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Abstract: Amidst escalating environmental concerns, short natural-fiber thermoplastic (SNFT) bio-
composites have emerged as sustainable materials for the eco-friendly production of mechanical
components. However, their limited durability has prompted research into the experimental evalua-
tion of the deterioration of the mechanical characteristics of SNFT biocomposites, particularly under
the influence of ultraviolet rays. However, conducting tests to evaluate the mechanical properties
can be time-consuming and expensive. In this study, an artificial neural network (ANN) model
was employed to predict the mechanical properties (tensile strength) and the impact performance
(resistance and absorbed energy) of polypropylene reinforced with 30 wt.% short flax or wood
pine fibers (referred to as PP30-F or PP30-P, respectively). Eight parameters were collected from
experimental studies. The ANN input parameters comprised nondestructive test results, including
mass, hardness, roughness, and natural frequencies, while the output parameters were the tensile
strength, the maximum impact load, and absorbed energy. The model was developed using the ANN
toolbox in MATLAB. The linear coefficient of correlation and mean squared error were selected as the
metrics for evaluating the performance function and accuracy of the ANN model. They calculate
the relationship and the average squared difference between the predicted and actual values. The
data analysis conducted by the models demonstrated exceptional predictive capability, achieving
an accuracy rate exceeding 96%, which was deemed satisfactory. For both the PP30-F and PP30-P
biocomposites, the ANN predictions deviated from the experimental data by 3, 5, and 6% with regard
to the impact load, absorbed energy, and tensile strength, respectively.

Keywords: biocomposites; accelerated weathering; low-velocity impact response; ANN prediction

1. Introduction

Over the past two decades, biocomposites of short natural-fiber thermoplastics (SNFTs)
obtained via injection molding have garnered considerable attention [1,2]. They are widely
used in various industries, including construction, automotive, and packaging [3,4]. SNFT
biocomposites offer high-specific mechanical properties and are eco-friendly [5–8]. Nev-
ertheless, one major challenge in developing natural-fiber composites is their response to
environmental factors, such as moisture, ultraviolet (UV) radiation, and heat, which can
degrade their mechanical performance and limit their applicability, especially for outdoor
applications [9–15].

Researchers have extensively investigated the aging of SNFTs via exposure to real
climates (natural aging) [16–19] or simulated conditions in laboratory chambers (artificial
aging) [20–22]. When SNFTs are exposed to UV rays and/or high temperatures, photo-
oxidation reactions occur in the lignin of natural fibers, and moisture accelerates these
reactions [10,23]. The velocity of photo-oxidation reactions in biocomposites depends on
the chemical composition of the natural fibers. Peng et al. [22] investigated the impact of the
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chemical composition of natural fibers on the performance degradation of polypropylene
reinforced with short wood fibers. They revealed that the lignin in natural fibers can
act as a UV absorber, mitigating the degradation of the mechanical properties. Similarly,
Nasri et al. [10] reported that biocomposites reinforced with wood pine fibers, which have
high lignin content, exhibited less significant degradation in mechanical properties than flax
fibers. For fibers, UV exposure initiates aging by causing absorption in the lignin structure,
forming chromophore groups, like carboxylic acids, quinones, and hydroperoxy radicals,
resulting in discoloration [13]. Polymers undergo photodegradation, leading to chain
scission. This degradation in polymer matrices results in the formation of surface cracks,
significantly reducing the tensile strength of biocomposites. Comprehensive reviews on
the degradation mechanisms of biocomposites under UV exposure are available in [24–26].
Additionally, the mechanical properties of outdoor biocomposite structures deteriorate
significantly more in a humid environment than in a dry one due to increased chemical
reactivity [23]. While most studies on the impact of environmental factors on composites
focus on the loss of mechanical properties using quasi-static tests, such as traction and
flexion [23–25], it is important to note that these structures also experience low-speed
impacts. Unfortunately, few studies have explored the behavior of biocomposites in
response to such impacts [7].

Despite numerous and diverse research papers on natural-fiber-reinforced compos-
ites, the range of applications involving this type of material in engineering design is
still limited. Notably, biocomposite structures designed for outdoor applications are vul-
nerable to low-speed impacts, and the strength of these materials becomes even more
critical when exposed to the combined effects of UV radiation and/or moisture. It is well
known that aging tests require numerous samples and are time-consuming and expensive.
Aging (natural or artificial) requires exposure to various environmental conditions for
months or even years [18,19]. Therefore, developing efficient prediction models to assess
the mechanical resistance of biocomposites and their evolution based on exposure time to
ultraviolet radiation and/or moisture is of great importance. It is crucial to acknowledge
that laboratory-aging conditions may not perfectly replicate all environmental conditions
encountered in practice. Aging in environmental chambers involves exposure to tempera-
tures and light intensities higher than normal, as well as shorter wavelengths of light than
in natural conditions. Additionally, natural aging is subject to unpredictable fluctuations
in temperature, humidity, and other environmental factors, which can influence material
degradation in complex and unpredictable ways. However, the advantage of accelerated
aging tests lies in their ability to replicate, in weeks, the degradation of biocomposites that
typically occurs outdoors over months or even years.

Artificial neural networks (ANNs) have emerged as highly effective methods for linear
and nonlinear predictions concerning the mechanical properties of composite materials,
considering their various constituents (such as fibers, matrix, and particles). An ANN cre-
ates predictive regression models based on experimental data [27]. Numerous researchers
have successfully utilized ANN algorithms to predict the mechanical properties of biocom-
posite materials. For instance, Stamopoulos et al. [28] developed two ANN models trained
using a multiscale methodology to predict the mechanical properties of matrix-dominated
composites (for example, transverse strength, transverse stiffness, bending strength, flex-
ural modulus, and short-beam strength), demonstrating consistency with experimental
results. Yang et al. [29] developed an ANN model to predict the residual strength of carbon
fiber-reinforced carbon (CFRC) following low-velocity impacts. The model, which was
trained using finite-element analysis results, accurately established a nonlinear relationship
between the impact parameters and residual strength, thus reducing computational costs
and time compared to traditional methods. Fan et al. [30] trained an ANN-based model
using limited test data to predict the tensile strengths of composite laminates with open
holes. Altabey and Noori [31] developed a neural network model for predicting the fatigue
life of CFRC, considering factors such as fatigue stress ratio, fiber orientation, materials,
and loading conditions. Mohsin et al. [32] developed prediction models using ANN algo-
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rithms to predict the compressive strength and dry thermal conductivity of hemp-based
biocomposites. Experimental records were used to train the models and demonstrate their
accuracy and feasibility. These models offered significant time savings compared with
laboratory tests. Zhang et al. [27] provided an in-depth overview of the use of ANNs for
the mechanical modeling of composite materials.

According to the literature, the use of ANN algorithms represents a robust approach
for modeling complex nonlinear connections between inputs and outputs when obtain-
ing a precise analytical expression, which is challenging. The strength of ANNs lies in
their ability to analyze complex data, identify patterns and relationships, and accurately
predict the mechanical behavior of biocomposites under various conditions. However,
models should be based on easily measurable physical indicators. The data obtained from
cut specimens of large components are primarily limited to laboratory use and are not
applicable for in-service detection. Ideally, these data should be collected directly from a
real structure without causing its destruction or alteration of its functionality. To achieve
this, we have developed an efficient ANN-based model for predicting the low-velocity
impact properties of aged biocomposites, specifically polypropylene reinforced with short
flax or pine fibers. The novelty of our approach lies in predicting both mechanical and
low-velocity impact properties through nondestructive testing, which involves measuring
parameters such as mass, hardness, roughness, and resonant frequencies, providing the
ANN model with its originality. By better understanding the behavior of these materials,
it becomes possible to integrate them more effectively into various applications, thereby
contributing to the development of environmentally friendly design solutions. In this
context, tensile and impact samples were exposed to two accelerated aging programs: UV
aging in dry and humid environments. Subsequently, we evaluated the changes in the
properties of the biocomposites, and the proposed ANN model was finally validated with
experimental results.

2. Methodology

This section summarizes the approach adopted to predict the long-term mechanical
properties and low-velocity impact properties of the PP30-F and PP30-P biocomposites
subjected to accelerated weathering. The collected data were used to develop an ANN
model. Two aging conditions were used in this study: aging by UV rays with or without
moisture. The input parameters of the model were the mass (M), hardness (H), mean
roughness (Ra), and natural frequencies (bending and torsion modes, respectively, f b and
f t), and the output parameters were the maximum impact load and absorbed energy. After
the ANN model was validated, such models were used to predict the tensile strength (R)
and the impact performance (F and E). Figure 1 presents the methodology of this study.

Artificial Neural Network

An ANN is a network composed of perceptron cells linked by weighted interactions.
Figure 2 presents the architecture of the ANN used in this study, which was divided into
three parts: input, hidden, and output layers. The model was developed using the ANN
toolbox implemented in MATLAB R2020 software. Before the ANNs were trained, the data
were normalized to the range of −1 to +1 using the Z-score technique. This was done to
ensure consistency with the transfer function used in the hidden and output layers. Then,
the ANN models were trained, tested, and validated using a backpropagation algorithm.
Subsequently, a set of data (input data and the corresponding output values) was applied
to the developed ANN model to calibrate the weighting factors. A test set was used to
select the best ANN through the calculation of the linear correlation coefficient (R2) and
mean squared error (MSE).
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A database was constructed on the basis of the experimental results. It included
70 sets of data used to validate the ANN model for predicting the impact performance
(maximum load, absorbed energy, and tensile strength, that is, F, E, and R, respectively)
of the biocomposites. Initially, six input parameters were selected: the hardness (H),
mean roughness (Ra), and natural frequencies (torsion and bending modal, i.e., ft and fb,
respectively).

3. Experimentation
3.1. Materials and Manufacturing

The materials used in this study were biocomposites of polypropylene reinforced
with either 30 wt.% flax fiber (FF30P233-00) or 30 wt.% pine wood fiber (WP30P233-00)
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purchased from Rhetech Inc. (Whitmore Lake, MI, USA). Flax fibers differ from pine fibers
with regard to their chemical and geometric compositions. Flax fibers are rich in cellulose
and have a higher length-to-diameter (L/d) ratio than pine fibers [10], whereas pine fibers
are richer in lignin than flax fibers. This difference in fiber composition may influence the
mechanical and aging properties of the studied short-fiber composites.

A 100-ton press (Zhafir Zeres series ZE900/210, Haitian Inc., Ningbo, China) was
employed to perform injection molding of the impact samples in accordance with the ASTM
D6226-21 standard [32]. The injection temperature was maintained at 200 ◦C. To prevent
the occurrence of microvoids and porosity in the samples post-injection, the biocomposite
granules were dried at 80 ◦C for 2 h prior to injection.

3.2. Aging Conditions

Two environmental conditions were considered in this study:

- Condition 1 (UV without moisture): The samples were subjected to UV aging using
UVA-340 fluorescent lamps emitting irradiance at a wavelength of 340 nm. Aging was
performed using a QUV/SE aging apparatus (Q-Lab Co., Westlake, OH, USA). Over a
period of two months, the samples were exposed to 8 h of UV radiation each day at
an irradiance of 1.55 W/m2, and the temperature was maintained at 60 ◦C.

- Condition 2 (UV with moisture): The samples were subjected to the same conditions
as Condition 1 for two months. However, after each UV exposure at 60 ◦C, the samples
were subjected to 4 h of water condensation at 50 ◦C.

The aging conditions were conducted in accordance with ASTM G154-23 [33], the
standard practice for artificial UV-aging of non-metallic materials.

3.3. Experimental Setup and Procedure
3.3.1. Mass Measurement

Specimen mass was measured using a precision electronic scale with accuracy up to
10−3 g, providing the mass (M) in kilograms (kg).

3.3.2. Roughness Measurement

Surface roughness was evaluated via a 3D laser confocal microscope (Keyence, Japan).
The roughness parameter Ra was determined in millimeters (mm).

3.3.3. IET (Impulse Excitation Technic)

Impact Echo Testing (IET) was conducted following ASTM E-1876-09 [34] on an IMCE
machine. Signal processing, facilitated by Resonant Frequency and Damping Analyzer
(RFDA) Professional software, yielded resonance frequency (f) results in Hertz (Hz).

3.3.4. Hardness Test

Hardness assessments adhered to ASTM D785-08 [35] standards utilizing an HM-100
Economical manual-type hardness testing machine (810-124). The resulting hardness values
(H) are reported in HRC (Rockwell C scale).

3.3.5. Tensile Test

We utilized an Instron model LM-U150 electromechanical testing apparatus, which
was equipped with a 10 KN load cell, to rigorously examine the tensile strength properties
of materials. Our experimental protocol adhered to the ASTM D638 standard for such tests.
The tests were performed at a controlled displacement rate of 1 mm/min.

3.3.6. Drop-Weight Impact Test

The ASTM D-5628 [36] standard guided drop-weight impact tests on an Instron
machine (Model CEAST 9350) equipped with a 22 kN load cell. Employing an initial impact
energy of 5 Joules and a 5.4 kg impactor, impact force (F) values were measured in kilogram
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meters per second squared (kg·m·s−2), while impact energy (E) values were quantified in
Joules (J).

The details of each test (device and measurement method) are presented in Appendix A
(Table A1). The equipment and samples used in this study are presented in Appendix B
(Figure A1).

4. Results and Discussion
4.1. Experimental Results

The evaluation results are presented in Table 1. Both biocomposites exhibited changes
in their physical and mechanical properties over time. These changes were more sig-
nificant under the second treatment (UV irradiation with moisture), possibly because
photo-oxidation reactions are the main contributors to SNFT property degradation [10],
and moisture accelerates these reactions [23]. Consequently, a higher degree of degradation
was observed under the second condition (UV irradiation with moisture) for both materials.

Table 1. Experimental results.

Mat Condition Time (h) M (g)
H Ra f t f b F E R

(HRC) (mm) (Hz) (Hz) (N) (J) (MPa)

PP
30

-F

U
V

w
it

ho
ut

m
oi

st
ur

e

0 9.706
(0.01)

9.12
(0.12)

2.5
(0.01)

1534
(3.45)

2880
(9.51)

951.72
(1.12)

3.86
(0.01)

34.26
(0.01)

120 9.706
(0.02)

8.87
(0.15)

2.8
(0.02)

1530
(10.12)

2887
(9.29)

920.17
(1.18)

3.78
(0.02)

33.91
(0.03)

240 9.702
(0.01)

8.14
(0.21)

3.4
(0.02)

1531
(3.77)

2886
(4.37)

900.51
(1.28)

3.69
(0.02)

32.89
(0.02)

320 9.701
(0.02)

7.92
(0.18)

6.6
(0.02)

1518
(7.48)

2815
(6.29)

894.74
(2.32)

3.61
(0.02)

31.19
(0.05)

480 9.548
(0.04)

7.82
(0.09)

7.8
(0.01)

1502
(3.45)

2755
(7.48)

861.93
(1.78)

3.56
(0.03)

30.86
(0.03)

640 9.341
(0.02)

7.48
(0.19)

9.4
(0.03)

1504
(6.48)

2743
(5.59)

825.46
(1.81)

3.50
(0.03)

30.52
(0.01)

720 9.137
(0.01)

7.25
(0.21)

13
(0.02)

1499
(8.55)

2733
(7.88)

819.36
(1.89)

3.44
(0.03)

29.5
(0.01)

1440 9.012
(0.01)

6.21
(0.22)

19.86
(0.02)

1498
(6.84)

2663
(6.79)

798.84
(2.22)

3.25
(0.02)

28.82
(0.06)

U
V

w
it

h
m

oi
st

ur
e

120 9.704
(0.01)

6.91
(0.15)

4.1
(0.02)

1532
(8.87)

2856
(7.59)

900.14
(1.56)

3.74
(0.01)

31.76
(0.04)

240 9.698
(0.02)

6.74
(0.18)

6.4
(0.01)

1530
(7.13)

2764
(8.49)

873.82
(4.27)

3.62
(0.01)

30.97
(0.01)

320 9.645
(0.04)

6.51
(0.19)

11.6
(0.03)

1501
(9.44)

2667
(8.71)

844.84
(3.48)

3.48
(0.01)

28.95
(0.01)

480 9.412
(0.02)

6.45
(0.21)

12.5
(0.01)

1500
(3.19)

2565
(4.14)

825.51
(1.12)

3.39
(0.02)

28.34
(0.03)

640 9.104
(0.04)

6.22
(0.11)

18
(0.01)

1495
(8.42)

2529
(8.46)

802.52
(1.29)

3.22
(0.02)

27.04
(0.02)

720 9.016
(0.02)

6.01
(0.17)

26
(0.02)

1493
(8.42)

2486
(8.46)

795.59
(3.82)

3.18
(0.02)

25.8
(0.05)

1440 8.802
(0.03)

5.54
(0.14)

32.41
(0.02)

1490
(9.43)

2466
(7.68)

760.82
(2.32)

3.11
(0.02)

23.84
(0.03)
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Table 1. Cont.

Mat Condition Time (h) M (g)
H Ra f t f b F E R

(HRC) (mm) (Hz) (Hz) (N) (J) (MPa)

PP
30

-P

U
V

w
it

ho
ut

m
oi

st
ur

e

0 9.892
(0.03)

8.72
(0.18)

2.47
(0.03)

1436
(7.12)

2668
(6.41)

862.3
(3.72)

4.2
(0.01)

24.06
(0.02)

120 9.870
(0.03)

8.45
(0.19)

3.00
(0.03)

1415
(9.28)

2610
(9.11)

822.15
(2.32)

4.15
(0.01)

24.05
(0.04)

240 9.841
(0.02)

8.11
(0.27)

4.47
(0.03)

1416
(6.66)

2630
(9.34)

816.2
(4.32)

4
(0.02)

24.04
(0.03)

320 9.832
(0.01)

7.85
(0.24)

5.56
(0.02)

1403
(9.65)

2560
(9.40)

804.74
(2.32)

4.01
(0.02)

24.031
(0.05)

480 9.800
(0.02)

7.64
(0.19)

6.71
(0.02)

1388
(8.41)

2501
(3.54)

802.9
(2.42)

3.9
(0.01)

24.01
(0.01)

640 9.394
(0.04)

7.45
(0.21)

7.91
(0.02)

1389
(8.37)

2490
(8.41)

791.44
(3.42)

3.88
(0.02)

24.04
(0.02)

720 9.234
(0.02)

7.12
(0.17)

8.41
(0.01)

1385
(9.35)

2480
(8.19)

780.6
(1.77)

3.9
(0.03)

23.14
(0.03)

1440 9.108
(0.03)

6.44
(0.19)

10.02
(0.01)

1384
(7.19)

2411
(8.38)

767.2
(2.82)

3.8
(0.02)

22.91
(0.04)

U
V

w
it

h
m

oi
st

ur
e

120 9.801
(0.02)

8.24
(0.22)

3.13
(0.03)

1417
(8.48)

2600
(10.21)

820.18
(1.68)

4.14
(0.01)

23.59
(0.02)

240 9.851
(0.01)

7.81
(0.27)

3.27
(0.03)

1415
(6.61)

2510
(4.68)

783.9
(3.91)

4
(0.01)

22.99
(0.05)

320 9.762
(0.02)

7.57
(0.29)

4.15
(0.03)

1387
(6.39)

2415
(5.79)

780.21
(3.10)

3.87
(0.01)

22.57
(0.02)

480 9.571
(0.04)

6.94
(0.21)

5.16
(0.03)

1386
(7.55)

2315
(9.12)

775,00
(1.88)

3.8
(0.02)

22.1
(0.03)

640 9.115
(0.02)

6.64
(0.12)

10.4
(0.02)

1381
(8.49)

2280
(9.11)

770.74
(2.94)

3.80
(0.01)

21.94
(0.06)

720 9.104
(0.02)

6.21
(0.28)

12.5
(0.02)

1379
(7.22)

2238
(4.51)

766.8
(1.11)

3.8
(0.01)

21.47
(0.04)

1440 9.011
(0.03)

5.71
(0.21)

16.73
(0.01)

1376
(6.75)

2238
(7.64)

749.9
(1.22)

3.7
(0.03)

20.96
(0.03)

Values in parentheses are standard deviations.

4.1.1. Mass

The masses of the samples decreased with an increase in the exposure time for both
conditions (UV with and without moisture). These mass losses were mainly due to the
degradation of natural fibers by photo-oxidation reactions [23].

4.1.2. Hardness

Prior to aging, the PP30-F biocomposites exhibited higher hardness than the PP30-P
biocomposites; the corresponding hardness values were H = 9.12 and 8.72 HRC, respectively.
After aging, a reduction in the hardness was observed for both materials, as shown in
Figure 3. However, after 1440 h of UV exposure under dry conditions, the measured
hardness of the PP30-F biocomposite was 6.21 HRC, while that of the PP30-P biocomposite
was 6.44 HRC. Similarly, under humid conditions, the corresponding values were 5.54
and 5.71 HRC, respectively. This reduction is mainly attributed to the scission of the
polymer chains, which led to the formation of surface cracks and embrittlement of the
material. The number of chain scissions increased with the exposure time, resulting in
shorter polymer chains and degradation of all the mechanical properties. PP30-P exhibited
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a smaller hardness loss than PP30-F, which can be explained by the antioxidant effect of the
lignin in pine fibers [29].
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4.1.3. Roughness

The measured results for the surface roughness presented in Figure 4 indicate that both
biocomposites initially had smooth and intact surfaces with a roughness of approximately
2.5 µm. However, after UV exposure in dry or moist conditions, both biocomposites exhib-
ited rough surfaces. The increase in the surface roughness of the UV-exposed biocomposites
is attributed to polymer-chain scission resulting from photo-oxidation. Polymer-chain
scission is also responsible for the formation of microcracks on the surface of SNFT bio-
composites during aging [23]. The PP30-P biocomposite exhibited fewer large cracks than
the PP30-F biocomposite under both conditions. The lignin content of pinewood fibers
is at least seven times higher than that of flax fibers. This suggests that the presence of
lignin in pinewood had an antioxidant effect, delaying surface degradation, as previously
reported [10]. After 1440 h of UV exposure in dry conditions, the average roughness (Ra)
measured for the PP30-F biocomposite was 19.86 µm, and that for the PP30-P biocomposite
was 10.02 µm. Similarly, the corresponding values for humid conditions were 32.41 and
16.73 µm, respectively.

4.1.4. Natural Frequencies

Figure 5 shows the natural frequencies of the unaged and aged biocomposite samples
at 1440 h. The results indicate reductions in the natural frequencies. The UV irradiation
reduced the resonant frequencies of the composites by degrading the polymer materials in
both the matrix and the reinforcing fibers. In the case of UV aging combined with moisture,
the resonant-frequency reduction was accelerated. Photo-oxidation causes the splitting of
the polymer chains of the thermoplastic matrix, resulting in surface microcracks. When
composites are exposed to moisture, water can be absorbed by natural fibers or by the
interfaces between the fibers and matrix. This water absorption causes swelling of the
fibers and matrix, which affects the fiber–matrix adhesion and the mechanical properties of
the composite, reducing the resonant frequency.
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4.1.5. Tensile Test

Figure 6 shows the tensile strength of both aged and unaged biocomposite samples
after 1440 hours. The results reveal a decrease in the tensile strength following aging. This
reduction in tensile strength is attributed to the effects of UV radiation on the polymeric
materials within the natural fibers, particularly lignin, and the polypropylene matrix. This
may be explained by the fact that photo-oxidation induces superficial microcracks in the
biocomposites, which act as stress concentration points within the samples, consequently
leading to a degradation in mechanical properties such as tensile strength. When UV
exposure is combined with moisture, the degradation process is amplified. Indeed, moisture
accelerates the photo-oxidation reactions, further promoting degradation.
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4.1.6. Low-Velocity Impact Properties

The low-velocity impact properties, such as the impact resistance and absorbed energy
of aged biocomposites, were studied to evaluate the effects of aging on their behavior under
impact loads. The results (Figures 7 and 8) indicated significant changes in these properties
with an increase in the exposure time, which is mainly attributed to the formation of
microsurface cracks during the aging of the biocomposite samples. These microcracks acted
as initiation points for damage under an impact load, amplifying the local stresses within
the biocomposites. The amplification of local stresses resulting from surface microcracks
reduced the tensile strength and absorbed energy of the aged biocomposites.
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The PP30-P biocomposites exhibited less degradation than the PP30-F biocomposites
with regard to their impact properties. This difference is attributed to the antioxidant effect
of the lignin present in wood pine fibers. Lignin suppresses crack propagation during
impact by delaying the initiation and evolution of surface microcracks.

Prior to aging, the PP30-F biocomposites exhibited higher strength than the PP30-P
biocomposites, with a maximum load (F) of 951.72 N and energy absorption (E) of 3.86 J,
compared with a maximum load of 862.28 N and energy absorption of 4.21 J for PP30-P.
However, after aging, the PP30-F biocomposites exhibited more significant degradation in
both properties. After 1440 h of exposure, the PP30-F biocomposites exhibited a maximum
load of 798.84 N and energy absorption of 3.25 J in the first condition (UV without moisture)
and a maximum load of 867.18 N and energy absorption of 3.78 J in the second condition
(UV with moisture). Meanwhile, the PP30-P biocomposites exhibited a maximum load
of 760.82 N and energy absorption of 3.11 J in the first condition and a maximum load of
749.94 N and energy absorption of 3.68 J in the second condition.

Table 1 presents the experimental results for the physical and mechanical properties.

4.2. ANN Approach
4.2.1. ANN Model Validation

The performance of the ANN model was evaluated according to the convergence
of the MSE. The best validation performance was observed after four epochs (MSE = 22).
Figures 9 and 10 present plots of the linear regression coefficients. As shown, the model
fit the data well; the global correlation coefficients (R) in the case of PP30-F were 0.999
for training, 0.997 for testing, and 0.999 for validation, and in the case of PP30-P, they
were 0.997, 0.999, and 0.999, respectively. In addition, the training, testing, and validation
stages of the model for prediction were positive. This suggests that the model learned
effectively, generalized well to new data, and did not overfit the training dataset. It
indicates a promising performance and adds credibility to the model’s ability to make
accurate predictions.
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4.2.2. ANN Prediction

Figures 11–13 present comparisons between the prediction results of the ANN model
and the experimentally obtained results. Overall, the proposed model provided accurate
results. The ANN results agreed well with the experimental data concerning the impact
load, energy absorbed, and tensile strength, with maximum errors of 3, 5%, and 6%,
respectively. However, it is important to recognize that despite the overall accuracy of
our predictions, slight differences between the results of the ANN algorithm and the
experimental data may appear. These deviations could arise from several factors, such as
natural variations in material properties, environmental conditions during experimental
testing, or even potential inaccuracies in the parameters of the algorithm itself. However,
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despite these minor deviations, our model is capable of accurately predicting the mechanical
impact performance of aged SNFT biocomposites.
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5. Conclusions

In external applications, biocomposites are vulnerable to environmental aging and
low-velocity impacts. Aging reduces the resistance of biocomposites to low-impact col-
lisions. Thus, to avoid damage, it is important to predict the impact resistance of aged
biocomposites. In this study, a novel ANN prediction model was developed to predict the
durability of aged biocomposites with regard to their mechanical and impact properties.
This network was applied to two biocomposite materials (polypropylene reinforced with
30 wt.% flax or pine fibers) under two environmental conditions (UV aging in a dry or
moist environment). Unaged and aged biocomposites were evaluated via nondestructive
tests, such as mass, hardness, roughness, and IET tests, as well as destructive tests (tensile
tests and low-velocity impact tests) to evaluate these properties with respect to the expo-
sure time. The results indicated that all the mechanical properties were degraded after
aging. The degradation was more significant under Condition 2 (UV with moisture) than
under Condition 1 (UV without moisture). Moreover, PP30-F exhibited a higher degree of
degradation than PP30-P under both conditions. Subsequently, the impact properties of
the two composite materials (tensile strength and absorbed impact energy) were predicted
using the developed ANN algorithm, for which nondestructive test results were used as
inputs. The proposed ANN model proved to be a reliable prediction tool, as indicated
by strong agreement between the experimental and predicted results. The correlation
coefficient R was 0.999 for the two biocomposites.
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Appendix A

Table A1. Tests and characterization methods for the short natural-fiber thermoplastic (SNFT)
biocomposites.

Test Method Machine Properties
Physical properties

Mass measurement Measuring tape Electronic scale
Accuracy 10–3 g M (kg)

Roughness
measurement Laser surface scan

3D laser confocal
microscope

(Keyence, Canada)
Ra (mm)

IET ASTM E-1876-09

IMCE machine
Signal-processing
software: resonant

frequency and damping
analyzer (RFDA)

f (Hz)

Mechanical properties

Hardness test ASTM E329 810-124: HM-100
Economical manual type H (HRC)

Drop-weight
impact test ASTM D-5628

Instron machine
Model CEAST 9350,

22 kN load cell initial
impact energy of 5 J,

mass of impactor: 5.4 kg

F (kg·m·s–2), E (J)

Appendix B
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Figure A1. Equipment and samples used: 1—injection molding machine; 2—accelerated-weathering
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croscopy device; 6—hardness test machine; 7—drop-weight impact test machine.
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