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Abstract: Solar–thermal energy conversion and storage technology has attracted great interest in
the past few decades. Phase change materials (PCMs), by storing and releasing solar energy, are
able to effectively address the imbalance between energy supply and demand, but they still have the
disadvantage of low thermal conductivity and leakage problems. In this work, new form-stable solar
thermal storage materials by impregnating paraffin PCMs within porous copper–graphene (G–Cu)
heterostructures were designed, which integrated high thermal conductivity, high solar energy
absorption, and anti-leakage properties. In this new structure, graphene can directly absorb and store
solar energy in the paraffin PCMs by means of phase change heat transfer. The porous structure
provided good heat conduction, and the large surface area increased the loading capacity of solar
thermal storage materials. The small pores and superhydrophobic surfaces of the modified porous
G–Cu heterostructures effectively hindered the leakage issues during the phase change process.
The experimental results exhibited that the thermal conductivity of the prepared form-stable PCM
composites was up to 2.99 W/(m·K), and no leakage took place in the solar–thermal charging process.
At last, we demonstrated that the PCM composites as an energy source were easily integrated with a
thermoelectric chip to generate electric energy by absorbing and converting solar energy.

Keywords: solar energy; phase change materials; graphene; thermal conductivity

1. Introduction

To date, the continuous consumption of traditional fossil energy and global environ-
mental pollution have caused a serious energy crisis. Developing different types of clean
energy sources has become an essential approach to achieving sustainable development in
human society [1]. Owing to its abundance, cleanliness, and low cost, solar energy as an
alternative energy resource attracts intensive attention all over the world [2,3]. At present,
solar energy utilization technology is mainly classified into solar thermal technologies
and photovoltaic technologies. Compared with photovoltaic technologies, solar thermal
technologies, which absorb solar radiation directly and convert it into heat to heat up liquid
or air, have higher energy conversion efficiency, lower cost, and a longer service life [4–6].
In the current solar thermal systems, however, intermittency and instability deteriorate
the efficiency of the systems. To address the mismatch between demand and supply of
solar energy, solar thermal storage technologies, which absorb, store, and release vast quan-
tities of thermal energy, are considered a promising method [7–9]. Solar thermal storage
materials are the key to solar thermal storage systems, which include latent heat storage,
sensible heat storage, and chemical reaction heat storage. Among them, the latent heat
storage technologies that rely on the liquid–solid phase change material (PCM) have many
advantages, such as large phase change enthalpy, high heat storage density, non-poisonous,
and near constant solid–liquid transition temperature [10,11]. According to their chemical
properties, the common PCMs are divided into two classes: inorganic PCMs—including
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molten salts, crystal salts, metals, and metal oxides—and organic PCMs, including paraffin,
alcohols, fatty acids, and some polymers. In fact, conventional PCMs suffer from low
thermal conductivity and leakage problems, which deteriorate their energy storage rate
and seriously limit their practical applications [12–14].

To enhance the thermal conductivity of PCMs, many high thermal conductivity fillers
have been added to PCMs, including expanded graphite [15–17], carbon nanotube [18,19],
graphene [20–22], and metal foam [23–26]. The dispersion of high-conductive nanomateri-
als is regarded as one of the most efficient approaches to enhancing the thermal conductivity
of base PCMs. Table 1 summarizes the typical composite PCMs for solar thermal storage.
A large number of studies exhibited that dispersing these high-conductive additives in the
PCM would effectively improve thermal conductivity and obtain excellent heat transfer
performance. For example, Kumar et al. [27] investigated the effect of nano-Si3N4 particles
on the thermal conductivity of the paraffin PCMs. The experimental results showed that the
thermal conductivity of the composites was increased by 33.9% when the weight percentage
of Si3N4 nanoparticles was 2%. Xie et al. [28] prepared a solar–thermal storage composite
material by filling carbon fiber and graphite sheets and expanding graphite into organic
PCMs. Compared to expanded graphite/organic PCMs, the thermal conductivity of this
composite was up to 16.5 W/(m·K), which increased by ca. 24%. Shama et al. [29] synthe-
sized promising solar thermal storage materials by filling commercial paraffin with CuO
nanoparticles. It was found that the enhancement of thermal conductivity of the composite
materials was over 17%, and the melting time was decreased by 22.22% as the concentration
of CuO nanoparticles was 1%. Although these highly conductive nanoparticles had the
potential to enhance the thermal conductivity of PCMs, an effective improvement of their
thermal property of PCMs required further pressing the composite materials into a compact
block [30,31]. In addition to high-conductive nanomaterials, embedding PCMs into porous
materials was another common method to improve thermal conductivity by increasing the
heat transfer area. For example, Zhang et al. [32] presented a PCM composite prepared by
embedding PCMs into a three-dimensional diamond foam. The new PCM had a thermal
conductivity of 6.70 W/(m·K), which was a great enhancement over pure PCMs.

On the other hand, many researchers have investigated various methods to restrict
the leakage of PCMs. Metal foams with many advantages, such as a large specific surface,
relatively high thermal conductivity, low bulk density, and high air permeability, have
been widely used for enhancing the thermal performance of PCMs [33–36]. In the metal
foams, the porous structure and skeleton connection enabled more PCMs to be embedded,
which enhanced the thermal conductivity and heat storage capacity of PCMs. For example,
Zhang et al. [37] reported shape-stabilized composite solar thermal storage materials,
which were made of paraffin and PEG10000 as organic PCMs, copper foams as supporters,
and carbon-based materials as surface modifiers. The thermal conductivity of this new
shape-stabilized composite material was 1.04 W/(m·K), which indicated an increase of
300% compared with pure PCMs, and the solar–thermal conversion efficiency was 86.68%.
Zheng et al. [38] prepared a novel form-stable solar thermal storage material that was
prepared by impregnating paraffin PCMs into copper foams loaded with graphene aerogels.
The thermal conductivity of this new composite material was about 3.0 W/(m·K), which
was over 9.0 times higher than that of pure PCMs, and the solar–thermal energy conversion
efficiency reached up to 97%. Zheng et al. [39] investigated the effect of copper foams on
the melting behavior of paraffin through visual experiments. It was found that copper foam
could reduce the melting time of paraffin by 20.5%, and when the heat position was at the
top, the melting time was the longest compared with it heated on the left and at the bottom.
Wang et al. [40] established a test platform to analyze the thermal properties of PCM
composites, and the phase change process was investigated using numerical simulations.
The results showed that porous copper foams with a porosity of 97.3% could effectively
enhance the uniformity of PCM’s internal heat transfer while shortening its thermal storage
time by over 40%. In addition to copper foams, El Idi et al. [41] adopted aluminum and
nickel foams to prepare a paraffin–metal foam composite using a vacuum impregnation
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method. The experimental results exhibited that the thermal conductivity of the paraffin–
aluminum foam composite was about 18.0 times higher than that of commercial paraffin,
and the paraffin–nickel foam composite was about 6.0 times higher than that of commercial
paraffin. Xiao et al. [42] reported a PCM composite which was prepared by embedding pure
paraffin into nickel foams with various pore sizes and thermal porosities by the vacuum
mothed. The thermal conductivity of the PCM composite prepared by nickel foams with a
porosity of 90.61% reached up to 2.33 W/(m·K), which was nearly five times higher than
that of pure paraffin. Therefore, the metal foams provided a promising way to improve the
thermal conductivity of the paraffin and avoid the problem of leakage simultaneously.

Table 1. Properties of typical PCM composites.

Composites Porosity Thermal Conductivity (W/(m·K))

Expanded graphite–paraffin composite [15] 38.01% 2.45
Expanded graphite–hexadecane composite [17] 80% 1.2402

Melamine–paraffin composite [21] 85.8% 0.096
Copper–paraffin composite [37] 95% 1.04
Copper–paraffin composite [40] 97.3% 2.879
Nickel–paraffin composite [41] 95.2% 1.44
Nickel–paraffin composite [42] 90.61% 2.33
Copper–paraffin composite [43] 95.92% 1.439
Copper–paraffin composite [43] 97.59% 1.238

Nickel–myrtle alcohol composite [44] 97% 0.48

In this work, we presented a facile and direct method to prepare form-stable solar
thermal storage materials via impregnating paraffin PCMs within porous copper–graphene
(G–Cu) heterostructures, which integrated high thermal conductivity, high solar energy
absorption, and anti-leakage properties. The porous G–Cu heterostructures were fabricated
via sintering multilayer copper meshes at a high temperature, followed by graphene layers
growing on it to obtain the ability of solar energy absorption, and then modified with a layer
of polydimethylsiloxane (PDMS) to obtain a hydrophobic surface. The sintering porous
structure covered with graphene layers provided efficient heat conduction, and the wide
surface area increased the load capacity of solar thermal storage materials. The small pores
and superhydrophobic surfaces of the modified porous G–Cu heterostructures effectively
hindered the leakage issues during the phase change process of paraffin PCMs. Graphene
layers were able to directly absorb solar radiation and convert it into thermal energy, which
was stored in the paraffin PCMs by means of phase change heat transfer. In addition,
we also verified that the novel composite materials based on G–Cu heterostructures were
successfully used to power a thermoelectric chip and generate electric energy. Therefore,
this work not only offered a new method to fabricate high-performance PCM composites
but also integrated the processes of fast thermal response, solar–thermal conversion, and
solar thermal energy storage.

2. Materials and Methods
2.1. Materials

Paraffin PCMs were brought from Shanghai Aladdin Reagent Co., Ltd. (Shanghai,
China). Copper meshes (300-mesh) were purchased from Jiangsu Ju Cheng Mesh Co., Ltd.
(Suzhou, China). Hydrochloric acid (HCl) was provided by Shanghai Lingfeng Chemical
Reagent Co., Ltd. (Shanghai, China). Polydimethylsiloxane (PDMS) and a foaming agent
(Sylgard 184) were ordered from Shenzhen SINWE Co., Ltd. (Shenzhen, China). High-
purity methane and mixed gas (N2, 95%; H2, 5%) were brought from Newradar SPECIAL
Gas Co., Ltd. (Dalian, China). The thermoelectric generator (SP1848-27145) was provided
by Guangzhou ElecFans Electronic Co., Ltd. (Guangzhou, China).
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2.2. Preparation of Copper–Graphene Heterostructures

The copper–graphene heterostructures were prepared by a high-temperature sintering
method, which was further was used to synthesize the PCM composites, as shown in
Figure 1. First, the copper mesh with 60-mesh was immersed in 4 mol/L HCl solution in
order to remove its surface copper oxide, and then it was dried in an oven. The treated
copper mesh was cut into small pieces to construct a cube with a length of 34 mm, a width
of 20 mm, and a height of 20 mm. In this structure, there were five pieces of copper meshes
as internal supporters and heat transfer paths. Then, the cube was loaded in a corundum
boat and put into a tube furnace. The temperature gradually rose from room temperature
to 900 ◦C with a temperature rise rate of 10 ◦C/min, and then it was held for 60 min
under the N2-H2 mixed gas atmosphere. To obtain graphene nanoparticles, CH4 gas as the
carbon source was introduced into the tube furnace and held for another 40 min. After
the modification of graphene nanoparticles, the N2-H2 mixed gas replaced CH4 gas, and
the reactor chamber was cooled down to room temperature naturally. The porous G–Cu
heterostructures were further modified by a layer of PDMS to obtain hydrophobicity. Last,
we adopted a vacuum impregnation method to prepare the PCM composites by immersing
the modified G–Cu heterostructures in melted liquid paraffin PCMs.
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2.3. Preparation of the Graphene–Copper–Paraffin Composites

To obtain surface hydrophobicity, the sintered copper–graphene heterostructures were
first immersed in a 40 mL n-hexane solution which contained PDMS and curing agent
with a ratio of 10:1. Then, the modified porous copper–graphene heterostructures were
put in a drying oven with a temperature of 60 ◦C to cure the PDMS. Finally, the modified
copper–graphene heterostructures were placed into the liquid melted paraffin for 5 min
and cooled to room temperature to obtain the graphene–copper–paraffin composites.

2.4. Measurement and Characterization

The morphology of the PCM composites was analyzed by field emission scanning
electron microscopy (Czech TESCAN MIRA LMS, Brno, Czech Republic). The wettability
of the copper–graphene heterostructures surface was measured by a contact angle mea-
surement analyzer (Dataphysics OCA20, Stuttgart, Germany). The crystal quality of the
composite was characterized by X-ray diffraction (XRD, Thermo Scientific ARL EQUINOX
3500, Waltham, MA, USA). The Raman spectrum was obtained by a Renishaw inVia Qon-
tor confocal Raman microscope system (Gloucestershire, UK). The solar irradiation was
produced by a solar simulator (CEL-PE300L-3A, Beijing, China), and a solar power meter
(CEL-NP2000-2A, Beijing, China) was used to calibrate the solar power density. To measure
the thermal conductivity, K-type thermocouples (Omega SMPWTT-K) were used to record the
real-time temperature of the PCM composite, and the temperature signal was stored in a mul-
tichannel data acquisition system (Agilent 34970a, Agilent Technologies Inc., Santa Clara, CA,
USA). The cooling block was connected to a cooling bath (Julabo Bilon Equipment, Seelbach,
Germany), which provided circulating running cooling water with a consistent temperature
of 10 ◦C. To monitor the solar charging process, an infrared camera (HM-TPH36-10VF/W
HIKVISION, Hangzhou, China) was used to take time-sequential IR images.
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3. Results and Discussion

The porous G–Cu heterostructures played a critical role in the solar energy storage
process for the PCM composites. The graphene nanoparticles grown on the surface of
the copper with excellent solar–thermal conversion capability were able to directly collect
solar radiation and convert it into heat. Porous G–Cu heterostructures not only enabled
the embedding of many PCMs but also efficiently captured the incident sunlight, thereby
reducing scattering reflection. The G–Cu heterostructures with good skeleton connections
offered an effective heat transfer path for solar thermal energy storage. Additionally, the
capillary force generated by the hydrophobic surfaces and small size pores efficiently
restricted the leakage of melted paraffin PCM during the phase change process.

Figure 2a,b present the SEM images of the G–Cu heterostructures and untreated
copper mesh at low and high magnifications, respectively. As shown, a layer of graphene
nanoparticles is formed on the G–Cu heterostructures surface, resulting in a rough surface,
as shown in Figure 2a. On the contrary, the untreated copper mesh surface presents
relatively smooth, and the color is slightly darker than that of the G–Cu heterostructures
surface, as shown in Figure 2b. To further analyze its structure, the X-ray diffraction (XRD)
and the Raman spectrum are acquired from the outer surface under 532 nm laser excitation,
as shown in Figures S1 and S2. From the XRD results in Figure S1, it can be seen that there
are 2θ peaks at about 43◦, 50◦, and 74◦ which are well indexed to (111), (200), and (220)
for Cu, respectively. The 2θ peak at 26.3◦ is indexed to the C (002), indicating that the
composites only consist of graphene and copper, where graphene is composed of crystalline
carbon atoms. From its Raman spectrum, we could see the typical graphene Raman peaks
(G-band at ~1342 cm−2, D-band at ~1580 cm−2, and two-dimensional band at ~2680 cm−2)
appearing on the surface, indicating the presence of graphene on its surface.

A water contact angle measurement was used to evaluate the wettability of the porous
G–Cu heterostructures. To reduce the contact angle hysteresis influence caused by the water
droplets, we placed the needle at a distance of 1 to 2 mm up to the test samples. A computer
was used to control the machine to drop 2 µL of water on the surface of the samples. A
calculator continuously shot with a high-power camera; meanwhile, a computer measured
its contact angle automatically. During the test, the room temperature was 20 ◦C and the
relative humidity was 30%. As shown in Figure 2c, the surface of the G–Cu heterostructure
modified by PDMS presents hydrophobicity, and the measured contact angle is 132.3◦

after a water droplet is on the surface for 1 s, while the untreated copper mesh contact
angle is only 72.4◦ (Figure 2d). Additionally, we calculated the porosity of the porous
G–Cu heterostructures by comparing their weight and volume. The porosity of the G–Cu
heterostructures reached up to 90.5%, meaning that it could embed more paraffin PCM.
Both the rough surface and hydrophobic properties would promote embedding more
paraffin PCM in the porous copper structure.

Figure 3a exhibits an optical photograph of the prepared solar thermal energy storage
PCM composites. The PCM composites with a size of 34 mm × 20 mm × 20 mm present a
dark black color. Form stability is another critical factor affecting the thermal performance
of the solar thermal energy storage materials during the charging and discharging processes.
In order to test the thermal stability, we put both the PCM composites and pure commercial
paraffin on the same heating plate with a temperature of 80 ◦C. Figure 3a,b present the
measurement results of the form stability of the PCM composites and pure paraffin PCM.
As shown, after being heated for 10 min, the prepared PCM composites retain their original
shape, and there is no melted liquid paraffin to be observed to flow out of the sample. In
contrast, under the same heat condition, the commercial paraffin PCM block is completely
melted into liquid within 60 s. The weight variation of our prepared G–Cu-based PCM
composites is also measured before and after heating, as shown in Figure 3c. It is clearly
seen that after 10 thermal cycles, no significant weight loss is observed, and the leakage of
the prepared PCM composites is no more than 0.5%.
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In addition to form stability, the thermal conductivity played a significant role in
the thermal performance of the PCM composites. Based on Fourier’s law, we establish
a simple measurement setup, and its measurement mechanism is shown in the inset in
Figure 3d. The test system is made up of an electric heater, a constant temperature water
bath, a data acquisition instrument, and two k-type thermocouples. We locate the PCM
composites between the electric heater and the cooling block, and two thermocouples
are used to monitor the temperature difference of the composites as the heating input
increasing. To minimize heat loss, the whole test unit is covered with a layer of insulation
foams. According to the measured temperatures, the thermal conductivity (k) of the PCM
composites could be calculated from Equation (1) as follows:

Qin = Ak
∆T
d

+ Qex (1)

where A, k, and d are the cross-sectional area, the thermal conductivity, and the thickness
of the PCM composites, respectively. ∆T is the temperature difference between the top
and bottom of the PCM composites. Qex is the thermal loss from the electric heater to
the atmosphere. Based on Equation (1), when Qex is considered to be a constant value,
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the heating input Qin has a linear relationship with the temperature difference ∆T. The
variation of heating input Qin of the PCM composites with temperature difference ∆T is
shown in Figure 3d. Through the linear fitting of temperature differences at different heating
inputs, the PCM composites’ thermal conductivity k is calculated to be 2.99 W/(m·K).
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shows the schematic of a differential steady-state method.

In order to estimate solar–thermal conversion properties, we placed our prepared
PCM composites and a pure PCM thermal pack under solar radiation. The solar radiation
was generated by a solar simulator (CEL-PE300L-3A, Beijing, China), and a solar power
meter (CEL-NP2000-2A, Beijing, China) was used to calibrate the solar power density.
During the experiment, the solar power intensity was adjusted to 5 kW/m2 to achieve
rapid solar charging. To reduce heat loss, the tested samples were placed on an insulating
mat. We used an infrared camera to monitor the real-time temperature variation of the
two samples. As shown in Figure 4a, the whole solar charging process of our developed
PCM composites and pure paraffin samples lasts for 11 min. As shown, before the sunlight
shining on the surface of the samples, the PCM composites and pure paraffin thermal pack
are at the same temperature (20 ◦C). After solar charging for 6 min, it is clearly seen that the
PCM composites are obviously heated to a high temperature, while the temperature of the
pure paraffin thermal pack is still very low. Figure 4b presents the temperature variation of
the pure paraffin thermal pack during the solar charging process. It should be noted that
the temperature of the pure paraffin pack is always below 40 ◦C during the whole solar
charging process, meaning that it is not melted even if it is charged for 11 min, which can
be attributed to its low solar absorption and low thermal conductivity.
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paraffin thermal pack with different solar charging times. Temperature variation of (c) the PCM
composites and (d) pure paraffin thermal pack.

Figure 4c exhibits the temperature variation of the PCM composites during the solar
charging process. Compared with the pure paraffin thermal pack, all the measured temper-
atures on various surfaces of our developed PCM composites almost coincided during the
entire solar charging process. Based on the temperature variation curves, it is clearly seen
that after solar charging for 4 min, the developed PCM composites start to enter a phase
transition from solid to liquid phase. After the PCM composites are completely melted,
the process of the solar charging is transformed into sensible heat storage instead of latent
heat storage. As shown, compared with the pure paraffin thermal pack temperature, the
PCM composites can be heated to over 60 ◦C. On the other hand, due to the low thermal
conductivity, the maximum temperature difference between the top surface and bottom of
the pure paraffin thermal pack is approximately 5.8 ◦C after solar charging for 11 min, as
shown in Figure 4d. The unique solar–thermal conversion performance can be attributed to
the high solar absorption of graphene nanoparticles grown on its surface. Additionally, our
PCM composites have a relatively high thermal conductivity, which will facilitate the heat
transfer during this solar charging process, thereby resulting in the sample being heated
up uniformly.

After confirming the high thermal performance, we further explored its application
by combining the prepared PCM composites with a thermoelectric (TE) generator. The
PCM composites can absorb solar energy directly and store the collected thermal energy in
the PCMs, which will activate the TE chip to produce electricity energy by thermoelectric
effect. Figure 5a exhibits the schematic of our designed solar–electric conversion system.
In the TE generator, the hot side is connected to the PCM composites, and the cold side is
connected to a cooler. To reduce the thermal resistance of the interfacial, thermal grease is
used between different contact areas. When sunlight is incident on the surface of the PCM
composites, the modified graphene nanoparticles will absorb and convert solar irradiation
into thermal energy, and the converted thermal energy is applied to power the TE generator
to generate electricity. The cooler temperature is maintained at 10 ◦C to dissipate the
transferred thermal energy. In the control experiment, we use a pure PCM thermal pack to
replace the PCM composites.
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based on PCM composites. (b) Output voltage of different systems under simulated solar irradiation.

Figure 5b presents the variation of generated output voltage with time at a solar
illumination of 5 kW/m2. As shown, the solar–electric conversion system with the PCM
composites can produce a maximum output voltage of 0.14 V. For the control experiment
system, the maximum output voltage is less than 0.04 V. In addition to the generation of
output voltage, as the solar simulator is turned off, both the generated output voltage
of the two systems will quickly drop. The system with the PCM composites is able to
continuously produce electric energy for 620 s with the solar simulator being turned off.
For the control system, the lasting duration is only 320 s, which is much less than that in the
system with the PCM composites. We also test the stability of the device, and the results are
shown in Figure S3. It can be seen that the device can generate a maximum output voltage
of 0.13 V after continuously running for 20 cycles. Therefore, compared with pure paraffin,
the prepared PCM composites are of great interest in the field of solar energy utilization.

4. Conclusions

In conclusion, novel form-stable solar thermal storage materials were proposed by
embedding paraffin PCMs within porous G–Cu heterostructures. The porous G–Cu het-
erostructures were developed via sintering multilayer copper meshes, and they provided
a high heat-conducting network, which enabled the rapid transfer of converted thermal
energy, thereby improving the heat transfer capability of composites. The thermal conduc-
tivity of our prepared PCM composite was up to 2.99 W/(m K). Furthermore, graphene
nanoparticles that were modified on the surface were capable of directly absorbing and
storing solar energy while efficiently preventing leakage during the phase change process.
Based on the advantages, such as high solar energy absorption, high thermal conductivity,
and anti-leakage properties, the prepared PCM composites were demonstrated to be suit-
able for solar–electric systems, which had higher solar–electric conversion efficiency and
longer electricity supply time compared with the system with pure paraffin. Considering
the general feasibility of the method to prepare various kinds of PCM composites through
our direct and simple synthesis process, it is expected that the PCM composites will have
an extensive application value to expand solar utilization and other solar-related fields.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym15244723/s1, Figure S1: XRD patterns o of the G–Cu heterostruc-
tures; Figure S2: Raman spectrum from the out surface of the G–Cu heterostructures; Figure S3:
Stability tests of the solar-electric conversion device.
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