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Abstract: The purpose of this work was to investigate the feasibility of a novel ophthalmic formulation
of amphotericin B-encapsulated silk fibroin nanoparticles incorporated in situ hydrogel (AmB-FNPs
ISG) for fungal keratitis (FK) treatment. AmB-FNPs ISG composites were successfully developed
and have shown optimized physicochemical properties for ocular drug delivery. Antifungal effects
against Candida albicans and in vitro ocular irritation using corneal epithelial cells were performed to
evaluate the efficacy and safety of the composite formulations. The combined system of AmB-FNPs-
ISG exhibited effective antifungal activity and showed significantly less toxicity to HCE cells than
commercial AmB. In vitro and ex vivo mucoadhesive tests demonstrated that the combination of
silk fibroin nanoparticles with in situ hydrogels could enhance the adhesion ability of the particles
on the ocular surface for more than 6 h, which would increase the ocular retention time of AmB
and reduce the frequency of administration during the treatment. In addition, AmB-FNP-PEG ISG
showed good physical and chemical stability under storage condition for 90 days. These findings
indicate that AmB-FNP-PEG ISG has a great potential and be used in mucoadhesive AmB eye drops
for FK treatment.

Keywords: mucoadhesive eye drops; amphotericin B; silk fibroin nanoparticles; composite formula-
tions; ocular drug delivery

1. Introduction

The incidence of corneal infection by fungi or fungal keratitis (FK) has increased
worldwide in recent years and can cause blindness [1]. Several risk factors, such as corneal
injury, extended wear of contact lenses, ocular surface diseases, and topical steroid use
have been associated with the development of FK [2]. In tropical regions, filamentous fungi,
such as Fusarium and Aspergillus species, are predominant causes of FK, whereas yeasts,
such as Candida species, are a less frequent cause [3]. However, corneal infections caused
by Candida spp. are complicated to treat due to their ability to form a biofilm that leads
to antifungal resistance [4]. Amphotericin B (AmB) is an effective drug in the treatment
of FK because it has broad spectrum activity against most fungi, especially Candida spp.
with a low incidence of clinical resistance [5]. Unfortunately, the therapeutic use of AmB is
limited by its toxicity and poor solubility, which make it difficult to fabricate an optimum
ophthalmic formulation. Furthermore, AmB eye drops are not commercially available,
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and the conventional intravenous dosage form of AmB deoxycholate (Fungizone®, Bristol-
Myers Squibb, Montreal, QC, Canada) is mostly off-label and used for FK treatment [6,7].
The main problem of this extemporaneous preparation is eye irritation from the sodium
deoxycholate in the formulation, leading to poor patient compliance [8]. Less toxic lipid-
based formulations of AmB have been developed, but these forms are very expensive,
have low stability in aqueous solution, and are unavailable in developing countries, thus
restricting their use [9]. In addition, AmB delivered through conventional eye drops
is rapidly eliminated from the ocular surface due to the protective mechanisms of the
eye, such as reflex blinking and tear dilution, and entry into the systemic circulation via
nasolacrimal drainage [10]. High doses and high-frequency application have been used to
achieve therapeutic efficacy of treatment of the fungal infection, which can result in serious
systemic side effects [11–13]. Accordingly, many studies have focused on developing
AmB ophthalmic formulations with high effectiveness, low toxicity, and good stability
using drug delivery systems such as polymeric nanoparticles [14,15], nanostructure lipid
carriers [16,17], liposomes [18], microneedles [19], and nanofiber with in situ gelling [20].
Nevertheless, no licensed AmB topical ophthalmic formulations are available.

Consequently, our research focuses on the use of combination systems of nanoparticles
and thermosensitive in situ hydrogels to fabricate a promising ophthalmic AmB. Nanopar-
ticles offer various outstanding advantages for ocular drug delivery including improved
bioavailability of the drugs and extended drug retention time, enabling targeted delivery
and reduced side effects [21]. Several studies reported that small nanosized particles,
ranging from 50 to 400 nm, could overcome the ocular barrier, enhancing bioavailability
of poorly soluble drugs and prolonging the contact time of the drugs on the eye [22,23].
Furthermore, nanoparticles shield the drug from interacting directly with normal cells,
thus minimizing its side effects. As is known, AmB activity and toxicity depend on the
aggregation state of AmB, which is influenced by carriers. The incorporation of AmB into
nanoparticles having a monomeric form has been shown to enhance antifungal activity
and reduce the irritation induced by AmB [24]. However, low viscosity nanodispersion can
be quickly cleared from the eye by tears or blinking, resulting in inadequate drug retention
on the ocular surface. To overcome this drawback, combining the nanoparticles with the
in situ gelling system can be an effective approach to increase viscosity upon application.
This system has the capability to undergo a phase transition in response to environmental
triggers such as temperature, pH, or ions [25]. The liquid form of in situ hydrogel can
be easily administered as eye drops and it can transform into a gel after contact with the
ocular surface, thereby increasing the drug’s residence time, and decreasing the frequency
of administration and dosing [12,26].

Based on our previous studies, we successfully developed a ready-to-use AmB oph-
thalmic formulation by formulating a combined system of AmB-encapsulated silk fibroin
nanoparticles incorporated in thermosensitive in situ hydrogel (AmB-FNPs ISG) [27] to
enhance ocular bioavailability and increase precorneal residence time of AmB. To create the
thermosensitive in situ gelling system, Pluronic F127-based formulations were utilized in
this work. Pluronic F127 is a thermoresponsive polymer widely employed in pharmaceuti-
cal formulations. At low temperature, Pluronic exists in a liquid state and can self-assemble
to form small micelles due to their amphiphilic structure. With a temperature increase, the
micellar structures pack closely together to form a three-dimensional network, leading to
the formation of the gel [28]. AmB-FNPs ISG possesses a liquid form at ambient tempera-
ture and rapidly converts to a gel at ocular temperature, offering ease of administration
while prolonging its retention on the eye. These novel formulations present pale yellowish
solutions, high transparency, and optimum pH and osmolality. All AmB-FNPs incorpo-
rated into the thermosensitive in situ hydrogel showed high entrapment efficiency with
a mean particle size of ~200 nm, which could enhance AmB bioavailability and cause no
ocular irritation. Moreover, the results from FTIR, XRD, and molecular aggregation studies
revealed that highly hydrophobic AmB was encapsulated in FNPs in an amorphous form,
which could reduce the aggregated toxicity of AmB. These findings demonstrated that
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AmB-FNPs ISG formulations possess great potential physicochemical properties for topical
ocular application. Accordingly, the present study aims to demonstrate the antifungal
activity, mucoadhesive properties, reduced ocular irritation, and stability of the AmB-FNPs
ISG for the treatment of FK.

2. Materials and Methods
2.1. Materials

Amphotericin B, as the active pharmaceutical ingredient, was bought from Bio Basic
Inc. (Toronto, ON, Canada). Intravenous amphotericin B was supplied by Biolab (Samut-
prakarn, Thailand). Polyethylene glycol 400 (PEG) was purchased from Nam Siang Co.
Ltd. (Bangkok, Thailand). Branched polyethylenimine (PEI), hyaluronic acid, mucin from
porcine stomach type II, hydrocortisone, insulin from bovine pancreas, and fluorescein
isothiocyanate were ordered from Sigma-Aldrich (St. Louis, MO, USA). Poloxamer 407
(Pluronic® F127) was acquired from BASF (Florham Park, NJ, USA). Muller-Hinton agar
and Sabouraud Dextrose agar were purchased from HIMEDIA (Mumbai, India). Roswell
Park Memorial Institute (RPMI) 1640 medium, keratinocyte serum free medium (K-SFM),
bovine pituitary extract (BPE), epithelial growth factor (EGF), and Penicillin/ Streptomycin
solution were ordered from Gibco (New York, NY, USA). Thiazolyl blue tetrazolium bro-
mide was acquired from Amresco® (Solon, OH, USA). Crystal violet was supplied by
Riedel-de Haën (Munich, Germany). All other reagents were of analytical grade or higher.

2.2. Preparation and Characterization of AmB-FNPs ISG Composites

The soluble silk fibroin (SF) was extracted as reported before by dissolving small
fibers of degummed silk yarn (Bodin Thai Silk Khorat Co., Ltd., Nakhon Ratchasima,
Thailand) in a mixture of CaCl2:H2O:Ca(NO3)2:EtOH (30:45:5:20 weight ratio) solvent
at 80 ◦C for 4 h [29]. Then, pure SF solution was obtained after dialysis in distilled
water for 3–5 days using snakeskin dialysis tubing (10,000 Da MWCO). Three different
amphotericin B-encapsulated silk fibroin nanoparticles (AmB-FNPs)—uncoated AmB-
FNP (AmB-FNP), AmB-FNP crosslinked with PEI (AmB-FNP-PEI), and AmB-FNP coated
with PEG 400 (AmB-FNP-PEG) were prepared following our previous study using the
desolvation method [27]. To enhance the entrapment efficiency of AmB and promote the
interaction between AmB-loaded nanoparticles and mucin at the ocular surface, cationic
polymer PEI and a mucoadhesive polymer PEG 400 were utilized for modification of the
surface of silk fibroin nanoparticles. Briefly, an aqueous 1% w/v SF solution (2% w/v
SF was used instead of 1% w/v SF for AmB-FNP-PEI) was injected dropwise into mild
stirred absolute ethanol, ethanol/1% w/v PEI solution (pH 7.0), or ethanol/1% w/v PEG
400 solution with AmB (15 mg per 30 mL). The SF:Ethanol ratio tested was 10: 20 v/v.
The spontaneously formed particles were centrifuged at 12,000 rpm for 60 min, washed
thrice with DI water, and sonicated at 40% amplitude for 60 s. Finally, all AmB-FNPs were
lyophilized and kept in the refrigerator for further experiment.

Mean particle size, polydispersity index (PDI), and zeta potential of all AmB-FNPs
were measured at 25 ◦C using a Zetasizer Ultra (Malvern Panalytical Ltd., Malvern, UK) by
diluting the samples in DI water and examining them in triplicate. In addition, entrapment
efficiency (EE) and drug loading capacity (DL) were evaluated using an indirect method.
After centrifugation, the amount of unentrapped AmB in the supernatant was analyzed
using a UV–Visible spectrophotometer (Genesys 10 s, Thermo Scientific, Waltham, MA,
USA) at 405 nm to calculate %EE and %DL.

To determine the crystallinity of AmB in the FNPs, X-ray diffractometry (XRD) analysis
was performed. Pure AmB powder, SF, freeze-dried powder of AmB-FNPs, blank FNPs,
and physical mixes of AmB and blank FNPs were examined with an X-ray diffractometer
(D2 Phaser, Bruker AXS Inc., Madison, WI, USA) at 45 kV and 36 mA with a scan speed of
2◦/min and scanning from 10–30◦.

The prepared AmB-FNPs were incorporated in 2 optimal in situ hydrogel bases,
namely, 19% w/v Pluronic® F127 (F127) and 18% w/v Pluronic® F127 blended with 0.2%
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w/v hyaluronic acid (F127/HA). Briefly, AmB-FNP dispersion and the in situ hydro-
gel solution were separately prepared using the cold method. Lyophilized AmB-FNPs
were re-dispersed in deionized (DI) water and sonicated at 40% amp for 60 s. The F127
and F127/HA solution were prepared by dispersing F127 powder in cold DI water and
hyaluronic acid (HA) aqueous solution, respectively. Then, both polymer dispersions were
kept in a refrigerator for at least 24 h for completely dissolution. The AmB-FNP dispersions
were mixed into an equal volume of F127 or F127/HA solution at 4 ◦C by constant stirring
until homogenous, and the final dose of AmB was equivalent to 150 µg/mL. All AmB-FNPs
ISG formulations were kept in a refrigerator and protected from light for further inves-
tigation. The physical properties of AmB-FNPs ISG formulations were characterized in
term of clarity, gelling capacity, pH, osmolality, optical transmittance, viscosity, rheological
behavior, and sol–gel transition temperature.

Visual examination against black and white backgrounds was used to determine the
clarity of the composite formulations.

The gelling capacity was performed by dropping 30 µL of each composite formulation
into a test tube containing 2 mL of stimulated tear fluid (STF) at pH 7.4 equilibrated at
35 ± 1 ◦C. The appearance of gel forming was visually evaluated.

The pH and osmolality of the composite formulation were measured using a pH meter
(SK20, Mettler-Toledo, Zurich, Switzerland) and freezing point depression osmometer
(Osmomat® 030, Gonotec, Berlin, Germany), respectively. All measurements were made in
triplicate and the data are reported as a mean ± SD.

The optical transmittance was performed on a UV–Visible spectrophotometer. Fifty
microliters of each composite formulation was smeared on the outside surface of a quartz
cuvette and maintained at 35 ± 1 ◦C. Then, the % transmittance was measured under the
visible wavelength from 381 to 780 nm and the empty cuvette was used as a blank. All tests
were conducted in triplicate and the data are expressed as mean ± SD.

The viscosity and rheological behavior of AmB-FNPs ISG formulations were investi-
gated using a cone and plate viscometer (DV3T model, Brookfield, MA, USA). The viscosity
of each formulation was measured at 25 ± 1 ◦C (room temperature) or 35 ± 1 ◦C (ocular
surface temperature) with a constant shear rate at 20 s−1. The rheology tests were con-
ducted at 35 ± 1 ◦C with increasing shear rate from 1 to 80 s−1 and the rheograms were
plotted between the viscosity and shear rate. The sol–gel transition temperatures of both
AmB-FNPs-F127 and AmB-FNPs-F127/HA were measured at a 10 rpm spindle speed using
a Brookfield rheometer (RST-CVS-PA, Brookfield, USA) with increasing temperatures from
20 ◦C to 40 ◦C controlled by a Peltier plate. The data were plotted as viscosity versus
temperature and the gelling temperature was defined as the temperature when the rigid
gel state formed.

2.3. Stability Study

A stability study was performed to determine the physicochemical stability of the
formulations under storage conditions. AmB-FNP-PEG F127 ISG and AmB-FNP-PEG
F127/HA ISG were represented as a candidate ophthalmic formulation for the stability
study. Both formulations were stored at 4 ± 1 ◦C (refrigerated temperature) in darkness for
a period of 3 months and evaluated at intervals of 7, 14, 21, 30, 60, and 90 days for clarity,
pH, gelling capacity, and drug content.

2.4. In Vitro Antifungal Activity
2.4.1. Screening of the Antifungal Activity

The antifungal effects of the AmB-FNPs dispersion and AmB-FNPs-ISG were tested
against a standard strain of Candida albicans (TISTR 5779). The agar well diffusion technique
was used to screen the antifungal effects of all formulations [30]. Briefly, a C. albicans
suspension (1 × 106 CFU/mL) was prepared in 0.85% NaCl and swabbed evenly on the
surface of Muller–Hinton agar containing 2% glucose and methylene blue. Then, 10 µg/mL
of AmB stock solution of standard AmB, AmB deoxycholate, AmB-FNPs, and AmB-FNPs-
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ISG was prepared in sterile water. Subsequently, holes having a diameter of 6 mm were
made in the inoculated agar plates and filled with 20 µL of stock solution of the samples.
In addition, sterile water and plain in situ hydrogels were also added to the wells as a
negative control. The samples were then incubated for 24 h at 37 ◦C. Antifungal effects
were determined as the absence of fungal growth in the area surrounding the hole and the
diameter of inhibition zone was measured using a Vernier caliper. These analyses were
performed in triplicate.

2.4.2. Minimum Inhibitory and Minimum Fungicidal Concentration Test

The minimal inhibitory concentration (MIC) was evaluated using the broth dilution
technique according to the EUCAST guidelines [31]. The stock solution of standard AmB
powder was dissolved in DMSO while AmB deoxycholate, AmB-FNPs, and AmB-FNPs-
ISG were prepared in DI water. All samples were two-fold serial diluted in a 96-well
plate with RPMI 1640 medium, 2% glucose, and 25 mM HEPEs, pH 7.0, and with the
AmB concentration ranging from 0.0312 to 16 µg/mL. The C. albicans suspension was
prepared in RPMI 1640 medium and further inoculated in each well of the 96-well plates
to obtain a final inoculum concentration of ~1–5 × 105 CFU/mL. Consequently, the final
AmB concentration ranged from 0.0156 to 8 µg/mL. A Candida suspension cultured in the
media without the samples served as a positive control, and the mixture of media and the
samples without the Candida suspension served as a negative control. The assay plates
were used to measure the optical density at 530 nm using a microplate reader (Synergy
H1 Hybrid Reader, BioTek, Agilent, CA, USA) prior to and after incubation at 37 ◦C, for
24 h. The MIC90, defined as the lowest test concentration that inhibited 90% of the fungal
growth, was calculated for all formulations.

After MIC determination, 10 µL aliquots of media from each well with no fungal
growth were dropped on Sabouraud Dextrose Agar (SDA) plates and incubated at 37 ◦C for
24 h. Finally, the minimal fungicidal concentration (MFC) was defined as the lowest AmB
concentration that showed no detectable growth on the SDA surfaces. All experiments
were conducted in triplicate.

2.5. In Vitro Mucoadhesive Study

All blank FNPs were covalently bound with fluorescent dye of fluorescein isothio-
cyanate (FITC) for both in vitro and ex vivo mucoadhesive studies. Briefly, 10 mg of
lyophilized blank particles was re-dispersed in 1 mL of carbonate buffer pH 9. Then,
50 µL of 1 mg/mL FITC solution was slowly added into the dispersion with gentle and
continuous stirring. The mixture was incubated in the dark for 24 h at 4 ◦C. The FITC con-
jugated with FNPs (FITC-FNPs) was then separated from unbound FITC by centrifugation
at 16,000 rpm for 30 min and washed 2 times with DI water. The FITC-FNPs were freshly
made before each experiment.

The flowing liquid test was performed to investigate the mucoadhesive properties of
the prepared formulations. This method involves washing the formulation with an appro-
priate artificial fluid at a constant flow rate while the residence time of the formulation is
determined visually or fluorometrically [32]. The in vitro mucoadhesive test was conducted
under a condition mimicking the pre-ocular surface. A mucus layer was prepared by soak-
ing a hydrophilic membrane (polycarbonate membrane, 0.2 µm pore size, 6 mm diameter,
IsoporeTM, Merck, Germany) in 0.1% of aqueous mucin solution for 24 h. Then, 10 µL of
the FITC solution, FITC-FNPs dispersion, and FITC-FNPs-ISG was applied as a single drop
at the center of the membrane and incubated at 35 ± 1 ◦C for 2 min to induce a gel forming
an in situ hydrogel formulation. The membrane was then immediately washed with a
continuous flow of STF solution (pH 7.4, 35 ± 1 ◦C) at a flow rate of 10 µL/min controlled
by a peristatic pump. Then, STF containing the eliminated FITC was collected at 5, 15, 30,
60, 120, 240, and 360 min, and the fluorescence intensity was measured using a microplate
reader at excitation (Ex) and emission (Em) wavelengths of 495 nm and 525 nm, respectively.
The amount of eliminated FITC in STF was calculated according to the standard curve of
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FITC (concentration range 0.25–20 ng/mL) and the percentage of FITC remaining on the
mucus membrane was calculated as follows:

%FITC remaining =
Initial amount of FITC − Amount of eliminated FITC at time point

Initial amount of FITC
× 100 (1)

2.6. Ex Vivo Mucoadhesive Study

The ex vivo mucoadhesive test using fresh porcine cornea and an apparatus setup
modified from Chiyasan et al. [33] was performed. Porcine eyes were obtained from the
local slaughterhouse, Phitsanulok, Thailand (license number PC 06 47001/2536), and kept
in ice-cold PBS, pH 7.4, containing 1% v/v antibiotic solution until used (less than 8 h after
death). Six millimeters of the corneal tissue was excised with a surgical blade and mounted
onto a glass slide; 48 porcine corneas were obtained in this experiment. Ten microliters of
the FITC solution, FITC-FNP-PEG dispersion, and FITC-FNP-PEG-ISG was dropped on the
corneal surface. The samples were incubated at 35 ◦C for 5 min to ensure the gelation form
of in situ hydrogel. Then, the tissue was placed in contact with a continuous stream of STF
pH 7.4 at 35 ± 1 ◦C with a flow rate of 10 µL/min to mimic the eye blinking. At the time
points of 30, 120, 240, and 360 min, cryostat sections of the cornea tissue were removed and
imaged using fluorescence microscopy to visualize green fluorescence of FITC adhering to
the tissue.

2.7. In Vitro Irritation Study
2.7.1. MTT Assay

The human corneal epithelial (HCE) cell line (ATCC CRL-11135) was used for cell
viability investigation. HCE cells were cultured in the complete growth media of K-
SFM supplemented with 0.05 mg/mL BPE, 5 ng/mL of EGF, 500 ng/mL hydrocortisone,
0.005 mg/mL insulin, and 1% v/v Penicillin/Streptomycin at 37 ◦C with 5% CO2. The
influence of the prepared formulations on cell viability was investigated using an MTT
assay, which was modified following the short time exposure (STE) protocol recommended
for an alternative ocular irritation assay [34]. Briefly, HCE cells were trypsinized and seeded
into a 96-well plate at 1 × 104 cells/well and cultured in the complete growth media at
37 ◦C with 5%CO2 for 24 h. Then, the culture media was removed and the HCE cells were
exposed to AmB-FNPs and AmB-FNPs-ISG formulations for comparison with the control.
After 12 h, the medium containing the samples was discarded carefully, and each well was
washed with sterile PBS, pH 7.4. The HCE cells were further incubated with MTT solution
(final concentration of 0.5 mg/mL) at 37 ◦C in the dark for 2 h. Finally, the MTT solution
was removed, and the formazan crystals were dissolved with dimethyl sulfoxide (DMSO).
The absorbance of each well was read on a microplate reader at 595 nm. The percentage of
cell viability was calculated in comparison to the vehicle treated cells.

2.7.2. Crystal Violet Staining

The HCE cells were cultured and treated with the prepared formulations for 12 h,
similar to the MTT assay. After the treatment times, the supernatant was discarded, and
the cells were washed 3 times with PBS pH 7.4. The treated cells were fixed with 4%
paraformaldehyde for 3 h at room temperature. After fixation, the HCE cells were stained
with 0.5% w/v crystal violet solution and incubated for 30 min, then washed with tap
water to remove excess staining. Cell samples were air dried and visualized under a light
microscope.

2.8. Statistical Analysis

The mean ± SD (standard deviation) is presented for quantitative experiments. The
statistical analysis was conducted using SPSS 17.0 software (Chicago, IL, USA). The sig-
nificance was evaluated using one-way analysis of variance (1-way ANOVA) along with
Tukey’s post hoc test, and p < 0.05 was considered as statistically significant.
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3. Results and Discussion
3.1. AmB-FNPs ISG Composites Characterization

From our previous study, we successfully prepared the novel formulation of AmB-
FNPs-ISG. Their physicochemical properties are summarized in Table 1. All AmB-FNPs
exhibited a mean particle size of ~200 nm with high entrapment efficiency of up to 63%. The
aggregation study of AmB and XRD results from our previous study indicated that AmB
was entrapped in the FNPs with an amorphous form [27]. The decrease in the crystallinity
of AmB may be attributed to the interaction of AmB and silk fibroin via hydrophobic
interaction. All prepared AmB-FNPs-ISG formulations possessed optimized osmolality,
pH, and viscosity for ocular application. The rheological evaluation of all composite
formulations exhibited pseudoplastic flow behavior after gel formation at 35 ± 1 ◦C, which
allowed good spreadability on the ocular surface and ease of eye blinking.

Table 1. Physicochemical characterization of AmB-FNPs and AmB-FNPs-ISG composites.

Parameters
AmB-FNP-ISG AmB-FNP-PEI-ISG AmB-FNP-PEG-ISG

F127 F127/HA F127 F127/HA F127 F127/HA

Particle size, shape 206.8 ± 5.6 nm, spherical 209.0 ± 14.4 nm, cubic 214.7 ± 15.9 nm, spherical
Zeta potential −23.13 ± 2.69 mV 35.87 ± 1.37 mV −22.04 ± 1.81 mV

PDI 0.11 ± 0.05 0.18 ± 0.03 0.15 ± 0.01
EE/DL 63.2%/8.7% 72.6%/5.2% 71.3%/9.7%

Gelling capacity ++ ++ ++ ++ ++ ++
pH 7.2 ± 0.2 6.7 ± 0.1 6.9 ± 0.1 6.7 ± 0.1 6.9 ± 0.1 6.9 ± 0.1

Osmolality (mOsm/kg) 338 ± 12 328 ± 9 348 ± 14 347 ± 11 332 ± 8 323 ± 7
%T (381–780 nm) 98 ± 5 97 ± 6 97 ± 5 96 ± 6 98 ± 4 97 ± 4
Viscosity (mPa·s)

at 25 ± 1 ◦C 104 ± 2 324 ± 43 125 ± 31 280 ± 16 101 ± 12 315 ± 40
at 35 ± 1 ◦C 8214 ± 256 2706 ± 1349 7329 ± 1557 4140 ± 916 8233 ± 325 3571 ± 984

Note: PDI = polydispersity index, EE = entrapment efficiency, DL = drug loading capacity, gelling capacity: ++ =
sol–gel transition within 30 s, and %T = % transmittance.

In addition, they undergo temperature-dependent sol–gel transition, from a flowing
solution at ambient temperature (25 ± 1 ◦C) to a non-flowing gel at ocular temperature
(35 ± 1 ◦C), making them easy to administer while enhancing the retention time of the drug
on the eye surface. According to the viscosity vs. temperature curve, it was observed that
both types of in situ hydrogels, AmB-FNPs-F127 and AmB-FNPs-F127/HA ISG, exhibited
a constant viscosity at low temperature and their viscosity significantly increased as the
temperature increased, indicating the gelation process (Figure 1). Furthermore, AmB-
FNPs-F127 ISG showed a lower sol–gel transition temperature (~28 ◦C) than AmB-FNPs-
F127/HA ISG (~31 ◦C), indicating AmB-FNPs-F127 ISG underwent gelation faster than
AmB-FNPs-F127/HA ISG. After completed gel formation, AmB-FNPs-F127 ISG revealed
higher viscosity than AmB-FNPs-F127/HA ISG, suggesting higher gel strength. These
results may be related to the higher Pluronic concentration in the AmB-FNPs-F127 ISG
formulation. Pluronic molecules can promptly self-assemble to form micelles in the aqueous
media due to their amphiphilic nature, and the number of micelles increased when Pluronic
concentration increased. The increasing temperature results in packing of micelles to form
a large micellar crosslinked network, leading to gel formation [35]. Hence, the number and
size of Pluronic micelles in the AmB-FNPs-F127 ISG formulation increased, resulting in
a higher number of crosslinked micelles, and then leading to faster gelation and greater
viscosity.

There is limited literature available on the development of composite systems involv-
ing nanoparticles and hydrogels for the ophthalmic delivery of AmB. Göttel et.al. developed
AmB-loaded in situ gelling nanofiber to enhance the solubility of AmB for keratomycoses
treatment [20]. However, the entrapment efficiency of AmB in PLGA nanoparticles for this
study was ~40% and no mucoadhesive study was conducted. In addition, Elhabal et.al.
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recently examined a thermosensitive hydrogel of AmB and Lactoferrin combination-loaded
PLGA-PEG-PEI nanoparticles for eradication of ocular fungal infections [36]. This study ex-
hibited high entrapment efficiency of AmB > 90% and good stability, but the mucoadhesion
of the formulation was not reported in this study.
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3.2. Stability Study

The stability of AmB in topical ophthalmic dosage form is a challenge for pharmaceu-
tical research. As is known, the stability of AmB in aqueous solution under heat condition
is very low; hence, AmB products are stored at a low temperature of ~2–8 ◦C. Curti
et al. reported that conventional AmB eye drops are stable for fewer than 15 days under
ambient temperature and for 60 days under refrigeration conditions (2–8 ◦C) [37]. More-
over, Chanell et al. investigated the stability of ready-to-use amphotericin B solubilized
in 2-hydroxypropyl-γ-cyclodextrin (AB-HP-γ-CD) formulations. They found that their
formulation showed AmB instability after 28 and 56 days at 25 ◦C and 5 ◦C, respectively [9].

In this study, AmB-FNP-PEG-ISG was selected as a representative to study the stability
of the composite formulations. Samples were kept at 4 ◦C for 90 days. At all predetermined
time points, both AmB-FNP-PEG-ISG samples showed good gelling capacity with pH
~7. However, both formulations exhibited phase separation when the storage time was
increased (Figure 2a). This result may be associated with agglomeration of the particles in
the colloidal system. Interestingly, AmB-FNP-PEG-F127 ISG showed higher sedimentation
of nanoparticles on the bottom of vial than AmB-FNP-PEG-F127/HA ISG. This result
could be attribute to electrostatic stabilization because the negative charge of hyaluronic
acid enhances the strong repulsion of the AmB-FNP-PEG particles in the F127/HA ISG
network [38]. Although AmB-FNP-PEG-ISG showed a phase separation, all AmB-FNPs-ISG
could transform to a homogeneous dispersion after mild shaking. Interestingly, Figure 2b
shows no significant difference in the drug remaining of AmB-FNP-PEG-ISG between the
beginning and end of the storage time, indicating good stability of AmB in the prepared
formulation. This result may be attributed to the incorporation of AmB into silk fibroin
nanoparticles, which could protect AmB degradation from the hydrolysis mechanism in
the aqueous media, leading to increased stability of AmB.
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conditions (4 ◦C). (a) Visual appearance and (b) drug remaining of AmB in the formulations at
different time points (mean ± SD, n = 3).

3.3. Antifungal Efficacy

The potential of using the novel AmB-FNPs-ISG as topical ophthalmic formulation
for fungal keratitis was investigated. The agar well diffusion technique was used to screen
the antifungal effect of the prepared formulations compared with AmB deoxycholate, a
commercial formulation. This study was conducted by measuring the inhibition zone of
the sample against C. albicans. As expected, the inhibition zone was observed around the
holes of AmB-FNPs, AmB-FNPs-ISG, and the positive controls (standard AmB and AmB
deoxycholate), whereas the negative controls (sterile water, blank F127 ISG, and blank
F127/HA ISG) showed no inhibition zone, indicating no antifungal activity (Figure 3).
AmB deoxycholate showed the highest inhibition zone (~20 mm), which was significantly
different from that of standard AmB (~17 mm), AmB-FNP dispersion (~17 mm), AmB-
FNP-PEI (~16 mm), AmB-FNP-PEG dispersion (~17 mm), and AmB-FNP-PEI F127/HA
(~17 mm). Interestingly, the inhibition zone of all AmB-FNPs-ISG formulations, with the
exception of AmB-FNP-PEI F127/HA, was slightly greater than that of their FNP counter-
parts. These results may be associated with the effect of surfactants in the formulations,
deoxycholate in the commercial AmB and Pluronic in the in situ hydrogels, which could
enhance the membrane-associated target of AmB and increase the permeability of the
fungal membrane [39]. Although the agar well diffusion technique is a widely used for
assessing the antimicrobial activity of various drug formulations, the outcomes of this
technique are variable due to inherent limitations in the hydrophilicity and viscosity of the
formulations, as well as the interaction with the agar component [40,41]. To this end, we
combined the agar diffusion test with MIC and MFC tests to confirm the potential of the
prepared formulations for treatment of ocular infections.

In addition, MIC90 and MFC of all formulations against C. albicans were investigated
(Table 2). AmB deoxycholate and standard AmB showed similar MIC90 and MFC values
of 0.0625 µg/mL and 0.5 µg/mL, respectively. However, AmB-FNPs exhibited higher
MIC90 and MFC values of 0.25 µg/mL and 1 µg/mL, respectively. The lower antifungal
activity could be explained by some of the AmB in FNP formulations being restricted in
the particles due to strong interaction between AmB and silk fibroin, as observed from
dissolution studies, which showed ~50% AmB release within 5 h [27].
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Figure 3. The antifungal activity of AmB deoxycholate, standard AmB, AmB-FNPs, and AmB-FNPs
ISG against C. albicans according to the agar well diffusion technique. * Significant at p < 0.05
compared with AmB deoxycholate.

Table 2. Minimum inhibitory concentration (MIC90) and minimum fungicidal concentration (MFC)
of the formulations against C. albicans (n = 3).

Formulation MIC90 (µg/mL) MFC (µg/mL)

AmB Deoxycholate 0.0625 0.5
Standard AmB 0.0625 0.5

AmB-FNP 0.250 1
AmB-FNP-PEI 0.250 2
AmB-FNP-PEG 0.250 1

AmB-FNP-F127 ISG 0.125 0.5
AmB-FNP-PEI-F127 ISG 0.125 0.5
AmB-FNP-PEG-F127 ISG 0.125 0.5
AmB-FNP-F127/HA ISG 0.125 0.5

AmB-FNP-PEI-F127/HA ISG 0.125 0.5
AmB-FNP-PEG-F127/HA ISG 0.125 0.5

Interestingly, AmB-FNPs-ISG formulations exhibited higher antifungal activity than
AmB-FNPs with the MIC90 value of 0.125 µg/mL and MFC value of 0.5 µg/mL, close to
those of AmB deoxycholate. This may be due to the support from Pluronic, a surfactant
in the hydrogel matrix, which could enhance the diffusion of AmB across the fungal cells,
leading to an increase in the fungal cell death. These results indicate that the prepared
AmB-FNPs-ISG have potential antifungal activity similar to that of the marketed AmB
deoxycholate.

3.4. In Vitro Mucoadhesive Study

To track the mucoadhesion of particles on the mucus layer, all FNPs were labeled
with FITC, a green fluorescent dye. Generally, FITC is widely used to label proteins via
the reaction of isothiocyanate groups of FITC and amine groups in the protein. Therefore,
isothiocyanate groups of FITC could attach with residual amine groups of silk fibroin. In
this study, FITC-labeled FNP, FNP-PEI, and FNP-PEG were prepared following the method
of Pham et al. [42]. To examine the in vitro mucoadhesive properties of FITC-labeled FNPs
and FITC-labeled FNP in situ hydrogels, the hydrophilic membrane soaked with mucin
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solution was used to mimic a mucus membrane. Figure 4 illustrates the percentage of
FITC remaining on the mucus membrane after continuous flow of STF. After 5 min of
fluid flow, the membrane instilled with FITC solution showed only ~13% remaining, while
those instilled with FITC-FNP, FITC-FNP-PEG, and FITC-FNP-PEI showed 38%, 65%, and
88% remaining, respectively (Figure 4a). Moreover, nearly 100% loss occurred after 1 h
of fluid flow when instilled with FITC solution, whereas all FITC-FNPs showed % FITC
remaining of up to 30%. These results indicated that small particles of FNPs could enhance
FITC adherence to the mucus membrane because the large surface area of the particles can
increase the adhesion to the mucus membrane [43].
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Figure 4. The in vitro mucoadhesive properties of FITC-labeled FNPs and FITC-FNP-ISG. (a) %FITC
remaining on the mucus membrane of FITC solution compared with three types of FITC-FNP
dispersion; (b) %FITC remaining of FITC-FNP dispersion; (c) %FITC remaining of FITC-FNP-PEI
dispersion; and (d) %FITC remaining of FITC-FNP-PEG dispersion compared with their in situ
hydrogel composites.

Interestingly, FITC-FNP-PEI exhibited a higher remaining percentage (69%) than FITC-
FNP-PEG (39%), and FITC-FNP (29%) after 6 h continuous fluid flow. The nature of the
polymer coating on the particles could be attributed as the primary factors influencing mu-
coadhesion. Several studied reported that the mucoadhesive properties of the nanoparticles
could be enhanced by coating the particles with hydrophilic or cationic polymers via the in-
teraction between the polymer and mucin chain [44]. PEI could increase the mucoadhesion
on the mucus membrane through ionic interaction between the positively charged PEI and
the negatively charged mucin. On the other hand, PEG, being a hydrophilic polymer with
abundant hydroxyl contents, facilitates the penetration of the polymer chain into the mucus
layer and engages in hydrogen bonding with mucin [45]. Based on these results, FNP-PEI
and FNP-PEG exhibited strong adhesion on the mucus membrane when compared with un-
coated FNP. Moreover, mucoadhesive properties of FNPs and FNPs-ISG formulations were
compared. As expected, the FITC-FNP-ISG (Figure 4b) and FITC-FNP-PEG-ISG (Figure 4d)
exhibited significantly greater FITC remaining than their particles only. This result could
be attributed to the increasing viscosity of the gelling system. Therefore, the combination
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of in situ gelling and nanoparticles could prolong the drug retention on the ocular surface.
However, the FITC-FNP-PEI in situ hydrogel (Figure 4c) showed lower FITC remaining
than FITC-FNP-PEI particles. This result might be due to the hydrogel network retarding
the interaction between positively charged PEI and negatively charged mucin.

3.5. Ex Vivo Mucoadhesive Study

To confirm the mucoadhesion of the prepared formulations on the corneal surface,
FITC-FNP-PEG in situ hydrogel and FITC-FNP-PEG were chosen for ex vivo mucoadhesive
study. Similar to the in vitro mucoadhesive results, the FITC-FNP-PEG (Figure 5e–h), FITC-
FNP-PEG-F127 ISG (Figure 5i–l), and FITC-FNP-PEG-F127/HA ISG (Figure 5m–p) showed
good adhesion to the porcine cornea up to 6 h, while the FITC solution (Figure 5a–d)
exhibited low intensity of green fluorescence at 30 min and was completely cleared away
at 2 h. As expected, FITC-FNP-PEG-F127 in situ hydrogels showed higher intensity of
green fluorescence for all time points than FITC-FNP-PEG under fluid flow. These results
confirmed that the combination of FNP and in situ hydrogels could enhance the adhesion
ability of the particles on the ocular surface.
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Figure 5. Ex vivo mucoadhesive studies of the nanoparticles and in situ hydrogel compared with
nanodispersion and solution formulations. The fluorescence images of the remaining fluorescence on
the cross-sectional porcine cornea after treatment with FITC solution (a–d), FITC-labeled FNP-PEG
(e–h), FNP-PEG-F127 ISG (i–l), and FNP-PEG-F127/HA ISG (m–p) under continuous flow of STF at
different time points (200×).

3.6. In Vitro Eye Irritation Studies

During drug development, the ocular irritation potential and toxicity of the ocular
formulation must be tested to ensure the safety and biocompatibility of the product before
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clinical trial in humans. The in vitro cell model is one of the most applicable to eye irritation
assessment because it is inexpensive, simple, and quick to implement compared to in vivo
testing. In this study, the cytotoxicity study was carried out using the HCE cell line and
modified following the STE protocol, as suggested for the assessment of eye irritation
potential rather than animal testing [34,46]. The toxicity was accessed using MTT reagent
based on mitochondrial activity, which is proportional to the number of viable cells, and the
sample demonstrating cell viability higher than 70% was classified as a non-irritant [34].

The effect of AmB-loaded FNPs on HCE cell viability is shown in Figure 6a. The
exposure of HCE cells to AmB deoxycholate containing 5, 15, and 150 µg/mL of AmB
exhibited cell viability of 76%, 12%, and 0% respectively, demonstrating their severe irrita-
tion effect. These toxic effects were associated with the aggregation state of AmB in this
formulation, which was confirmed by the absorption spectra from our previous report [27].
Several studies have reported that the aggregated AmB form could bind to both ergosterol
in fungal cells and cholesterol in mammalian cells, resulting in leakage of metabolites and
ions from the cell membrane, and eventually leading to cell death [47]. In addition, sodium
deoxycholate acted as a surfactant in this formulation, which could enhance cell membrane
permeability of both mammalian and fungal cells, leading to cell damage [48,49].
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Figure 6. In vitro cytotoxicity study of prepared formulations. (a) Percentage of HCE cell viability
after 12 h incubation with AmB deoxycholate and AmB-FNP formulations (equivalent concentration
of AmB at 5, 15, and 150 µg/mL). (b) Percentage of HCE cell viability after 12 h incubation with
AmB-FNPs embedded in F127 and F127/HA in situ hydrogel (formulation dose at 150 µg/mL of
AmB). (mean ± SD, n = 9, * p < 0.05).

Interestingly, all concentrations of AmB-FNP and AmB-FNP-PEG exhibited cell viabil-
ity > 90%, and could therefore be categorized as a non-irritant and safe for the eye. The
lower toxicity of both formulations could be explained by the AmB encapsulated in silk
fibroin nanoparticles, which could reduce molecular aggregation of AmB, as characterized
by the absorbance ratio of the first to fourth peaks from UV–Vis spectroscopy, indicating a
higher specificity to ergosterol than cholesterol [27]. Moreover, AmB-FNP and AmB-FNP-
PEG, which are composed of fibroin and PEG 400, are biocompatible with ocular tissue;
consequently, these formulations exhibited cell viability similar to that of the control and
greater than that of AmB deoxycholate.

Unfortunately, AmB-FNP-PEI showed a toxic effect to HCE cells at the high concentra-
tion even though this formulation exhibited the partial aggregation of AmB. The exposure
of HCE cells to AmB-FNP-PEI containing 5, 15, and 150 µg/mL of AmB possessed cell
viability of 98%, 74%, and 4%, respectively, which indicated classification as a potential
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irritant at the high dose. This toxic effect was related to the amount of PEI because the
blank FNP-PEI also showed the toxicity to HCE cells in a dose-dependent manner (data
not shown). Although PEI is capable of binding with the negative charge of mucin on
the ocular surface, which enhances the precorneal retention time, it is also toxic like other
cationic polymers. Fischer et al. reported that the high charge density of branching PEI
can interact with the negative charge of the cell membrane, leading to weakening of the
plasma membrane integrity and causing cell death [50]. In addition, they also found that
the PEI affected the metabolic activity, and the severity of cytotoxic effects depends on the
exposure time and concentration of the polymer.

Figure 6b demonstrates the cell viability of the HCE cells after exposure to ISG bases,
AmB-FNPs F127 ISG, and AmB-FNPs F127/HA ISG. Both ISG bases showed % cell viability
having no significant difference from the control, and thus indicating no irritation. The HCE
cells exposed to AmB-FNP-ISG and AmB-FNP-PEG ISG showed viability of more than
80%, suggesting no irritation and that they are safe for ocular uses. However, the exposure
of HCE cells to AmB-FNP-PEI ISG exhibited cell viability of less than 20%, indicating a
toxic effect due to PEI as described above.

Furthermore, the morphology and density of HCE cells after treatment were assessed
via crystal violet staining. The morphology of HCE cells treated with AmB-FNPs and
AmB-FNP-ISG are shown in Figures 7 and 8, respectively. When compared with untreated
cells and the vehicle control, the cells exposed with AmB-FNP, AmB-FNP-PEG, and their
AmB-FNP in situ hydrogels revealed no differences in cell number and morphology from
the control cells. These results confirmed that AmB-FNP-ISG and AmB-FNP-PEG-ISG
have good biocompatibility and are safe for topical ocular application. In contrast, the
cells exposed to AmB deoxycholate, which is the marketed formulation, demonstrated a
small amount of cell debris remaining on the well plate, indicating significant cell death
and detachment from the surface. Additionally, the cell exposure to AmB-FNP-PEI and
its hydrogel revealed cell debris and changes in morphology, indicating cell damage and
unsuitability for ocular application.
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4. Conclusions

Our current study demonstrates the efficacy and safety of the combination system of
AmB-FNPs-ISG as mucoadhesive ophthalmic eye drops for FK treatment. The optimized
AmB-FNPs demonstrated a spherical shape with a mean particle size of 215 nm and high
entrapment efficiency of 71%. The developed thermosensitive AmB-FNP in situ hydrogel
formulations displayed satisfactory gelling capacity, a translucent homogeneous solution,
pH ~7, osmolality of ~323–348 mOsmol/kg, and %transmittance > 90%. All composite
formulations illustrated optimal viscosity and pseudoplastic behavior, which are suitable
for ocular application. Furthermore, the nanoparticle in situ hydrogel formulations showed
good physiochemical stability under storage conditions for 90 days. The combined systems
of AmB-FNPs-ISG exhibited an effective antifungal effect against C. albicans similar to
that of commercial AmB, and they showed a greater antifungal effect than the single
AmB-FNP as a result of the synergistic effect of the Pluronic surfactant in the hydrogel. As
expected, in vitro and ex vivo mucoadhesive results of the combined system showed higher
fluorescence intensity than the solution and nanodispersion, which confirmed that the
combination of FNPs with in situ hydrogels could enhance the retention time of the particles
on the corneal tissue for more than 6 h. However, AmB-FNP-PEI ISG demonstrated toxicity
to the HCE cells depending on the PEI content in the particles, whereas AmB-FNP-ISG,
AmB-FNP-PEG-ISG, and their FNP counterparts exhibited significantly less toxicity on
HCE cells than commercial AmB, thus making them more suitable for ocular application.
Thus, the smart AmB-FNP-PEG-ISG has potential as ready-to-use AmB eye drops for FK
treatment.
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