.
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