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Abstract: In this study, polyether ether ketone (PEEK) composites reinforced with newly developed
water-dispersible polyimide (PI)-sized carbon fibers (CFs) were developed to enhance the effects of
the interfacial interaction between PI-sized CFs and a PEEK polymer on their thermo-mechanical
properties. The PI sizing layers on these CFs may be induced to interact vigorously with the
p-phenylene groups of PEEK polymer chains because of increased electron affinity. Therefore,
these PI-sized CFs are effective for improving the interfacial adhesion of PEEK composites. PEEK
composites were reinforced with C-CFs, de-CFs, and PI-sized CFs. The PI-sized CFs were prepared
by spin-coating a water-dispersible PAS suspension onto the de-CFs, followed by heat treatment
for imidization. The composites were cured using a compression molding machine at a constant
temperature and pressure. Atomic force and scanning electron microscopy observations of the
structures and morphologies of the carbon fiber surfaces verified the improvement of their thermo-
mechanical properties. Molecular dynamics simulations were used to investigate the effects of PI
sizing agents on the stronger interfacial interaction energy between the PI-sized CFs and the PEEK
polymer. These results suggest that optimal amounts of PI sizing agents increased the interfacial
properties between the CFs and the PEEK polymer.

Keywords: carbon fiber; polyimide; sizing agent; interfacial adhesion; thermo-mechanical properties;
molecular dynamics simulations

1. Introduction

In recent years, polyether ether ketone (PEEK) polymer composites reinforced with
carbon fibers (CFs) have been widely used in high-performance applications, such as in the
aerospace and automobile fields, due to their high heat resistance, very light weight, and
great mechanical strength [1–14]. However, PEEK polymer has a high melting temperature
of around 343 ◦C, which is constrained during the manufacturing process to improve
the physical properties of the resulting composites [15–19]. Therefore, it was necessary
to develop a sizing agent to protect the CFs with better thermal stability to increase the
interfacial performance between the carbon fibers and matrix, which is an important factor
in the load transfer of composites.

A variety of treatment methods (e.g., plasma, synthesis, and inducing functional
groups of sizing agents on the fiber surfaces) have been studied [20–29]. Naito [30] demon-
strated an increase in the tensile properties of composites reinforced with carbon nanotube
(CNT)-grafted and polyimide (PI)-coated CFs. Hassan et al. [31] proposed that a loosely
packed CNT network using PI could improve the interfacial adhesion between CFs and
matrix due to enhanced CF wettability, polarity, and roughness. As a compatibilizer, PI
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exhibits a relatively high molecular weight in the interface regions as a result of a syner-
getic effect between PI and CNT. However, because PI is hard to dissolve, it requires a
large amount of a strong organic solvent (such as N-Methyl-2-pyrrolidone) and limits the
enhancement of interfacial adhesion [32–35]. Therefore, there is a need for novel research
to create PI with high heat resistance for use as a sizing agent for carbon fibers.

Molecular dynamics (MD) simulations are attractive for predicting the effects of surface
characteristics on the physical properties of polymer-based composites reinforced with
carbon material [36–38]. It is possible to examine the thermal behavior of polymer-based
composites by calculating the movement of molecules over time, which cannot be confirmed
via experiments. Jiao et al. [39] and Jin et al. [40] studied the interfacial properties between
polymers and sized-, functionalized-carbon materials using MD simulations. However,
these results are not considered to prove enhanced interfacial properties without molecular
mobility, which is significant in the thermal behavior of composites.

In this study, the thermo-mechanical properties and optimal sizing agent content of
CF/PEEK composites with sizing agents, which can be applied even at the high processing
temperature of PEEK polymers, were investigated. The aqueous PI sizing agent effects on
the structure, morphology, interface performance, and thermo-mechanical properties of
CF/PEEK composites were analyzed in detail to prove the comprehensive contributions of
environmentally friendly modifications using various surface analysis techniques (Fourier-
transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), atomic force
microscopy (AFM), and field-emission scanning electron microscopy (FE-SEM)) and physi-
cal estimates (interlaminar shear strength (ILSS), and dynamic mechanical analyzer (DMA)
and thermogravimetric analyzers (TGA) characteristics). MD simulations were performed
to analyze the interfacial characterization and thermal behavior according to the effect of
the PI sizing agent between the CFs and the PEEK polymer. The calculated results can
validate the experiments of the CF/PEEK composites.

2. Experiments
2.1. Materials

Pyromellitic dianhydride (PMDA, >99%), 4,4′-oxydianiline (ODA, >98%), and
4-hydroxy-1-methylpiperidine (HMP, >98%) were purchased from Tokyo Chemical In-
dustry (Tokyo, Japan) to synthesize the poly (amic acid) salt (PAS). The N-Methyl-2-
pyrrolidinone (NMP) was obtained from Sigma-Aldrich (St. Louis, MO, USA). A CF
plain-weave fabric (C120-3K, plain, HD FIBER Co., Ltd., Yangsan, Republic of Korea) was
used as reinforcement for the composites. C120-3K has a density of 1.78 g·cm−3, a weight
of 203 g·m−2, and a thickness of 0.25 mm. The amorphous PEEK film (APTIV 2000, Victrex,
Co., Ltd., Lancashire, UK) was used as a composite matrix with high heat resistance. The
PEEK film has a density of 1.26 g·cm−3, a tensile modulus of 1.80 GPa, a thickness of 16 µm,
and a glass transition and melting temperature of 143 and 343 ◦C, respectively.

2.2. Preparation of Poly (Amic Acid) Salt (PAS) as a PI Sizing Agent

The polyimide (PI) was prepared from poly (amic acid) (PAA), a precursor, using a
two-step reaction. The first step was the formation of the PAA solution via a nucleophilic
substitution reaction of the monomer in a step-growth polymerization reaction. The second
step was the dehydration and cyclization of the synthesized PAA solution with thermal
treatment over 200 ◦C resulting in the final PI sizing agent. The synthetic process of the PAS
powder was as follows (Figure 1). An amount of 0.15 mol of ODA was dissolved in 1200 mL
of NMP at room temperature. Then, 0.15 mol of PMDA was added to the ODA solution,
and the resulting mixture was stirred for 24 h under N2 gas. This resulted in the formation
of a PAA solution. Then, 0.3 mol of HMP was added to the PAA solution and stirred for
1 h. The mixture was then precipitated in acetone, and the resulting product was filtered,
washed, and dried under vacuum at room temperature to obtain a PAS powder [15].
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Figure 1. Synthetic route for PAS.

2.3. Fabrication of Water-Dispersible PI-Sized CF/PEEK Composites

Suspensions were created to deploy the sizing agent onto the carbon fiber surfaces
using the PAS powder in distilled water. The water-dispersible PAS powder was heated in
a water bath at 60 ◦C for 4 h to obtain the PI sizing agent, which was homogenized on a hot
plate by stirring it with a magnetic bar. Sizing agents were prepared with PI contents of
0.5, 1.0, and 1.5 wt% compared with the CFs. The commercial carbon fabric (C-CF) was
immersed in acetone at room temperature for 2 h to remove epoxy groups from the sizing
agent. Then, the carbon fabric was cleaned in acetone in 2 steps (10 min each) and dried in a
vacuum oven at 40 ◦C. The de-sized carbon fabric (de-CF) was modified by coating it with
the prepared PAS suspensions using a spin coater at 800 rpm for 30 s. The PAS-modified
CFs with different contents of 0.5, 1.0, and 1.5 wt% were dried in an oven at 40 ◦C for 12 h.
For the imidization of the PAS-modified CF, heat treatment was carried out in an oven at
250 ◦C for 1 h. An illustration of the surface treatment of the CFs with the PI sizing agent is
shown in Figure 2. In this study, the laminate was composed of 25 layers of carbon fiber
fabric and 150 plies of PEEK film. PEEK composites were reinforced with C-CF, de-CF,
and PI-sized CF. The laminate was preheated using a compression-molding machine at a
constant temperature of 380 ◦C for 10 min without pressure. After the preheating process,
the temperature was maintained at 380 ◦C with a pressure of 10 MPa for 20 min. The
cooling step was performed using a water-cooling system with a rate of −10 ◦C·min−1.
The total weight fraction of the carbon fibers was about 58 wt%.
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Figure 2. Schematic diagram of the process for surface treatment of carbon fibers using the PAS solution.

2.4. Characterizations

Nuclear magnetic resonance (NMR) spectra were determined with an Agilent 600 MHz
Premium COMPACT spectrometer at 600 MHz for 1H in dimethyl sulfoxide-d6 (DMSO-d6),
using tetramethylsilane (TMS) as an internal standard. The attenuated total reflection–
Fourier-transform infrared (ATR-FT-IR) spectra were obtained with a Nicolet IS10 with
32 scans per spectrum at a 2 cm−1 resolution. Atomic force microscopy (AFM) was con-
ducted with a peak force tapping mode system (multimode-8, BRUKER Co., Billerica,
MA, USA) to measure the surface roughness of the carbon fibers. Field-emission scan-
ning electron microscopy (FE-SEM Verios 460L, FEI Corp., Hillsboro, OR, USA) with
energy-dispersive X-ray spectroscopy (EDX) was performed to characterize the surface
morphologies of the carbon fibers as well as the fracture surfaces of the composites rein-
forced with carbon fibers. The interlaminar shear strength (ILSS) of the composites was
measured using the short-beam shear test as three-point bending according to the ASTM D
2344 standard (5569, Instron, Norwood, MA, USA) [41]. Specimens with the dimensions
28.2 mm × 9.4 mm × 4.7 mm were tested at a cross-head speed rate of 1 mm·min−1. The
short-beam strength (Fsbs) was calculated from the equation Fsbs = 0.75 Pb/bh, where Pb
represents the maximum load, b is the width, and h is the thickness of the specimen. The
sample results were estimated as an average value from more than five specimens. The
thermo-mechanical properties of the composites were obtained using a dynamic mechani-
cal analyzer (DMA Q800, TA Instruments, New Castle, DE, USA) with a dual-cantilever
mode at 1 Hz from 30 ◦C to 300 ◦C and a heating rate of 3 ◦C·min−1, according to the
ASTM 4065-01 standard [42]. The thermal stability of the carbon fibers was analyzed using
thermogravimetric-differential thermal analysis (TG-DTA Analyzer SDT Q600, WATERS,
Milford, MA, USA) with a temperature range of 25 ◦C to 800 ◦C with a heating rate of
10 ◦C min−1 under nitrogen gas.

2.5. Molecular Dynamics Modeling

MD simulations were performed to investigate the effect of the PI sizing agent on
the interface between the CFs and PEEK polymer using Materials Studio 2017 software.
The simulation model consisted of five graphene sheets, PI molecular chains, and PEEK
molecular chains for modeling (Figure 3). The PI molecular chains with 0.0, 0.3, 1.0, 2.0, and
5.0 wt% compared with the carbon fibers were placed on the top surfaces of the graphene
sheets. The simulation of the system based on a constant number, volume, and temperature
(NVT) ensemble was performed to equilibrate all the models with a time step of 1.0 fs for
300 ps at 300 K. The simulation of the system based on a constant number, pressure, and
temperature (NPT) ensemble was performed to further relax the internal stresses of the
simulation models with an additional annealing process. All the models were heated from
300 K to 700 K at 50 K intervals and cooled down to 300 K at equal intervals. Each step was
performed with a time step of 1.0 fs during 300 ps. The density of the equilibrated CF/PEEK
models was 1.54 g·cm−3, which was similar to the experimental result of 1.55 g·cm−3. The
dimension of the CF/PEEK composite model was 48.2 Å (x) × 49.9 Å (y) × 53.1 Å (z) in the
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periodic boundary condition. All the MD simulations were performed using the condensed-
phase-optimized molecular potentials for the atomistic simulation studies (COMPASS II)
force field [43], which has been widely used to describe the interaction between carbon
materials and polymers.
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The mean square displacement (MSD) can be used to characterize the speed at which
particles move and quantify the mobility of molecules according to temperature. The
MSD could be determined in the temperature range from 250 K to 500 K during the NPT
ensemble. The MSD analysis can be calculated using the following equation:

MSD =
1
N

N

∑
i=1

∣∣∣x(i)(t)− x(i)(0)
∣∣∣2 (1)

where N is the number of particles to be averaged, x(i)(0) is the reference position of the
i-th particle, and x(i)(t) is the position of the i-th particle at time t.

2.6. Interfacial Characterization

The interaction energy of the CFs with the PEEK polymer was calculated using

∆E (kcal/mol) = Etotal −
(

ECF + Epolymer

)
(2)

where ∆E is the interaction energy at the interface between the CFs and the PEEK polymer,
Etotal represents to the total potential energy of the composite, and ECF and Epolymer are the
potential energy of the PI-sized CFs and PEEK polymer, respectively. The interfacial shear
strength (ISS, τ) between the PI-sized CFs and the PEEK polymer was calculated using

τ (MPa) =
∆E

WL2 (3)

where τ is the ISS, W is the width of the CF, L represents the length of the CF, and ∆E
corresponds to the difference in the interaction energy.
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3. Results and Discussion
3.1. Synthesis and Characterization of PAS

The 1H NMR spectrum of PAS could be assigned by comparison between the 1H NMR
spectra of HMP and PAA, as shown in Figure 4. The marked numbers and letters in the
Figure 4 were noticed each molecular group and spectrum peak. The peaks at 2.56 ppm
in the 1H NMR spectrum of HMP were related to the 3 protons of the CH3 groups. The
protons in PAA could be confirmed from the peaks at 6–9 ppm in the 1H NMR spectrum of
PAA. Those peaks were also found in the 1H NMR spectrum of PAS. Moreover, the 6 peaks
at 1.5–4 ppm in the 1H NMR spectrum of PAS that appeared after the reaction of PAA with
HMP were related to a proton on the piperidine ring of HMP. The proton of the CH3 group
in HMP was de-shielded by a proton of the COOH group in PAA.
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Figure 5 shows the FT-IR spectra of PI, PAA, and PAS. The FT-IR spectrum of PAA
shows N-H stretching at 3252 cm−1, C=O stretching at 1620 cm−1, N-H stretching at
1503 cm−1, and C-O stretching at 1235 cm−1. The FT-IR spectrum of PAS shows new bands
at 3380 cm−1 and 2920 cm−1, corresponding to the O-H and -CH3 bonds of the HMP groups
in PAS. The FT-IR spectrum of PAS, which can also be observed in the FT-IR spectrum
of PAA, indicates that PAS was completely synthesized, as shown in Figure 5. The FT-IR
spectra of PAA, PAS, and PI were used to verify the imidization of PAS to obtain cured
PI. This was conducted via the observation of the disappearance of the peak at 1620 cm−1

and the growth of a peak at 1720 cm−1. In Figure 5, the photographic image represents the
aqueous PAS solution in water with an increase in concentration according to our previous
study [15]. The synthesized PAS powder was readily available to the water-dispersible
sizing agent without organic solvents.
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Figure 5. FT-IR spectra of PI, PAA, and PAS.

3.2. Surface Morphology Analysis of the PI-Sized CFs

The surface structures of the CFs were characterized using FT-IR, AFM, and FE-SEM
observations. The FT-IR spectra of the C-CFs, de-CFs, and PI-sized CFs with contents of 0.5,
1.0, and 1.5 wt% were combined in Figure 6. The spectrum of the de-CFs was relatively
smoother than that of the C-CFs due to the removal of epoxy groups and any other residues.
A sharp carboxylic acid absorption peak (C=O stretching) in all the PI-sized CF samples
was observed near 1700 cm−1. The addition of PAS molecules onto the CF surfaces reveals
N-H stretching. This was assigned to 1320 cm−1, which was not displayed in the C-CFs.
It could be determined that the carbon fiber surfaces were successfully modified with the
cured PI from the newly synthesized water-dispersible PAS, which led to a more effective
increase in the carbon fiber surface polarity and interfacial adhesion between the matrix
and fibers.

Polymers 2023, 15, 1646 8 of 17 
 

 

 

Figure 6. FT−IR spectra of C−CFs and de−CFs as well as 0.5, 1.0, and 1.5 wt% PI−sized CFs. 

 

Figure 7. AFM images and height profiles for (a) C−CFs and (b) de−CFs, as well as (c) PI 0.5 wt%, 

(d) PI 1.0 wt%, and (e) PI 1.5 wt% of PI−sized CFs. 

Figure 6. FT-IR spectra of C-CFs and de-CFs as well as 0.5, 1.0, and 1.5 wt% PI-sized CFs.



Polymers 2023, 15, 1646 8 of 17

The 2D and 3D surface topographies of the de-CFs, C-CFs, and PI-sized CFs with
different contents of PI sizing agents were compared, as shown in Figure 7. Increased
surface roughness was observed on the PI-sized CF surfaces compared with those of the de-
CFs. The average roughness (Ra) of the PI-sized CFs with contents of 0.5, 1.0, and 1.5 wt%
(40.9, 62.1, and 44.0 nm, respectively) was greater than that of the de-CFs (32.5 nm). This
increased roughness led to the enhancement of mechanical interlocking between the surface
of the PI-sized CFs and the PEEK polymer [44]. However, in the case of the PI 1.5 wt%
PI-sized CFs, the variation in height became relatively high (from −150 nm to 170 nm)
due to an excessive amount of coating, as shown in Figure 7e [45,46]. This agglomerated
non-uniform sizing layer between the carbon fibers and the matrix can lead to a decrease
in interfacial adhesion.
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Observations using SEM-EDX were performed to analyze the compositional elements
of reactive PI groups on the carbon fiber surfaces. Figure 8 shows the PI line profile of the
EDX spectra across the carbon fiber surface along the scanline. The graph demonstrates the
intensity of elemental carbon (C), nitrogen (N), and oxygen (O) with respect to distance
along the fiber surface. The elements N and O had relatively uniform low concentrations
over all of the carbon fiber surfaces. However, the C line profile shows an obvious decrease
according to the increase in the content of the PI sizing agent, as shown in Figure 8a,e. This
result was ascribed to a PI sizing layer containing uniformly attached N or O compared
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with the C-CFs or de-CFs. Increasing the amount of N or O greatly affects the interfacial
adhesion between CFs and a PEEK polymer due to solubility with higher ionization [47].
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Figure 8. FE-SEM images and SEM-EDX line spectra of elemental carbon (green line), nitrogen (blue
line), and oxygen (red line) in (a) C-CFs and (b) de-CFs, as well as (c) PI 0.5 wt%, (d) PI 1.0 wt%, and
(e) PI 1.5 wt% PI-sized CFs.

3.3. Thermo-Mechanical Properties of the PI-Sized CF/PEEK Composites

The ILSS results were analyzed to investigate the characteristics of the interface be-
tween the CFs and the PEEK polymer, with or without the PI sizing agent, as shown in
Figure 9. The short-beam strength for the PI 0.5-, 1.0-, and 1.5-sized CF-reinforced PEEK
composites was 76.9, 73.8, and 71.4 MPa, respectively. The ILSSs of all PI-sized CFs and
de-CF/PEEK composites were higher (up to 13.2%) than those of the C-CF/PEEK com-
posites with the commercial sizing agents. The structure of the aromatic PI synthesized
from the PAA salt of the PMDA/ODA type shows a charge-transfer interaction consisting
of electron donors (including nitrogen groups) and electron acceptors (including carbonyl
groups). This charge-transfer complex was attributed to the intramolecular forces between
PI molecules, as well as to the intermolecular forces between PI molecules and PEEK poly-
mer chains. These properties were supported by the strong molecular attraction due to the
formation of robust polymer chains. With all these reactive groups, it was possible for them
to attach layer by layer. Therefore, polyimides may not only form well-stacked sizing layers
on the surfaces of carbon fibers but can also interact well with the p-phenylene groups of
PEEK polymer chains [31]. This leads to an enhanced potential for the PI sizing agent to
cause improved interfacial adhesion between the CFs and the PEEK polymer. The fiber
surfaces of the de-CFs could not be protected from abrasion due to the lack of the sizing
agent. In addition, the de-CFs were difficult to handle due to low cohesion. Therefore, the
de-CFs are limited in fiber processing and production and composite material fabrication.
Therefore, it is necessary for the treatment with a sizing agent to be appropriate to preserve
the carbon fibers [48,49]. Figure 9 shows that the 0.5 wt% content of the PI sizing agent
improved the short-beam strength of the CF/PEEK composites by approximately 13%. The
commercial sizing agent is generally known to achieve approximately 1% coating on the
surfaces of carbon fibers. This result demonstrates that composites reinforced with the
newly developed water-dispersible PI have competitiveness for their efficient application
to high-performance structures.
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strengths and enhancements.

The DMA results on the viscoelastic properties of the composites reinforced with the
C-CFs, de-CFs, and PI-sized CFs are shown in Figure 10. These results indicate that the
complex modulus between the polymers can be affected by a wide variety of chain motions
over a range of temperatures. Figure 10a shows a comparative increase in stored energy for
all of the composites containing PI-sized CFs compared with the composites containing
commercial epoxy-sized CFs. The storage moduli of the composites with 0.5, 1.0, and
1.5 wt% PI-sized CFs were 23,076, 24,440, and 23,724 MPa, respectively. In the case of the
1.0 wt% PI-sized CFs, the rate of increase in the storage modulus was approximately 11.6%
compared with that of the C-CF/PEEK composites. As mentioned above, this is because the
interfacial adhesion between the carbon fibers and the PEEK polymer was improved due to
enhanced intermolecular attraction by adding the PI sizing agent. The effect of the PI sizing
agent was demonstrated while ensuring excellent thermal stability at a high temperature.
In addition, the increase in the loss modulus, which indicates energy dissipated as heat
from the composites, approaches that of its viscous property. The composite reinforced with
1.0 wt% PI-sized CFs is distinctively represented in Figure 10b. This phenomenon means
that the intermolecular force associated with the interfacial interaction between the PI sizing
agent and the PEEK polymer was even greater than the intramolecular force between the
CFs and the PI sizing agent of the PI-Sized CF/PEEK composites. This result indicates that
the surface modification of the carbon fibers could be determined by the interfacial failure
attributed to the physical properties of the composites. In addition, Figure 10c shows that
the glass transition temperatures of the PI-Sized CF/PEEK composites were increased in
comparison with the C-CF/PEEK composites. Among the content levels of the PI sizing
agent, the appropriate amount on the surface of a CF is 0.5 wt% for the storage modulus
as well as the damping factor (tan δ). This means that the thermal resistance to molecular
mobility in the composites with the PI sizing agent was enhanced in comparison with the
C-CFs or de-CF/PEEK composites [34]. Therefore, the effective incorporation of PI on the
CFs was important to improve the thermo-mechanical properties of the PEEK composites
reinforced with CFs. As shown in Figure 10c, the measured width from the tan δ curve for
the composite reinforced C-CFs is remarkably wide, which indicates a greater distribution of
the segment lengths related to molecular mobility than in the PI-Sized CF/PEEK composites.
Moreover, the intensity of the tan δ curve for the composite-reinforced C-CFs presents a
greater increase in the mobility of the relaxing segments of the polymer compared with
that of the composite-reinforced PI-sized CFs. This refers to the weak interaction bonding
resulting from poor inter–intramolecular forces between the C-CFs and the PEEK polymer
with increasing temperature. These results suggest that the interfacial interaction between
CFs and PEEK can be affected by the PI sizing agent on the surfaces of the carbon fibers. This
effect was attributed to the significantly enhanced interfacial adhesion of the composites.
The effect of the sizing agent with high heat resistance was the remarkable thermal stability
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of the CF/PEEK composites. In addition, the thermal stability of the PI-sized CFs with
high heat resistance was compared with that of the C-CFs, as shown in Figure 11. The
residual weights of the composites with C-CFs, de-CFs, PI0.5, PI1.0, and PI1.5 were 98.63,
99.55, 99.80, 99.59, and 99.67%, respectively. In the case of the PI-sized CFs with contents
of 0.5, 1.0, and 1.5 wt%, there was no weight loss over the temperature range of 25 ◦C to
800 ◦C. The difference in the weight loss ratio between the PI-sized CFs and C-CFs was
definitely observed depending on the absence of the polyimide sizing agent. Therefore, it
was maintainable to protect the surfaces of the carbon fibers with the residual amount of
the polyimide sizing agent after decomposition at a high temperature.
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3.4. Fracture Characteristics of the CF/PEEK Composites

Figure 12 shows SEM images of the fracture surfaces on the composites reinforced with
carbon fibers after the ILSS test. The fracture surfaces of the composites reinforced with
C-CFs and de-CFs are relatively rough compared with those of the composites reinforced
with PI-sized CFs at all content levels. Damaged fibers in the fill direction were rumpled,
and pull-out of fibers were observed in the warp direction (Figure 12a,b). In addition, while
delamination between the C-CFs or de-CFs and PEEK matrix was observed, the fracture
surfaces of the PI 0.5, 1.0, and 1.5 wt% PEEK composites are rather smooth and tightly
embedded between the CFs and the PEEK matrix. This phenomenon confirms that the
interfacial adhesion was enhanced by adding the PI sizing agent to the carbon fibers [50].
The PI sizing agent was protected due to its high heat resistance during high-temperature
manufacturing processes, which allowed it to withstand the effective stress transfer of
the carbon fiber. The PI-sized CFs played an important role in improving the interfacial
performance of these PEEK composites.
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3.5. Molecular Dynamics of the CF/PEEK Composite

MSD analysis can derive an estimation of the parameters of molecular movements,
such as the diffusion coefficient. When the model systems reached the phase transition
region, the diffusion level increased sharply, which can determine the glass transition
temperature. The temperatures of the phase transition regions of the composite models
were increased, and are marked with a red arrow in Figure 13. The temperatures of
the phase transition regions of the composite models with de-CFs, PI0.3, and PI1.0 were
400–450 K, 425–475 K, and 450–475 K, respectively. The de-CFs (Figure 13a) show a relatively
low temperature range compared with the PI-sized composites. This result shows that the
PI sizing agent increased the glass transition temperature.
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Figure 13. Mean square displacement (MSD) results: (a) de-CFs, (b) PI0.3, and (c) PI1.0.

The interfacial characteristics between the de-CFs and the PEEK polymer were calcu-
lated using MD simulations. Table 1 shows the interaction energy (∆E) between the CFs
and the PEEK polymer. The negative interfacial energy means that the energy of adsorption
of the PEEK molecules at the interface was strong [51,52]. Therefore, the high negative
value indicates strong adhesion at the interface between the CFs and the PEEK polymer.
The interaction energy of the de-CF/PEEK composites was −1788.79 kcal/mol. Those
of the PI-Sized CF/PEEK composites with contents of PI 0.3, 1.0, 2.0, and 5.0 wt% were
−1877.73, −1869.48, −1815.94, and −1767.29 kcal/mol, respectively. These results show
that the interaction energies of the PI-Sized CF/PEEK composites with contents of PI 0.3,
1.0, and 2.0 wt% generally had a higher interaction energy than that of the de-CF/PEEK
composite. In addition, the PI sizing agents also affected the interfacial shear strength
(ISS), as shown in Figure 14. The interfacial shear strengths of the de-CFs, PI0.3, PI1.0,
PI2.0, and PI5.0 were calculated to be 103.15, 107.17, 107.31, 103.84, and 101.24 MPa, respec-
tively, obtained from Equation (3). The simulated interfacial shear strengths of the PI-Sized
CF/PEEK composites, except for the PI5.0 model, were higher than that of the de-CF/PEEK
composite. This result proves that the PI sizing agent affected the interfacial properties
between the CFs and the PEEK polymer. In addition, the contents of 0.3 wt% and 1.0 wt%
of the PI sizing agent on the CFs were the most effective for improving the interaction
energy and interfacial shear strength. The results obtained from the MD simulations show
similar trends to the experimental data.

Table 1. Interaction energy of CF/PEEK composites using MD simulation.

Sample (300 K) Etotal (kcal/mol) ECF (kcal/mol) Epolymer (kcal/mol) ∆E (kcal/mol)

de-CF/PEEK 243,256.35 229,233.60 15,811.53 −1788.79

PI-Sized CF/PEEK

0.3 wt% 243,991.70 229,315.41 16,554.02 −1877.73
1.0 wt% 244,734.37 229,173.83 17,430.01 −1869.48
2.0 wt% 242,697.81 229,127.90 15,385.85 −1815.94
5.0 wt% 240,873.99 228,557.79 14,083.48 −1767.29
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Figure 14. Interfacial shear strength of PEEK composites reinforced with de-CFs as well as PI 0.3 wt%,
PI 1.0 wt%, PI 2.0 wt%, and PI 5.0 wt% sized CFs using MD simulation.

4. Conclusions

In this study, the effects of water-dispersible PI-sized CFs on the thermo-mechanical
properties of PEEK composites were investigated. The PMDA/ODA used for the PAA
solution was successfully synthesized and thermally imidized to apply it as a sizing agent
for the carbon fibers. The surfaces of the carbon fibers were modified by adding a PI sizing
layer that led to improved interfacial adhesion between the CFs and PEEK matrix. The
short-beam strengths and storage moduli of the PEEK composites reinforced with PI-sized
CFs increased more than those of the composites reinforced with de-sized and commercial
CFs. The surface roughness of the PI-sized CFs as indicated in the 2D and 3D topographies
was greater than those of the C-CFs and de-CFs. This result shows that the CF surfaces were
coated with the PI sizing agent. The fracture surfaces of the composites reinforced with
PI-sized CFs exhibited greater smoothness and were more tightly embedded between the
CFs and PEEK matrix than those of the composites reinforced with C-CFs and de-CFs. This
was ascribed to enhanced mechanical interlocking between the PI-sized CFs and the PEEK
polymer of the composites. These results suggest that the interfacial interaction between
CFs and PEEK can be affected by a PI sizing agent on the surfaces of carbon fibers. This
effect was attributed to the significantly enhanced interfacial adhesion of the composites
even at a high temperature. MD simulations were performed to examine the effects of
the PI sizing agents on the interfacial properties between the CFs and the PEEK polymer.
The interfacial properties between the CFs and the PEEK polymer were most improved
when the PI sizing agent with 0.3 wt% was applied to the surface of the carbon fibers. As
a result, the newly developed PI sizing agent with high heat resistance can be used to
improve the interfacial bonding properties and thermo-mechanical properties of CF/PEEK
composites. The present study focused on improving the interfacial bonding properties
and thermo-mechanical properties of CF/PEEK composites. PI-sized carbon nanomaterials
with high-temperature resistance and high dispersion can be investigated to improve the
thermo-mechanical properties of polymer-based composites in the future.
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