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Abstract: Polyimide (PI) has been widely used in cable insulation, thermal insulation, wind power
protection, and other fields due to its high chemical stability and excellent electrical insulation and
mechanical properties. In this research, a modified PI composite film (MoS2@PDA/PI) was obtained
by using polydopamine (PDA)-coated molybdenum disulfide (MoS2) as a filler. The low interlayer
friction characteristics and high elastic modulus of MoS2 provide a theoretical basis for enhancing the
flexible mechanical properties of the PI matrix. The formation of a cross-linking structure between
a large number of active sites on the surface of the PDA and the PI molecular chain can effectively
enhance the breakdown field strength of the film. Consequently, the tensile strength of the final
sample MoS2@PDA/PI film increased by 44.7% in comparison with pure PI film, and the breakdown
voltage strength reached 1.23 times that of the original film. It can be seen that the strategy of utilizing
two-dimensional (2D) MoS2@PDA nanosheets filled with PI provides a new modification idea to
enhance the mechanical and electrical insulation properties of PI films.

Keywords: PI; MoS2 nanosheets; composite; mechanical properties; aging life

1. Introduction

Polyimide (PI) is widely used in the field of electronic devices, aerospace and high-
performance coatings due to its superior thermal stability, mechanical strength, and chemi-
cal resistance [1–3]. In addition, PI materials are suitable for high-voltage insulation due to
their superior electrical insulation properties, especially in the field of turn-to-turn insula-
tion where they play a vital role [4,5]. As a key component of electrical equipment such as
motors and transformers, inter-turn insulation needs strong electrical insulation properties
to cope with high amplitude and frequency pulses of high voltage. More critically, the
inter-turn insulation demands superior mechanical and frictional properties to reduce air
gaps formed during the winding process due to the poor fit of insulating materials. These
air gaps can lead to partial discharges under the action of strong electric fields. Moreover,
strong leakage in electromagnetic fields may cause mechanical damage to the winding ends.
The above factors are the main reasons for the deterioration of the insulation properties of
PI materials [6–8].

Two-dimensional transition metal sulfides have received widespread attention in
scientific research and industry due to their unique physical and chemical properties [9–11].
Molybdenum disulfide (MoS2) is a two-dimensional material with a special layered struc-
ture and a high degree of surface activity, which makes it excellent in terms of mechanical
and friction properties [12,13]. Yuan et al. [14] found that doping a small amount of MoS2
(0.75 wt.%) can significantly enhance the mechanical properties of MoS2/PI nanocomposite
films. Liu et al. [15] found that MoS2 can effectively reduce the deformation of the PI wear
surface, thus reducing and stabilizing friction. Guo et al. [16] doped phenolic resin (CPF)
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composites with 10 wt.% MoS2, which resulted in a 56% decrease in wear rate compared
to pure CPF. The above studies show that MoS2-modified polymer composites have great
strength and toughness, a low coefficient of friction, and high wear resistance. However,
since MoS2 is a semiconductor material with a narrow forbidden bandwidth, its application
in the field of high-voltage insulation is limited. Pang et al. [17] showed that in terms of
pressure cylinders in high-voltage switchgear, excessive accumulation of MoS2 reduces
the arc extinguishing and breaking capacity of the switchgear, which leads to a decrease
in overall insulation performance. Meanwhile, the high surface energy of nanomaterials
tends to cause agglomeration, so the interfacial interaction between MoS2 and the PI matrix
may also be affected by its dispersion [18–20].

Polydopamine (PDA) is a substance formed by the self-polymerization of dopamine
in an alkaline environment, with a unique structure and functional groups. PDA has a
great property boost effect on the mechanical properties of composites due to its ability
to form various types of bonds with other materials, such as hydrogen and coordina-
tion bonds [21–23]. Dong et al. [24] found that PI composites doped with 5 wt.% of
PDA-encapsulated graphitic carbon nitride had the highest breakdown field strength of
300 kV/mm, which was 67.6% higher than that of pure PI. Feng et al. [25] found that the
interfacial interaction between filler and polyarylene ether nitrile was enhanced by a core–
shell structural composite (MoS2@PDA). Sanusi Hamat et al. [26] found that a coupling
agent (PDA) could increase the tensile Young’s modulus, flexural Young’s modulus, and
compressive stress of kenaf fibers and the PLA matrix by 13.4%, 15.3%, and 30%, respec-
tively. Therefore, the use of MoS2@ PDA core–shell structure nanoparticles doped with
modified PI materials is expected to further enhance the mechanical and friction properties
of the composites, as well as effectively improve the electrical insulation properties of the
composites. This comprehensive performance improvement is essential to safeguard the
insulation life of the material during long-term use and is also significant in improving the
operational reliability of electrical equipment.

In this research, a core–shell structure of MoS2 encapsulated in PDA was strategically
employed for the optimization and modification of PI composites. The PDA not only en-
hances the dispersion and compatibility of MoS2 within the PI matrix but also significantly
increases the flexibility of the composite film. This crucial enhancement in flexibility is
essential for the minimization of the partial discharge phenomenon, particularly those
discharges caused by air gaps between coil turns. Moreover, the PDA layer acts as an
effective barrier, markedly reducing the electronic excitation and migration in the MoS2
semiconductor. This substantial reduction is pivotal in significantly improving the overall
electrical insulation properties of the composite material.

2. Materials and Methods
2.1. Materials

Thiourea (CH4N2S), ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O),
Tris(hydroxymethyl) aminomethane (Tris, C4H11NO3), dopamine hydrochloride (C8H11NO2·
HCl), and N,N-Dimethylacetamide (CH3CON(CH3)2) were purchased from Shanghai
Macklin Biochemical Technology Co., Ltd. (Shanghai, China). The PI precursor (PAA) was
purchased from Changzhou Runchuan Plastic Material Co., Ltd. (Changzhou, China) as
well as the deionized water.

2.2. Synthesis of MoS2 Nanosheets

In this procedure, 0.144 g of ammonium molybdate tetrahydrate and 1.010 g of thiourea
were accurately measured and introduced into a beaker containing 60 mL of water as the
chosen solvent. The mixture was then stirred continuously for 2 h to ensure the sample was
completely dissolved. Once fully dissolved, the homogenous solution was carefully trans-
ferred into the reactor. The reactor was subsequently heated for a duration of 12 h at a stable
temperature of 180 ◦C. After the heating process, MoS2 was successfully obtained through
a methodical process of filtration and subsequent drying under controlled conditions.
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2.3. Synthesis of MoS2@PDA Nanosheets

Approximately 0.5 g MoS2 was dispersed in 250 mL of deionized water, ultrasonicated,
and stirred for 0.5 h to obtain suspension A. Approximately 0.67 g of Tris was added to A,
and we continued to stir it ultrasonically for 0.5 h to obtain suspension B. Finally, 0.1 g of
dopamine hydrochloride was added to solution B, and it was placed on a magnetic stirrer
at ambient temperature and stirred for 24 h. Then, it was filtered and dried in a vacuum
drying oven for 12 h to obtain MoS2@PDA nanosheets.

2.4. Synthesis of MoS2/PI and MoS2@PDA/PI Films

Figure 1 shows the synthesis process for MoS2/PI and MoS2@PDA/PI films. Ap-
proximately 150 mg MoS2 was sonicated and dispersed in 5 mL N,N-dimethylacetamide
and stirred for 30 min; then, 25 g of PAA was added and stirred for 24 h until the MoS2
nanosheets were evenly dispersed in the above solution. After eliminating the air bubbles
using a vacuum pump, the solution was poured into a glass plate and coated with the film
evenly. Finally, MoS2/PI film was obtained after heating the coating glass plate at different
temperature gradients in an oven. The MoS2@PDA/PI composite films could be obtained
by means of the above steps using the same content of MoS2@PDA nanosheets. In addition,
the pure PI film was obtained by heating the PAA film.
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Figure 1. Schematic diagram of the synthesis process of MoS2@PDA/PI composites.

2.5. Materials Characterization

The microstructure and morphology of the as-prepared samples were characterized
by field emission scanning electron microscopy (F-SEM; JEOL JSM-7800F, JEOL, Tokyo,
Japan). The sample was dripped onto a copper grid and dried before observation under
transmission electron microscopy (TEM), with the test temperature set at 30 ◦C and the mag-
nification range from 5000 to 50,000 times. The lattice structure of MoS2 and MoS2@PDA
composites was further characterized by TEM (JEOL JEM-2100), with the test tempera-
ture maintained at 30 ◦C and the magnification range from 12,000 to 120,000 times. The
surface functional groups of the samples were analyzed using Fourier-transform infrared
spectroscopy (FT-IR, Nicolet iS50, Nicolet, Green Bay, WI, USA), with the test temperature
held at 30 ◦C and the wavelength range tested between 600 and 4000 cm−1. The crystalline
structure of the samples was determined using powder X-ray diffraction (XRD, Rigaku
Ultima IV with Cu-Kα radiation, λ = 0.15418 nm, Rigaku, Tokyo, Japan) over a range of
10–90◦ and X-ray photoelectron spectroscopy (XPS, AXIS Supra) over a range of 0–1200 eV,
with the test temperature set at 30 ◦C. The friction and wear properties were measured
using a friction wear test machine (MG2000). The experimental load was set to 120 N, the
experimental duration was 5 min, and the speed of the friction wear testing machine was
maintained at 200 r/min. The dielectric constant and loss tangent were obtained using
a broadband dielectric spectrometer and impedance analyzer (Novocontrol Concept 80,
Novocontrol Technologies, Frankfurt, Germany). The frequency range covered was from
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102 to 106 Hz, and the test temperature was held constant at 30 ◦C. An electrode with a
diameter of 30 mm was sprayed on both sides of the samples to facilitate the measurements.

3. Results
3.1. Morphology Analyses

The 2D nanostructure of MoS2 can be observed through the SEM and TEM images. In
Figure 2a, the MoS2 nanosheets undergo a self-assembly process to form a nanoflower with
a diameter of about 300 nm, and the size is relatively uniform. Figure 2b is the TEM image of
a pure MoS2 nanosheet, which confirms the stacked structure [27]. In the highly magnified
TEM image (Figure 2c), the color of the MoS2 single layer is lighter, indicating that the
thickness of the nanosheet is thin [28]. The morphology and structure of the MoS2@PDA
(Figure 2d) do not have larger changes compared with MoS2, and the thicker nanosheet
layer (Figure 2e,f) illustrates the successful encapsulation of dopamine on the surface of
MoS2. The PI film displays the smooth surface morphology in Figure 2g and benefits from
the ultrasonic stirring of the nanosheets before the experiment, and MoS2 and MoS2@PDA
exhibit a flat two-dimensional structure on the surface of the PI film. Compared with
MoS2/PI film, the dispersion of MoS2@PDA/PI is better and more uniform (Figure 2h,i).
In Figure 2j, the distribution of MoS2@PDA nanosheets can be clearly seen through the
EDX-SEM mapping, and the concentrated area of Mo and S elements is consistent with the
distribution of nanosheets in the SEM image.
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Figure 2. SEM (a) and TEM (b,c) images of MoS2; SEM (d) and TEM (e,f) images of MoS2@PDA;
(g–i) are the SEM images of PI, MoS2/PI, and MoS2@PDA/PI; (j) is the SEM image and ele-
ment mapping of MoS2@PDA/PI. The red dotted frames highlight the distribution locations of
MoS2@PDA nanosheets.

3.2. Chemical Structure

XRD analysis can be used to obtain information about the structure of atoms or
molecules and the composition of the sample. The XRD diffraction patterns of the five
samples are shown in Figure 3a, MoS2 and MoS2@PDA had obvious diffraction peaks at
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32.7◦, 35.7◦, 43.1◦, and 57.7◦ which match with the (100), (102), (006), and (110) crystal
planes of 2H-MoS2 nanosheets, respectively [10,29]. The PDA is an amorphous structure
with no obvious diffraction peaks. In addition, the pure PI, MoS2/PI, and MoS2@PDA/PI
films have a broad peak at around 20◦, indicating the presence of partial crystallization
in the amorphous PI which is consistent with other literature sources [30]. The successful
preparation of composite films was confirmed by the diffraction peaks of MoS2/PI and
MoS2@PDA/PI near the (100) and (110) crystal planes of MoS2. The faint diffraction peaks
of MoS2/PI and MoS2@PDA/PI films are due to the low doping amount of the nanosheets.
Figure 3b shows the FT-IR spectra of PI, MoS2/PI, and MoS2@PDA/PI. The peaks at
723 cm−1 could be ascribed to the C=O bending in PI, while those absorption peaks at
1718 and 1776 cm−1 could be assigned to the C=O of symmetrical stretching vibration and
asymmetrical stretching vibration [31]. Due to the dehydration and cyclization of the PI
precursor, there was no obvious characteristic absorption peak at about 1540 and 1645 cm−1.
Instead, there was a stretching vibration of –C–N–C at 1376 cm−1, which indicated the
amide to be replaced by the imide group [32,33]. From the above, it can be seen that
imidization was almost complete, and this further proves the successful synthesis of the
composite films in this research.
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XPS characterization is a technique for analyzing the chemical valence states of ele-
ments on the surface of composite materials, and the survey spectra of MoS2@PDA/PI
composite films can be seen in Figure 4a. As Figure 4b shows, the C 1s spectrum can be
deconvoluted into three diffraction peaks which are located at 284.6, 285.6, and 287.1 eV
assigned to C–C/C=C, C–N, and C–O bonds, respectively [34,35]. The N 1s fine spectrum
of MoS2@PDA/PI exhibits an intense symmetrical peak centered at 399.6 eV, assigned to
the imide (C–N) group. The N orbital shifts towards low energy compared to pure PI films
in the literature, due to the non-covalent interaction between PI and MoS2@PDA [14]. In
Figure 4d, the O 1s spectrum is deconvoluted into two energy levels, located at the center
of 531.5 and 533.1 eV, corresponding to C=O and C–O, respectively [34].
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3.3. Mechanical Properties

The tribological properties of pure PI, MoS2/PI, and MoS2@PDA/PI composite films
are presented in Figure 5. For the pure PI film, the friction coefficient is 0.39 and the wear
rate is 1.8 × 10−4 mm3/Nm. When MoS2 is incorporated, a decrease in both the friction
coefficient and wear rate of the PI composite film is observed, and the values drop to 0.31
and 1.6 × 10−4 mm3/Nm, respectively. This reduction is attributed to the layered structure
of MoS2, which features layers interconnected by weak van der Waals forces. These layers
can easily slide over each other under shear forces. In terms of wear, MoS2 particles are
found to migrate to the worn surface. They form a lubricating film, shifting wear from
the composite material and its counterpart to the composite material. This shift effectively
reduces the wear rate and friction coefficient of the composite. Furthermore, the excellent
thermal conductivity of MoS2 assists in dissipating heat generated during friction. This
dissipation prevents heat accumulation that could cause local softening and deformation
of the material, thereby enhancing tribological performance [36].

The frictional properties are further improved by modifying MoS2 with PDA. The MoS2@
PDA/PI composites have a friction coefficient of 0.24 and a wear rate of 1.3 × 10−4 mm3/Nm,
which are significantly reduced by 38.4% and 27.8%, respectively, compared with the pure
films. The incorporation of PDA provides active sites on the MoS2 nanosheets, improving their
dispersion within the PI matrix and reducing aggregation. Therefore, the enhanced mechanical
wear capacity of MoS2@PDA/PI can be attributed to the uniform dispersion of MoS2@PDA
nanosheets in the PI matrix [37].
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The tensile test results of pure PI, MoS2/PI, and MoS2@PDA/PI composite materials
are shown in Figure 6. Among the three materials, MoS2@PDA/PI exhibits the best
mechanical properties, followed by MoS2/PI in second place, and pure PI ranking as the
least performant. Specifically, the tensile strength of the MoS2/PI composite film increases
from 101 MPa to 124.6 MPa, the elastic modulus increases from 2.0 GPa to 2.4 GPa, and
the elongation at breaks increases from 21.1% to 30.2%. Notably, with the introduction of
PDA-modified MoS2, the tensile strength (146.2 MPa) of the composite material increases by
17.3% compared to MoS2/PI. Meanwhile, the elastic modulus (2.5 GPa) of MoS2@PDA/PI
increases by 4.1%, and the elongation at break rises to 32.8% compared to MoS2/PI. This
phenomenon is primarily due to the high rigidity and layered structure of MoS2 nanosheets,
along with the interface optimization brought about by PDA modification. The increase in
the rigidity and strength of the composite material is attributed to the high elastic modulus
of MoS2 and its stress dispersion and load-bearing role within the composite structure.
However, the dispersion and interface compatibility of MoS2 nanosheets in the PI matrix are
limiting factors for their mechanical reinforcement effect. Building on this, the introduction
of PDA not only improves the dispersion of the nanosheets but also forms cross-linked
structures with active groups on their surface and the PI matrix [38]. This enhances the
bonding between the nanosheets and the film, thereby improving the overall mechanical
stability and durability of the composite material.
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3.4. Dielectric Properties

Figure 7 shows the variation in the dielectric constant as well as the dielectric loss
angle tangent with frequency for pure PI, MoS2/PI, and MoS2@PDA/PI. From the figure, it
can be seen that the dielectric constant of MoS2/PI is between 4.5 and 4, while the dielectric
constant of pure PI is between 3 and 3.5. This result indicates that the doping of nano-MoS2
can significantly enhance the dielectric constant of PI films. The dielectric constant of
MoS2@PDA/PI, on the other hand, is between 3.5 and 4. It is speculated that the PDA
parcel improves the interfacial bonding and compatibility between the nano-MoS2 and the
PI base material [39]. This facilitates the polarization of the dipole under the electric field
and thus reduces the permittivity of the PI. Similar to the dielectric constant, the dielectric
loss angle tangent is the largest for MoS2/PI, followed by MoS2@PDA/PI, and the smallest
for pure PI. The incorporation of MoS2 nanoparticles increases the polarization loss of the
film, resulting in an increase in the angular value of the dielectric loss of MoS2/PI [40],
whereas the wrapping of PDA effectively reduces the polarization loss of the film. Thus,
the angular value of dielectric loss of MoS2@PDA/PI was reduced. This suggests that the
dielectric constant and dielectric loss angle tangent of the composite film can be effectively
reduced through PDA encapsulation and the composite films with superior electrical
properties can be obtained. In conclusion, the overall dielectric properties of PDA-coated
MoS2-doped PI composites are better than those of MoS2/PI.
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3.5. Electrical and Aging Characteristics

In order to investigate the breakdown and aging characteristics of composite films, we
built a corresponding experimental test platform. As shown in Figure 8, the whole testbed
is based on a permanent magnet direct-drive wind turbine with a capacity of 2.5 MW.
During the experiment, the permanent magnet rotor of the generator is removed and only
the stator part is retained. The stator part is connected to the PWM inverter via a cable of
about 100 m in length. To facilitate measurement, the main insulation on the winding coils
was removed before the experiment so that the first-turn conductors of the coils of each
group in a generator stator winding branch in phase U were exposed. This was used as a
measurement point for the voltage signals from the coils to the ground and between the
coils. In addition, the insulation on the nose of the first coil near the motor terminals is
removed so that the conductor of each turn of the coil is exposed as a measurement point
for the inter-turn voltage signal. During measurement, the coils are numbered 1, 2, . . ., and
8 in order from terminal to neutral. The high-voltage probe used for the measurement is
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the P6015A with a bandwidth of 75 MHz. During the experiment the gate voltage was set
to 1.12 kV, the carrier frequency was 3 kHz, and the fundamental frequency was 35.7 Hz.
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Figure 8. Structure of the pulse aging experimental device.

Figure 9 shows the Weibull distribution plots of breakdown voltage and partial dis-
charge onset voltage for pure PI, MoS2/PI, and MoS2@PDA/PI. As can be seen from the
figure, the Weibull distribution curve of the breakdown voltage of MoS2/PI is located on
the left side of pure PI and the position is very close. When the breakdown probability
is 63.2%, the breakdown voltages of MoS2/PI and pure PI films are basically the same:
17.92 kV and 19.56 kV, respectively.
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The former is slightly weaker than the latter by about 9%. The Weibull distribution
curve of the breakdown voltage of MoS2@PDA/PI is located on the right side of pure PI
and they are farther away from each other. The breakdown voltage of PDA is 23.99 kV at
63.2% breakdown probability which is 1.23 times higher than pure PI film; this comes down
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to the semiconductor characteristic of MoS2 [41]. Under the action of a strong electric field,
the electrons in the matrix are easily excited from the valence band to the conduction band
and become free electrons, leading to a decrease in breakdown voltage. However, the PDA
coating on the surface of MoS2 changes the energy level of the MoS2 surface [42]. It forms a
kind of energy barrier that hinders the excitation and migration of electrons and reduces
the number of free electrons, thus effectively enhancing the breakdown voltage of the
composite film. Contrary to the internal breakdown voltage, the partial discharge initiation
voltage of pure PI, MoS2/PI, and MoS2@PDA/PI increases sequentially. Specifically, for
different types of nanocomposite films, the breakdown voltages of pure PI, MoS2/PI,
and MoS2@PDA/PI with partial discharge probability of 63.2% are 2.48 kV, 2.68 kV, and
3.08 kV, respectively. MoS2/PI and MoS2@PDA/PI are enhanced by about 8% and 24.1%,
respectively, compared with pure PI films. The reason is that MoS2 can improve the
mechanical flexibility of PI to reduce the air gap and thus enhance the corona voltage,
while the semiconductor property of nano-MoS2 will reduce the corona voltage [43]. The
interaction between the two leads to a slightly stronger partial discharge onset voltage for
MoS2/PI than for pure PI. Meanwhile, the phenolic hydroxyl and amine groups in the
PDA molecular structure can form stable chemical bonds and physical adsorption with
the surfaces of many materials [44]. This structure is conducive to further enhancing the
interfacial bonding between the composite material and the metal winding, and this tight
bonding reduces the presence of air gaps and the risk of air gap discharge. Therefore, the
starting discharge voltage of MoS2@PDA/PI is enhanced due to the above reasons. In
summary, MoS2@PDA/PI has excellent electrical insulation properties compared to pure
PI and MoS2/PI, and the breakdown voltage of pure PI is higher than that of MoS2/PI,
while the partial discharge onset voltage is lower than that of MoS2/PI.

The insulation life of pure PI, MoS2/PI, and MoS2@PDA/PI at different aging voltages
is shown in Figure 10. From the figure, it can be seen that the insulation life of MoS2/PI
is weaker than that of pure PI at all voltage levels. Under the aging voltage of 9 kV, the
insulation life of MoS2/PI and pure PI are 224 h and 258 h, respectively. At 13 kV, the
insulation life of MoS2/PI and pure PI is 9.68 h and 11.13 h, respectively. Overall, the
insulation life of pure PI is about 15% higher than that of MoS2/PI. For MoS2@PDA/PI, the
insulation life is greater than that of pure PI and MoS2/PI films. Its insulation life reaches
330 h at an aging voltage of 9 kV which is about 57.3% and 27.9% longer than MoS2/PI
and pure PI, respectively. The insulation life is 14.36 h at 13 kV and is about 48.3% and
29% higher than MoS2/PI and pure PI. The main reason for this phenomenon is that pure
MoS2 and PDA-coated MoS2 have different effects on the generation and movement of
electrons in the polymer matrix. In the meantime, it has different effects on the destruction
process of polymer molecular chains. In addition, the capture of electrons and holes in
the trap may emit high-energy UV light [45–47]. High-energy UV light can also cause
polymer chains to break. Polymer molecular chain breakage creates partial low-density
regions that increase the inhomogeneity of the material; this is beneficial to the formation
of discharge channels and makes the material less insulating. Thus, the lifetime of MoS2/PI
is usually shorter. When PDA is coated on the surface of MoS2, it effectively changes the
electronic properties of MoS2 and reduces its electrical conductivity in PI materials [48,49].
This change can improve the life of the composite film. In summary, the aging insulation
life of MoS2@PDA/PI is significantly stronger than that of PI film, while PI film is stronger
than MoS2/PI.
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4. Conclusions

In this research, a MoS2@PDA/PI composite film was created by adding MoS2 nanopar-
ticles coated with PDA into a PI matrix. In terms of mechanical properties, the friction
coefficient and wear rate of the MoS2@PDA/PI composite showed enhancements of 38.4%
and 27.8%, respectively, compared to pure PI. In terms of tensile properties, there was an
increase of 44.8% in tensile strength, 25.6% in elastic modulus, and 55.3% in elongation at
break, relative to pure PI.

In terms of electrical insulation properties, the breakdown voltage and the partial
discharge inception voltage for MoS2@PDA/PI film increased by 22.6% and 24.1%, respec-
tively, compared to pure PI. The long-term electrical aging tests revealed that compared
to pure PI, a significant increase of 27.9% in electrical aging lifetime was exhibited by the
MoS2@PDA/PI film, attributable to its superior mechanical, tribological, and insulation
properties. These results provide critical technical support for enhancing the reliability of
associated electrical equipment.
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