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Abstract: Biocomposites were fabricated utilizing polylactic acid (PLA) combined with native starch
sourced from mountain’s yam (Dioscorea remotiflora Knuth), an underexplored tuber variety. Different
starch compositions (7.5, 15.0, 22.5, and 30.0 wt.%) were blended with PLA in a batch mixer at 160 ◦C
to produce PLA/starch biocomposites. The biocomposites were characterized by analyzing their
morphology, particle size distribution, thermal, X-ray diffraction (XDR), mechanical, and dynamic
mechanical (DMA) properties, water absorption behavior, and color. The results showed that the
amylose content of Dioscorea remotiflora starch was 48.43 ± 1.4%, which corresponds to a high-amylose
starch (>30% of amylose). Particle size analysis showed large z-average particle diameters (Dz0) of
the starch granules (30.59 ± 3.44 µm). Scanning electron microscopy (SEM) images showed oval-
shaped granules evenly distributed throughout the structure of the biocomposite, without observable
agglomeration or damage to its structure. XDR and DMA analyses revealed an increase in the
crystallinity of the biocomposites as the proportion of the starch increased. The tensile modulus (E)
underwent a reduction, whereas the flexural modulus (Eflex) increased with the amount of starch
incorporated. The biocomposites with the highest Eflex were those with a starch content of 22.5 wt.%,
which increased by 8.7% compared to the neat PLA. The water absorption of the biocomposites
demonstrated a higher uptake capacity as the starch content increased. The rate of water absorption
in the biocomposites followed the principles of Fick’s Law. The novelty of this work lies in its offering
an alternative for the use of high-amylose mountain’s yam starch to produce low-cost bioplastics for
different applications.

Keywords: mountain’s yam starch; PLA blending; biocomposite characterization; biodegradable
materials; low-cost bioplastics

1. Introduction

The advancement of biodegradable materials as substitutes for conventional plastics
that generate a greater impact on the environment has become crucial. From this per-
spective, the latest research has assessed the replacement of petroleum derivatives with
biodegradable components to create more eco-friendly materials. In this regard, various
types of materials, such as polyethylene (PE), low-density polyethylene (LDPE), polycapro-
lactone (PCL), and polylactic acid (PLA), have been evaluated in combination with organic
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residues or plant bioproducts to increase the rate of biodegradability of purely polymeric
materials [1–3].

In particular, PLA, despite its many advantages (biodegradability transparency, good
mechanical properties, and safety for food packaging), has limited uses due to its high
cost [4–6]. Therefore, PLA is often blended with other low-cost biopolymers or biofillers
that modify the properties of the resulting composites as a function of the nature and
composition of the added materials [6,7]. Further, extensive research has been reported
elsewhere on the use of PLA reinforced with natural fibers (agave, henequen, or sisal, among
others) to obtain composite materials of improved biodegradability, density, strength, and
moduli [8–10]. Moreover, for application in food packaging, biocomposites with favorable
mechanical properties and large crystallinity are required [11,12]. On the other hand, starch
is another type of biopolymer of low cost and broad availability that is being used in the
fabrication of biodegradable plastics [13,14]. Starch is a biodegradable polymer that can be
processed in large quantities at a relatively low cost, it is easy to handle, and it can form
film products of low oxygen permeability, with the main challenge of native starch being
its fragility and hydrophilicity [15]. In this context, thermoplastic blends of PE, LDPE, PCL,
and PLA with starch exhibit an increased biodegradation rate and a decrease in brittleness
and rigidity when plasticized under heating and shearing; this results in a continuous
phase forming a polymer melt that can be processed using traditional plastic processing
techniques, such as extrusion and injection molding [16–18].

Among the most common sources of starch utilized to develop bioplastics are corn,
potato, rice, wheat, or cassava; in addition, starch is also employed as an additive for
different food, pharmaceutical, and industrial products [15,19]. Worldwide, these crops
belong to the group of basic foods that form part of the daily diet, and their extensive
exploitation could result in shortages. However, less exploited cultivars, such as mountain’s
yam (Dioscorea remotiflora Kunth), are also excellent sources of starch and, at the same time,
could increase the cultivar’s added value without compromising its availability. In this
respect, the mountain’s yam is a wild native plant species that grows in the western
regions of Mexico and that is mainly consumed by the local population as a cooked
vegetable. This type of tuber contains approximately 85% carbohydrates, which is nearly
like that of potatoes (Solanum tuberosum) [20]; therefore, it may constitute an important
source of starch (22.1%) [21], currently utilized for scarce industrial purposes, making it
an ideal source of starch without compromising the supply of staple crops. The proximate
composition analysis of mountain’s yam (Dioscorea remotiflora Kunth) has been reported
elsewhere [21]. More importantly, as is shown here, the amylose content of Dioscorea
remotiflora starch is higher than that of conventional starch sources, i.e., potato, which
contains 20% [22]. Amylose is a linear polymer with α(1→4)-D-glycosidic bonds [23],
which determines the functional and physicochemical properties of starch [24]. Starches
with a high amylose content are more resistant and, in foods, are less digestible than regular
starches [25], and they produce firm gels with film-forming properties, which are ideal for
use as bioplastics [26] and improve the mechanical properties of PLA biocomposites [27,28].
Moreover, as pointed out elsewhere [29], amylose acts as a plasticizer, modifying the
properties of starch.

On the other hand, PLA and starch are incompatible, as they are hydrophobic and hy-
drophilic materials, respectively. In this regard, efforts to increase the compatibility between
starch and PLA have been forwarded. To enhance the compatibility between starch and
PLA, researchers have focused on using thermoplastic starch in the presence of plasticizers
like water, glycerol, and sorbitol, and coupling agents such as polyethylene glycol, maleic
anhydride, acrylic acid, polycaprolactone, and epoxidized soybean oil [30]. The latter has
led to the development of more efficient and versatile biodegradable materials [31–35]. In
addition, grafting techniques have been used, including glycidyl methacrylate-grafted poly
(ethylene octane) [36,37], glycidyl methacrylate-grafted PLA [38], PLA-grafted starch [39],
butyl-etherification [27], or methylene diphenyl diisocyanate (MDI) [40,41]. However, the
latter is a toxic and non-biodegradable agent [42], moving away from the concept of green
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chemistry, which seeks to produce environmentally friendly biomaterials, for example, for
drug-delivery applications [43]. Thus, the modification of the starch without the use of
hazardous substances is preferred to increase the compatibility between the starch and
PLA, such as the cross-linking of starch with sodium tripolyphosphate (STPP), a non-toxic
polyanion [44], and citric acid [45], which creates intermolecular bonds to increase its hy-
drophobicity due to the incorporation of ester groups. Furthermore, the functionalization
of starch for food applications permitted by the FDA (Food and Drug Administration, USA)
has been carried out through the acetylation with acetic anhydride or acetic acid, allowing
only low percentages of acetyl groups in starch (2.5 g/100 g) [46]. However, the latter
reaction involves the use of sodium hydroxide as an activator. Thus, these physicochemical
modifications of starch destroy and break down the structure of the starch granules, causing
irreversible changes in the properties of starch, such as biodegradability, biocompatibility,
and toxicity, among others [47], rendering them unviable for medical applications [48].
Furthermore, in the presence of water, this causes the linear amylose chains to leach out
of the granules, modifying their physicochemical properties [46]. Consequently, the alter-
native of using native starch granules, without chemical modification, in the preparation
of PLA composites has been less explored, and only a few recent works have analyzed
the interactions between PLA and starch granules and their effect on the mechanical and
thermal properties [47–49].

In this work, we examined the flexural and tensile strength, storage, loss modulus,
(tan δ) = G′′/G′, water absorption kinetic behavior, morphology, color, crystallinity, and ther-
mal properties of PLA/starch biocomposites containing an underutilized source of native
(non-chemically modified) high-amylose starch from mountain’s yam (Dioscorea remotiflora
Kunth). These biocomposites have a larger water uptake capacity and higher crystallinity
than neat PLA. More importantly, the flexural modulus of these biocomposites increases
with an increasing starch content until reaching the turnover mass ratio of starch granules
to the PLA matrix of 22.5:77.5, after which the flexural modulus decreases at larger starch
granule/PLA matrix weight ratios. Since the starch granules are larger (30.59 ± 3.44 µm)
and have a higher amylose content (48.43 ± 1.4 %) than those extracted from conven-
tional starch sources, these biocomposites have larger tensile strength values than PLA
biocomposites prepared with starch granules of similar sizes but from different botanical
sources with a low amylose content. To the best of our knowledge, and despite the large
number of studies on PLA biocomposites, there is a lack of research on mountain’s yam
(Dioscorea remotiflora Kunth) as a source of reinforcing starch granules in PLA blends. This
makes these biocomposites an alternative for the development of environmentally friendly
materials with more sustainable methods.

2. Materials and Methods
2.1. Materials

PLA was acquired from Natureworks Ingeo Biopolymer 3521D [density 1.24 g/cm3,
flow index 210 ◦C/2.16 kg for 14 g/10 min, and processing (melt) temperature 199 ◦C].
Mountain’s yam tubers were purchased in the region of Atequiza (Ixtlahuacán de los
Membrillos), in Jalisco state, located in the western area of Mexico. Ethanol (EtOH, Golden
Bell, Cd. Mexico, Mexico), sodium hydroxide (NaOH, 99%, Golden Bell, Cd. Mexico,
Mexico), acetic acid (CH3COOH, 99%, Golden Bell, Cd. Mexico, Mexico), potassium
iodide (KI, 99%, Sigma Aldrich, St. Louis, MO, USA), iodine (I2, 99.8%, Sigma Aldrich,
St. Louis, MO, USA), and distilled water from Selectrum (Guadalajara, Mexico) were used.

2.2. Methods
2.2.1. Starch Extraction

Starch from Dioscorea remotiflora tubers was extracted according to the method pro-
posed by Sukhija et al. [50], with some modifications (Figure 1). Tubers were washed, peeled
manually with a knife, and chopped; then, the pieces were ground in a laboratory blender
to coarse-grind size. The organic residues were removed by filtration on cheesecloth and
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the filtrate was allowed to settle to obtain the starch. The precipitate was separated and
washed several times with distilled water until it was transparent. The aqueous starch
dispersion was centrifuged (Labogene Multi-purpose Model 1580R; Labogene, Republic
of Korea) at 2500 rpm (769 rcf) for 10 min to obtain the starch. Subsequently, the starch
was dried at 40 ◦C for 24 h in an oven (FRELAB Model ITAM-45, FRELAB, Guadalajara,
Mexico) and sieved to a particle size of 100 µm.
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2.2.2. Amylose Content and Yield

Starch was placed (0.1 g) in 100 mL volumetric flasks, and a mixture of 1 mL of EtOH
with 9 mL of 1 N NaOH was added. The sample was heated in a boiling water bath for
15 min and then cooled to room temperature to adjust the volume to 100 mL with distilled
water. Aliquots of 2.5 mL were transferred to volumetric flasks of 50 mL with 25 mL of
distilled water, 0.5 mL of 1 M CH3COOH, and 1 mL of iodine solution (0.2% I2 + 2% KI).
The absorbance was read at a wavelength of 620 nm, and distilled water was used as
a blank. The amylose content was determined based on a calibration curve at different
amylose concentrations [51]. The starch yield (SY), expressed as (%), was calculated as
follows [50]:

SY =
mstarch
mtuber

× 100 (1)

where mstarch and mtuber represent the weight of the isolated starch and fresh tuber, respectively.

2.2.3. Biocomposite Preparation

To prepare the PLA/starch biocomposites, a batch mixing process was selected instead
of a continuous mixing process to improve the control of the resulting blend and to improve
the control of the mixing time. Blends of PLA and starch were prepared in a Haake
Rheocord Fision Model 9000 batch mixer with a 60 cm3 chamber capacity and roller rotors.
First, 50 g of PLA was introduced into the equipment chamber at 30 rpm and 160 ◦C for
3 min; consecutively, the biocomposites were prepared by adding different percentages
of starch (7.5, 15.0, 22.5, and 30.0 wt.% (dry basis)). After 6 min, the biocomposites were
immediately collected in a container and then dried at 25 ◦C. On the other hand, to preserve
the shape and structure of the starch granules in the PLA matrix, the biocomposites were
processed using compression molding to avoid applying further high shear stresses to the
starch granules, such as injection molding, which introduces high pressures into the mold.
A Carver thermocompression molder (Carver, Inc., Wabash, IN, USA) was used to make
3 mm thick, 13.5 × 13.5 cm plates.

The procedure was as follows: (1) the samples of biocomposites were annealed in the
molder for 3 min and 100 bar pressure at 160 ◦C; (2) the pressure was released and increased
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to 200 bar; (3) the pressure was released for a second time and increased to 200 bar. This
procedure was repeated three times, maintaining a pressure of 200 bar at 160 ◦C for 3 min.
Finally, the biocomposites formed in the Carver thermocompression were maintained at
200 bar until they cooled at 25 ◦C, and, consecutively, the samples were stored for three
days to eliminate stresses in the materials. A photograph of the biocomposites is shown in
Appendix A (Figure A1).

2.2.4. Scanning Electron Microscopy

Scanning electron microscopy (SEM) analysis was utilized to obtain micrographs of the
starch granules, neat PLA, and starch biocomposites. The samples were frozen in liquid ni-
trogen and then fractured and coated with gold before imaging (SPi,
West Chester, PA, USA) [52]. The morphology of the native starch was obtained in a
TESCAN MIRA 3LMU scanning electron microscope (SEM; TESCAN, Brünn, Czech Repub-
lic) with a voltage of 15 kV. The morphology of the neat PLA and PLA/starch biocomposites
was examined using a Hitachi TM-1000 field emission scanning electron microscope (Hi-
tachi, Tokyo, Japan). The micrographs were analyzed by Image-Pro version 4.5 software
(Media Cybernetics, Rockville, MD, USA). The values reported represent the average and
standard deviation (SD) of at least 50 granules.

The starch granules were measured from the SEM micrographs to obtain the histogram
and the particle size distribution (PSD) to analyze their dimensions more accurately. Since
the starch granules have an ellipsoid-like shape, it is possible to measure the half-axes of a
(height) and b (width) for each granule to estimate an average particle size (Di), defined
as Di = (a2 + b2)/2. PSD, defined as (Dw/Dn), where Dw and Dn are the weight-average
particle diameters and the number-average particle diameters, respectively, is based on the
assumption that the particles are spherical, which were calculated as follows [53]:

Dw =
∑i niD4

i

∑i niD3
i

(2)

Dn =
∑i niDi

∑i ni
=

∑ niDi
n

(3)

where ni is the number of particles. Moreover, the z-average particle diameter (Dz0) was
estimated according to the following Equation [54]:

Dz0 =
∑i niD7

i

∑i niD6
i

(4)

2.2.5. FTIR-Attenuated Total Reflectance

The Fourier Transform Infrared Spectroscopy (FTIR) analysis of the modified surface
of the biocomposites was performed using a Thermo Scientific iS5 Nicolet (Thermo Fisher
Scientific, Madison, WI, USA) with attenuated total reflectance (ATR). The spectra were
obtained at a 4 cm−1 resolution, with 64 scans in the standard wavenumber range from
400 cm−1 to 4000 cm−1. The samples analyzed were oven-dried (FRELAB Model ITAM-45,
FRELAB, Guadalajara, Mexico) at 50 ◦C for 24 h before testing [10].

2.2.6. Thermal Analysis

The Differential Scanning Calorimeter (DSC) measurements were carried out using a
TA Discovery Model Q100 (TA Instruments, New Castle, DE, USA). All samples were dried
for 24 h in an oven at 60 ◦C before the analysis. The PLA and biocomposites were heated
from 0 to 200 ◦C and maintained at 200 ◦C for 1 min to remove internal moisture and small
volatile molecules for the first temperature scan. For the second scan, the samples were
cooled to 0 ◦C, held for 1 min, and subsequently heated to 200 ◦C and held for 1 min before
being cooled to 0 ◦C; both heating and cooling rates were at 5 ◦C/min during the scans [55].
For starch, a similar procedure was performed with a single temperature scan.



Polymers 2024, 16, 899 6 of 20

2.2.7. X-ray Diffraction

The X-ray diffraction pattern (XDR) analysis was determined in a theta–theta diffrac-
tometer system Stadip (STOE & Cie GmbH, Darmstadt, Germany) equipped with a copper
source, operating at 30 kV and 15 mA (Kα = 1.5406 Å) at a scattering angle (2θ) range of
5–80◦. The dried samples were ground to a fine powder and then fixed on a glass slide with
Vaseline, which would not interfere with the measurement of the sample. The crystallinity
of the biocomposites was analyzed as the ratio of the crystalline starch content in the PLA
matrix to the total amount of the composite material. The crystallinity index (IC) was
calculated with the following Equation [56]:

IC =
ICr − IAm

ICr
× 100 (5)

where ICr is the intensity of the maximum diffraction peak, measured as the height of the
crystalline diffraction peak at 2θ = 16.2◦, where this peak represents both the crystalline
and amorphous materials, and IAm is the height of the smaller diffraction peak measured at
2θ = 18.1◦ related to the crystal structure of the PLA.

2.2.8. Water Absorption Kinetics

Samples of 35 mm × 12 mm × 1.4 mm (l × w × d) were placed in a Terlab oven (TE-
H35D, Terlab, El Arenal, México) at 60 ◦C for 24 h to eliminate the water absorbed during
the preparation process. Subsequently, the samples were weighed and placed in containers
with distilled water at 25 ◦C [57]. Samples were weighted daily for water absorption intake
until they reached a constant weight. The data were registered and plotted [(moisture (%)
vs. time (days)] to determine the kinetic behavior of the water absorption. Water diffusion
through the lineal section of the plots was calculated using the following Equation [57]:

Mt

M∞
= k × tn (6)

where Mt is the absorbed moisture (%) at time t (s), M∞ is the maximum moisture concen-
tration at infinite time (saturation), and n and k are the kinetic constants.

The coefficients of the equation (n and k) can be determined from the slope (n) and
the intercept (k) by plotting the log (Mt/M∞) vs. log t. From these two coefficients, the
exponent n is of main interest to determine the type of diffusion that occurs. According to
the value of n, the diffusion can be classified using Fick’s Law as follows: Case I: n = 0.5;
Case II: n = 1; Super Case II: n > 1; non-Fickian or abnormal diffusion: 0.5 < n <1 [58]. The
solution of the diffusion Equation, following Fick’s Law for isotropic media with a constant
coefficient and only on one axis (x), has been reported elsewhere [58,59] as follows:

Mt = M∞

[
1 − 8

π2

∞

∑
n=0

1
(2n + 1)2 exp

[
−Dx × t

h2 π2
(

2n + 1)2
]]

(7)

where h is the thickness of the plate (under dry conditions) and Dx is the diffusion coefficient
on the x-axis at time t. The measurements were performed at least three times, reporting
average values.

2.2.9. Mechanical Properties

The biocomposite samples were cut with a laser machine (Guian GN-640MS Laser
Cutter; Guian, Jinan, China) at a rate of 5 mm/min with a 100% cutting intensity to evaluate
the samples’ mechanical properties. The tensile tests were performed in an Instron Model
3345 Universal Testing Machine (Instron, Norwood, MA, USA), utilizing a 1 kN electronic
load cell and mechanical clamp grips. The measurements were performed following the
standard procedure (ASTM D638 (2001)) [60] at a crosshead rate of 1 mm/min and a
distance between mechanical clamp grips of 25.4 mm. The flexural test samples were
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carried out following the standard procedure of the ASTM D790 (2001) [61] for plastic
materials with and without reinforcement, using a three-point contact system, in the
Universal Testing Machine at 1 kN at a rate of 1 mm/min.

2.2.10. Dynamic Mechanical Analysis

Dynamic mechanical characterization was performed in a Perkin Elmer Model DMA7
dynamic mechanical analyzer (Perkin Elmer, Waltham, MA, USA). Rectangular samples
of 15 mm × 2 mm × 3 mm (l × w × d) were cut with a laser machine (Guian GN-640MS,
Laser Cutter, Guian, Jinan, China) at a 5 mm/min speed and with a 100% cutting intensity.
Temperature ramps were performed ranging from 30 to 120 ◦C at a constant frequency,
strain, and ramp heating of 5 rad/s, 0.025%, and 5 ◦C/min, respectively.

2.2.11. Color

The color of the blends was measured with a CR-410 Colorimeter (Konica Minolta,
Ramsey, NJ, USA). Six measurements were taken at random on the surface of the samples,
and the readings were recorded with the CIELAB color space to obtain the luminosity (L*)
and the color space parameters a* and b*, which are related to rectangular coordinates in
the color plane. Also, the total color difference (∆E), which is the distance between two
points within the color space parameters with respect to the control, was determined with
the following Equation [62]:

∆E =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (8)

where ∆L*, ∆a*, and ∆b* represent the color space parameter differences between the
sample and the control. The color measurements were replicated at least three times, and
an average value was calculated.

2.2.12. Statistical Analysis

Experimental data were statistically analyzed with the Statgraphics Centurion XV
version 15.2.06 software (Statpoint Technologies, Warrenton, VA, USA). The comparison
of the mean ± SD values between the treatments was performed with the LSD (Least
Significant Difference) Fisher multiple range test at a confidence level of 95% (p < 0.05).

3. Results and Discussion
3.1. Starch Yield

Tubers of mountain’s yam are a rich source of starch with a yield of 21.82% d.b.,
indicating that this type of tuber could be an alternative source of starch; other varieties of
Dioscoreas have lower percentages, such as Dioscorea trifida with 20.6% or Dioscorea pyrifolia
with 26.64% [63,64].

3.2. Amylose Content

The native starch contains 48.43 ± 1.4% of amylose, thus this may be classified as high
amylose [based on the amylose content, starches are classified as waxy (0–2%), low (5–20%),
intermediate (20–30%) and high (>30%) [65]. Tubers of species like Dioscorea mexicana
Schidw contain 31.1% or Dioscorea pyrifolia of high amylose with 44.47% [63,66], but in this
work, Dioscorea remotiflora had the superior content; on the contrary, cereals like wheat
and corn are low in amylose (8.84 and 10.41%, respectively) [67], but this also depends on
the cultivar.

3.3. Morphology

Figure 2 shows the SEM micrographs of native starch granules (Figure 2a), the stress
fracture of the cross-section of the neat PLA (Figure 2b), and the PLA/starch biocomposites
for 15 and 30 wt.% of starch (Figure 2c,d). Figure 2a displays the starch granules from
mountain’s yam (Dioscorea remotiflora Kunth), which are oval-like, with a smoother and
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flatter surface. A similar morphology has been reported for the starch granules of potatoes,
peas, or green beans, as reported elsewhere [47]. The inset in Figure 2a depicts the histogram
of the native starch granules. It is observed that the PSD is narrower (1.27 ± 0.05). The
particle size analysis revealed that the Dw, Dn, and Dz0 values for the starch granules
are 27.15 ± 3.39, 21.25 ± 3.64, and 30.59 ± 3.44 µm, respectively, which are larger than
other varieties of Dioscorea tubers [68,69]. According to a classification reported elsewhere,
hard-cooking yam varieties have large starch granules (ca. 35 µm) [70]. Thus, larger starch
granules have greater resistance to shear stresses due to dipole–dipole attractions between
hydrogen-bonding forces and the formation of a double helix between the amylopectin
and amylose chains [71]. In addition, they have a higher amylose content, as shown in the
last section, which is an important property of starch that confers improved mechanical
properties to the biocomposites. Figure 2b presents the neat PLA, where a smoother surface
is shown, whereas Figure 2c,d depicts the presence of intact starch granules that are well
embedded into and distributed in the matrix without apparent damage or agglomeration.
Likewise, empty cavities are observed in the matrix because the starch granules were
snatched by the fracture. This behavior suggests that the PLA did not exhibit complete
compatibility with the starch granules in some parts. This is because the starch is highly
hydrophilic and the PLA is hydrophobic, which hinders compatibility [48]. Moreover,
note that an increase in starch granules to 30 wt.% does not affect the size and structure of
the granules.
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Figure 2. SEM micrographs of the following: (a) starch granules from mountain’s yam (Dioscorea
remotiflora Kunth) and the fracture surface of (b) neat PLA and PLA/starch biocomposites at different
starch contents of (c) 15 and (d) 30 wt.%. Inset in (a): SEM histogram of native starch granules from
mountain’s yam (Dioscorea remotiflora Kunth).

3.4. Infrared Spectra

Figure 3 presents the infrared spectra of the PLA and the biocomposites. The infrared
spectra displayed vibrations within a range of 4000–500 cm−1. All samples exhibited
a peak at 1750 cm−1, which is related to the stretching vibration of the –C=O group of
the PLA. Stretching vibrations corresponding to the CH2– and CH3– groups of the PLA
were identified near the signals of 2920 and 2848 cm−1 [72]. Starch in the biocomposites
was identified at starch concentrations higher than 15 wt.%. The slight band observed
at 3400 cm−1 is related to the OH– groups due to the presence of starch, suggesting that
the water present in the starch is probably linked by hydrogen bonding to the carbonyl
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ester group [73]. As this band was not observed for the PLA sample, nor for the 7.5 wt.%
composites, this indicates that both samples were dry when analyzed. Moreover, at
1605 cm−1, a tiny peak related to the C–O bending group of the starch associated with the
OH– group was observed for the blends at starch concentrations higher than 15 wt.% [74],
which is also related to the water present in the starch [31]. These behaviors suggest that
the two components are well mixed according to Yang et al. [50]. A zoom-in of this peak
is reported in Appendix A (Figure A2). Other vibrations detected within the range of
1396–1417 cm−1 are related to the CH– bonds of the starch. The vibration band between
865 and 1083 cm−1 corresponds to a C–O functional group of the starch. Furthermore, the
vibration of the C–O–C ring on the starch produces an absorbance peak at 756, 804, and
872 cm−1, as reported for three different varieties of starch [74].
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Figure 3. Infrared spectra of the neat PLA and PLA/starch biocomposites at different starch contents.

3.5. Thermal Properties

Figure 4 shows the thermograms of the mountain’s yam starch and the biocomposites.
A solitary peak is observed, indicating the endothermic transition phase of the biopolymer
at 59.96 ◦C (Figure 4a), which corresponds to its glass transition temperature (Tg). This
observation is consistent with the typical Tg values of other starches, such as rice starch,
which fall within the range of 35–70 ◦C [75]. Additionally, the broader endothermic peak
with a singular onset temperature suggests increased homogeneity in the starch [76]. The
absence of the exothermic crystallization peak (Tc) and the endothermic melting peak (Tm)
is attributed to the slow crystallization process of amylose and amylopectin, which are
large molecules constituting starch [77].

The thermal behavior of the PLA/mountain’s yam starch biocomposites is shown in
the thermogram (Figure 4b). The data of the Tc, Tm, the crystallization enthalpy (∆Hc), and
the melting enthalpy (∆Hm) obtained from the DSC studies are summarized in Table 1.
In this table, the IC and Tg were measured from the XDR and DMA tests, respectively,
because of the accuracy of the methods. In Table 1, an increase in the Tg can be observed
when the mountain’s yam starch is incorporated into the PLA matrix. These observa-
tions indicate that a higher Tg consequently promotes a change from soft and flexible
to hard properties, reducing the mobility of the PLA chains. The effect of the addition
of starch granules on the crystallinity and Tg will be further discussed in more detail in
Sections 3.6 and 3.9, respectively. Regarding the ∆Hm and ∆Hc, these decreased with the
addition of the mountain’s yam starch because they hinder the PLA crystallization [47].
Similar results have been reported elsewhere [78]. Furthermore, variations in the starch
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type, origin, and composition significantly impact the structural ordering and crystalline
formation, along with the concentration of the starch within the matrix [79].
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Table 1. XDR, DMA, and DSC data of raw starch flour, neat PLA, and PLA/starch biocomposites.

Starch (wt.%) a IC (%) b Tg (◦C) * Tc (◦C) * ∆Hc (J/g) * Tm (◦C) * ∆Hm (J/g)

Raw Starch
Flour 8.82 - - - - -

0.0 65.57 68.25 102.03 ± 1.42 30.19 ± 1.82 168.37 ± 1.27 46.00 ± 1.89
7.5 70.02 67.85 104.06 ± 1.51 23.67 ± 2.1 165.00 ± 1.43 40.94 ± 1.65

15.0 71.78 72.74 106.00 ± 1.89 16.17 ± 2.63 147.22 ± 1.61 37.00 ± 1.3
22.5 73.46 73.19 110.31 ± 2.1 12.21 ± 2.94 147.89 ± 1.18 36.94 ± 1.48
30.0 75.53 73.23 109.98 ± 1.96 11.63 ± 2.25 147.23 ± 1.42 26.70 ± 1.5

* Mean value of three measurements ± standard deviation (n = 3). a: The IC values were calculated from
Equation (5). b: The Tg data have been extracted from the DMA tests.

3.6. X-ray Diffraction

Figure 5 shows the XDR of the native starch, neat PLA, and biocomposites. The
native starch diffraction pattern displayed a typical A-type pattern at 2θ, with the first
peak around 17.2◦, a second peak near 19◦, and the third main reflection around 22.1◦.
Native starch also exhibited a low-intensity peak at 20◦, indicating the presence of V-type
amylose–lipid complexes associated with the semi-crystalline nature of the biopolymer [80].
This XDR pattern is similar to native starches reported elsewhere [81]. The CI value of
the native mountain’s yam starch was 8.82%, which is lower compared to other Dioscoreas
yam varieties, i.e., Dioscorea Opposita Thunb., which contains a crystallinity percentage
calculated by the XDR of 23.70 [68], and the Dioscorea hispida tuber with a CI value of
27.5% [69]. This result indicated that the CI value of mountain’s yam starch is lower due
to the high amylose content of the starch, since, generally, the higher the amylose content
in the starch, the lower its crystallinity [68]. The IC values of the raw starch flour and the
biocomposites are reported in Table 1. On the other hand, the diffraction patterns of the
biocomposites showed peaks at 16.2◦ and 18.1◦, which correspond to the crystal planes of
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(200/110) and (203), respectively [82]. Meanwhile, the peaks at 44.2◦ and 64.3◦ correspond
to the crystal planes of (200) and (220), respectively. These peaks are indicative of certain
molecular arrangements of crystalline phases within the PLA [83], whereas the CI values
of the biocomposites increased from 70.02 to 75.53%. These results were consistent with
those reported elsewhere [84]. The starch granules were exposed to high temperatures
and high shear forces during the biocomposite blending process, strongly affecting their
crystalline structure and resulting in the disappearance of the diffraction peaks, as shown
in Figure 5. Therefore, this suggests that the increase in the starch content increased the
relative crystallinity of the biocomposites.
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3.7. Water Absorption and Kinetics

Figure 6 presents the SEM images of the PLA and PLA/starch biocomposites with
and without water uptake. Starch granules and hollows inside the matrix can be observed
as a direct sign of adhesion (Figure 6a–c) [85]. After water uptake and the subsequent
drying of the samples, the material exhibited hollows between the starch granules and
PLA (Figure 6d–f). This phenomenon is related to the complete hydration of the starch
granules that are withdrawn from the matrix surface, which is not sufficiently strong to
retain the starch granule [86]. Moreover, solubilization of the starch in the water might
have occurred, leaving those empty spaces. On the other hand, the PLA matrix presents
deterioration on the surface, suggesting its hydrolytic degradation. This phenomenon
induces the development of a heterogeneous surface, one that is rough with hollows, and
with the presence of threads on the matrix.

Figure 7 depicts the PLA absorption curves and PLA/starch biocomposites. As the
starch content increases, the moisture content also increases due to the hydrophilic nature
of the starch, which can absorb large amounts of water. The greatest effect is observed at
30 wt.% of starch, where the highest moisture is achieved, with a steeper slope reached
within the first minutes. It is also observed that, at low percentages of starch, the absorption
curve exhibits two zones; in the first region, there is a gradual increase in moisture, while
the second region corresponds to a plateau developed for nearly the entire period. This
latter behavior indicates that the hydrophilic sites of the starch reached saturation faster
than samples containing higher percentages of starch, since more –OH groups are available.
Therefore, the water absorption in the PLA biocomposites with starch increases due to
several factors: (1) the porous structure created by the starch in the PLA matrix, which
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offers more binding sites for water, (2) the starch is hydrophilic and its increase in the PLA
matrix increases the water–material interaction, and (3) the distribution of starch particles
increases the contact surface between water and the PLA matrix, and the permeability of
the material is also affected. The solid lines in Figure 7 represent the best fit of Equation (6).
Table 2 presents the parameters of Fick’s Law (Equation (6)) and the moisture diffusion
coefficient (Dx) (calculated from Equation (7)) of the PLA and PLA/starch biocomposites.
Equation (6) exhibited a good fit with the experimental data, with correlation coefficients
higher than 0.9 (not shown). Regarding n, the values were close to 0.5, indicating that
the diffusion follows the Fick Equation (Equation (6)). The PLA and the PLA/starch
biocomposite with 7.5 wt.% starch yielded similar n values of 0.363 and 0.392, respectively;
this means that low percentages of starch give rise to little effect on the swelling capacity.
Otherwise, the PLA/starch biocomposites with 15, 22.5, and 30 wt.% of starch rendered
values of 0.42, 0.56, and 0.849, respectively, indicating a non-Fickian diffusion process;
thus, the addition of starch influences the diffusion phenomena through the biocomposites.
However, understanding the starch swelling process not only involves elucidating the
types of water diffusion mechanisms, but more studies are needed to understand the
physicochemical reactions between the amylose and amylopectin and how they impact the
structure of the starch granules and their swelling kinetics.
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3.8. Mechanical Properties

Table 3 presents a summary of the mechanical properties of the PLA/starch blends.
Statistically, the addition of starch was significant (p < 0.05) for all mechanical parameters.
The incorporation of starch affects both the flexural (σflex) and tensile (σ) strength as well as
their respective moduli. σflex undergoes a notable decline as the starch content increases to
30 wt.% (45.02 MPa), in contrast to the pure polymer (72.89 MPa), while the maximum σ
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decreases significantly to 62.73 MPa compared to 79.11 MPa for the neat PLA. This decrease
indicates that the addition of the starch does indeed reduce the adhesion between the
blended materials; that is, it contributes to stiffness without reinforcing the PLA, meaning
that the starch modifies the properties of the PLA [87–89]. Additionally, incorporating
starch into the composite enhances the flexural modulus (Eflex), reaching a peak value of
1868.73 MPa at a critical starch concentration of 22.5 wt.%, implying an effective stiffness
transfer to the PLA matrix. However, once the critical concentration of starch is exceeded,
the Eflex value decreases, probably due to the poor adhesion and compatibility between the
starch and PLA. For the tensile modulus (E), its behavior was similar to that of the maximum
resistance to tension, since the values also decreased with the increasing starch content;
thus, the higher the percentage of starch, the lower the value of E. The poor adhesion
between the starch and the polymeric matrix is attributed to the high hydrophilicity of
the starch, which reduced the σ exhibited by the biocomposites. Therefore, the starch in
the blend behaves as a filler because of the composition of starch, the ratio of the starch
particles, and their irregular oval shape. This situation promotes poor interaction between
the starch and the matrix. However, the values of σ are higher than those of the PLA
biocomposites prepared with starch granules from different botanical sources, but with
similar sizes and shapes to those extracted in this work [47]; meanwhile, the E values are
lower than those prepared with potato starch (1470 MPa). Khalid et al. [47] reported tensile
strength values of 40.34 ± 3.77, 31.44 ± 2.80, and 28.85 ± 3.38 MPa for PLA composites
with 30 wt.% of starch granules from potato (granule size of 24.93 ± 8.96 µm), sweet potato
(granule size of 15.54 ± 11.09 µm), and pea (granule size of 18.22 ± 6.22 µm), respectively.
Note that the starch granules of the Dioscorea remotiflora tuber are larger than those of potato
and yet have higher σ values. In general, small particle sizes increase the tensile strength
due to the reduction in the stress concentration sites in the PLA matrix [90]. However, these
results may be due to multiple factors, such as the amylose content in the starch [5,47],
the interfacial forces between the particle and the matrix [91], the particle size [92] and
shape [47], among others. As demonstrated here, the amylose content in the mountain’s
yam starch is higher compared to the amylose content of potato (20%) [22], suggesting
that the improved Eflex values are due to the high amylose content. The amylose plays a
fundamental role in the mechanical properties of the composites, i.e., the PLA/starch blends
prepared with high-amylose starch have better elongation at break and tensile strength
compared to those materials prepared with low-amylose starch [27]. Similarly, extruded
thermoplastic films of starch high in amylose presented better mechanical properties and
high-impact strength than films with starch low in amylose [28]. Moreover, it has been
reported elsewhere that the deformation of composites was improved using high-amylose
starches [47]. Nevertheless, further research is required to understand the multiple factors
that exert an influence on the mechanical properties of the composites together with the
Dioscorea remotiflora starch.
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Table 2. Parameters of Fick’s Law and the moisture diffusion coefficient of PLA and PLA/starch
biocomposites prepared with different starch contents.

Samples, (wt.%) * K, (s−1) * n M∞, (%) α D × 10−9, (cm2/s)

0 −2.054 0.363 1.915 2.018
7.5 −2.494 0.392 2.411 2.001
15 −2.180 0.420 3.615 2.010

22.5 −2.156 0.569 5.212 1.932
30 −2.138 0.849 17.107 1.167

* K and n values were calculated from Equation (6). α D values were calculated from Equation (7).

Table 3. Flexural and tensile strength parameters of PLA and PLA/starch biocomposites.

Starch
(wt.%)

Mechanical Properties

Flexural Strength
(σflex, MPa)

Flexural Modulus
(Eflex, MPa)

Tensile Strength
(σ, MPa)

Tensile Modulus
(E, MPa)

0.0 72.89 ± 1.19 e 1719.32 ± 15.20 a 79.11 ± 0.40 e 968.35 ± 6.37 c,d,e

7.5 68.50 ± 0.52 d 1774.01 ± 36.35 b 76.54 ± 2.21 d 939.01 ± 30.20 c,d

15.0 57.98 ± 1.32 b,c 1792.08 ± 10.82 b,c 68.04 ± 2.24 c 914.73 ± 38.84 b,c

22.5 55.32 ± 2.21 b 1868.73 ± 44.97 d 61.88 ± 1.78 a 845.23 ± 14.89 a

30.0 45.02 ± 2.47 a 1800.96 ± 47.80 c,d 62.73 ± 1.11 a,b 849.45 ± 37.20 a,b

Superscripts with different letters indicate a significant statistical within columns, with the LDS (Least Significant
Difference) statistical test at a confidence level of 95.0%.

3.9. Dynamic Mechanical Properties

The storage modulus (G′), the loss modulus (G′′), the tan δ of the PLA, and the
biocomposites of the PLA starch are shown in Figure 8. Figure 8a reveals that the G′ values
of the PLA and the biocomposites decrease with increasing temperature due to the increase
in the polymer chain mobility of the matrix. The drop in the modulus is abrupt near the
glass transition of the PLA between 62 and 75 ◦C, where the Tg is located. Also, the glassy
plateau modulus decreased by increasing the starch content in the biocomposites, indicating
a lower stress-transfer efficiency due to the starch granules. This result is consistent with
the tensile modulus reported previously (Table 3). As can be noted in Figure 8a (inset), the
rubbery plateau modulus is larger for the PLA/starch biocomposites than for that of the
neat PLA, suggesting that the biocomposites become more crystalline. The rubbery plateau
modulus exhibits more limited motion related to its amorphous state due to the increased
crystallinity, which causes an increase in G′ in the rubbery region.

Figure 8b depicts the variation in the loss modulus with the temperature of the
PLA and the biocomposites with the different starch loads. The peak height of PLA
and biocomposites at a starch content of 7.5 wt.% shows a consistent reduction as the
starch content increases. Conversely, when the starch content ranges from 15 to 30 wt.%
within the PLA matrix, a notable broadening of the loss modulus curve is observed. This
broadening phenomenon can be attributed to variations in the physical state of the starch-
containing region compared to the rest of the matrix, as the polymer layer encompassing
the starch increases, resulting in an increased volume fraction of the matrix, intensifying the
interfacial restrictions [93]. Consequently, these constraints exert a pronounced influence
on the amorphous phase, potentially resulting in a more pronounced or broader glass
transition behavior.

From Figure 8c, it is possible to identify the value of the tan δ (alpha-transition) peaks
of the PLA and the biocomposites. The tan δ peak for the neat PLA was observed at
approximately 68 ◦C, while, for the biocomposites, the tan δ peaks were measured at
approximately 67 ◦C for those containing 7.5 wt.% of starch, and these peaks increased to
72 and to 73 ◦C for those containing 15 and 30 wt.% of starch, respectively. Therefore, this
suggested a restrictive effect on the movement of the molecular segment. These results are
indicative of the composites becoming more crystalline due to the presence of starch [93].
An increase in the Tg means that more thermal energy is required to induce the motion
of the polymer backbone, which is chained by the crystalline phase, as it passes through
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the glass transition region [93,94]. Khalid et al. [47] reported similar results, where the Tg
increased in the PLA matrix with the addition of starch granules from different botanical
sources. The authors attributed this result to the reduced mobility of the polymer chains
due to the starch granules.

Figure 8. Temperature dependence of the (a) storage modulus (G′), (b) loss modulus (G′′), and (c) tan
δ for PLA/starch biocomposites at different starch contents. Insets: zoom-in of the storage modulus
versus temperature (a) and tan δ versus temperature (c) for PLA/starch biocomposites at different
starch contents.

3.10. Color Parameters

The CIELab color space method is one of the most widely used methods to eval-
uate the color of objects or materials and to correlate numerical color values consis-
tently with human visual perception. Luminosity (L*) indicates how opaque or luminous
(not related to brightness) a surface is, and their values range from 0 to 100 [0 = black;
100 = white]. Statistically, in Table 4, the addition of starch exerted a significant effect
(p < 0.05) for this parameter. Neat PLA displayed the highest L* value of 82.97, in com-
parison with the blends that were within a close range of 70.22–74.18 (Table 4), which is
narrow since the starch increase was quite considerable from 7.5 to 30 wt.%; therefore, this
suggests that starch, independently on the amount added, losses its birefringence at high
temperatures, becoming opaque and reducing the luminosity of the samples (Figure A1).
Hence, a* goes from red to green (+a*: red and −a*: green) and b* goes from yellow to blue
(+b*: yellow and −b*: blue), a representation that facilitates analysis in the color plane.
For all biocomposites and the neat PLA, both a* and b* were in the positive region, tend-
ing toward red and blue, respectively. Neat PLA exhibited the lowest values of both
color parameters, which significantly (p < 0.05) increased with the addition of starch. Al-
though there was a considerable difference in the order of magnitude between a* and
b*, among the biocomposites, values did not increase drastically with the increase in the
percentage of starch >7.5 wt.% for a* (1.08–1.53); nonetheless, the wider variation range of
b* (10.97–13.50) could be more useful to predict color changes in starch-based blends, since
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this parameter had larger increases than a*. On the other hand, the total color difference
(∆E), calculated from Equation (8), defined as the numerical comparison of a sample with
the standard, also increased with the increase in starch. All ∆E values of the blends were
above 3.0 [∆E < 1.5 is not noticeable with the naked eye, from 1.5 to 3 is barely noticeable,
and ∆E > 3.0 is visually detectable] [95], meaning that color changes are visually noticeable
on sight, even at a low starch content. Thus, the changes observed in all color parameters
were induced by the high temperatures applied during the mixing of both materials (starch
and PLA), in that starch is a biopolymer highly susceptible to heat. Nonetheless, the
opacity exhibited by the starch blends could comprise an advantage in the development of
packaging for food products containing compounds, such as vitamins or antioxidants, that
are sensitive to light exposure.

Table 4. CIELab color parameters of PLA and PLA/starch biocomposites.

Treatment Starch (wt.%) L* a* b* b∆E

1 0.0 82.97 ± 0.70 a 0.63 ± 0.03 a 3.58 ± 0.13 a -

2 7.5 74.18 ± 0.15 b 0.68 ± 0.10 b 9.66 ± 0.12 b 10.69

3 15.0 72.41 ± 0.37 b,c 1.08 ± 0.09 c 10.97 ± 0.07 b,c 12.91

4 22.5 71.98 ± 0.52 c,d 1.27 ± 0.03 d 12.16 ± 0.32 d 13.86

5 30.0 70.22 ± 0.24 e 1.53 ± 0.04 e 13.50 ± 0.42 e 15.39
Superscripts with different letters indicate a significant statistical difference between treatments, with the LDS
(Least Significant Difference) statistical test at a confidence level of 95.0%. b∆E values were calculated from
Equation (8).

4. Conclusions

Here, it was shown that PLA biocomposites blended with high-amylose starch gran-
ules extracted from the underexplored mountain’s yam (Dioscorea remotiflora) tubers exhib-
ited larger water uptake, faster swelling kinetics, a higher crystallinity, and an improved
flexural modulus compared to the neat PLA, and can be easily fabricated without the need
for functionalization agents or compatibilizers. By varying the starch granule content,
not only does the material become more crystalline, but the water uptake exhibits the
following two swelling diffusion mechanisms: a Fickian diffusion at a low starch granule
concentration (<15 wt.%) and a non-Fickian or abnormal diffusion at higher concentrations
(>15 wt.%). These properties are attributed to the high amylose content and the bigger size
of the starch granules, which implies an effective stiffness transfer to the PLA matrix.

The investigation aimed to develop degradable bioplastics, and the starch from Dioscorea
remotiflora tubers could be used as a promising alternative to develop low-cost bioplastics for
different applications. Additionally, the opacity provided by the starch to the biocomposites
after the thermoplastic process could be beneficial for packaging light-sensitive products.
Further, starch granules may be functionalized with novel green chemicals extracted from
plants to cross-link them and to increase their intermolecular bonds for more resistant and
thermally stable granules, improving the properties of the biocomposites.
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