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Abstract: Additive manufacturing (AM), especially the extrusion-based process, has many process
parameters which influence the resulting part properties. Those parameters have complex interde-
pendencies and are therefore difficult if not impossible to model analytically. Machine learning (ML)
is a promising approach to find suitable combinations of process parameters for manufacturing a part
with desired properties without having to analytically model the process in its entirety. However,
ML-based approaches are typically black box models. Therefore, it is difficult to verify their output
and to derive process knowledge from such approaches. This study uses interpretable machine
learning methods to derive process knowledge from interpreted data sets by analyzing the model’s
feature importance. Using fused layer modeling (FLM) as an exemplary manufacturing technology, it
is shown that the process can be characterized entirely. Therefore, sweet spots for process parameters
can be determined objectively. Additionally, interactions between parameters are discovered, and the
basis for further investigations is established.

Keywords: additive manufacturing; feature importance; fused layer modeling; interpretable machine
learning; machine Learning; process characterization; process knowledge; process optimization

1. Introduction

Using additive manufacturing (AM), a complex object can be created layer by layer
without the need for part-specific tooling or extensive machine set-ups [1]. This way,
geometries can be produced that would otherwise be impossible to manufacture, like parts
with complex internal cavities or complete assemblies [2]. Via AM, a large number of
different materials for various use-cases can be processed [3]. However, the technology’s
large degree of freedom is accompanied by its complexity. Historically, the technology has
mostly been used for prototyping and small-scale production runs [4]. Considering the
technology’s benefits, it is well suited for decentralized production [5]. Therefore, AM has
the potential to address many current socio-economic challenges like part shortages as a
result of a global pandemic or geopolitical conflicts and global CO2-emissions as a result
of shipping parts across the globe. However, to transform AM into a widely accessible
technology, it has to be easy to use and part quality has to be consistent regardless of
production location. To achieve this, the process and the quality-defining parameters and
interdependencies have to be well understood.

Globally, the most-used AM technology is fused layer modeling (FLM; also fused
deposition modeling—FDM) [4]. While offering many benefits and great freedom in
part design, such as a wide material spectrum as well as material and time savings by
using sparse infill patterns, path planning software (slicing software) for FLM offers a
large number of process parameters which have to be set. The technology’s complexity
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comes from the number of process parameters that can be adjusted, their influence on part
quality, as well as the interdependencies between those process parameters. In most slicers,
hundreds of parameters can be set. According to [6], the most impactful parameters are
the following:

• Layer thickness
• Build orientation
• Print speed *
• Raster width *
• Nozzle temperature
• Infill density
• Air gap *
• Raster orientation *
• Infill pattern
• Number of shells
• Shell width

However, ref. [6] also notes that the significance of some parameters regarding certain
quality criteria is yet to be determined (indicated with *). It is important to understand the
parameters and their effects and interdependencies to produce parts that meet requirements,
e.g., regarding mechanical properties, dimensional accuracy, surface quality, etc., without
extensive trials. This is especially relevant for small-scale production runs or lot-size-one
production. Furthermore, a better understanding of correlations is beneficial for improving
the technology by understanding its limitations. It can be used to increase manufacturing
speed while knowing that quality criteria are still being met. Lastly, a good understanding
of the process provides the necessary basis for simulation routines, which are not yet widely
developed for FLM. This is mostly due to the complexity of the modeling task, which is a
multi-scale, multi-physics endeavor with complex interactions between algorithms [7].

To contribute to the understanding of the process parameters in FLM, their effects on
part quality as well as their interdependencies, this study investigates the FLM-technology’s
parameters of nozzle temperature, manufacturing speed, part cooling and part orientation,
their effects on part quality and their interdependencies by training machine learning (ML)
models and interpreting the learned characteristics of the underlying process from the
data afterwards.

Especially for production problems with complex interactions, these are difficult or
impossible to capture with analytical models or inherently interpretable ML models such
as linear regression models or decision trees [8]. More complex modeling approaches
offer the potential to learn and describe the process behavior. Nevertheless, since in most
cases the latter are black box models, they are no longer inherently interpretable [8]. This
prevents the extraction of knowledge from the considered models that would enhance
the understanding of the process and ultimately contribute to the optimization of the
manufacturing process. At this point, methods of interpretable ML can be used to show the
effects of the input variables and their interactions on which the output of the inherently
uninterpretable model is based and to derive knowledge about the underlying process.

2. State of the Art
2.1. Influence of Process Parameters in Fused Layer Modeling

The process parameters investigated in this study, i.e., nozzle temperature, part cool-
ing, manufacturing speed and part orientation, have been chosen because they exhibit
interdependencies regarding the considered quality criteria, i.e., tensile strength, Young’s
modulus, dimensional accuracy, weight accuracy and manufacturing time.

Increasing nozzle temperature typically leads to improved mechanical properties,
namely, tensile strength and Young’s modulus [9,10]. However, it has to be noted that in-
creasing temperatures beyond the degradation temperature of the polymer has a detrimen-
tal effect. While generally improving mechanical properties, increased nozzle temperature
negatively impacts dimensional accuracy since the material remains in a molten state for
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longer [11]. Regarding weight accuracy, increased nozzle temperature is more likely to
plasticize and therefore extrude the demanded amount of material, which is why a positive
effect can typically be expected [12].

The effects of part cooling, which is used to blow cold air on the extruded strands
just after deposition to support cooling and hardening of the strands to better support
forthcoming layers, are generally inverse to nozzle temperature. Increased part cooling
improves dimensional accuracy since the material is more quickly solidified in its intended
position. At the same time, part cooling reduces tensile strength and Young’s modulus
since the contact temperature between previous and current strands are reduced, reducing
the strength of the weld line [13]. Neither nozzle temperature nor part cooling affect
manufacturing time, which is, however, greatly impacted by manufacturing speed.

Increasing manufacturing speed lowers the total manufacturing time [6]. Adjusting
this process parameter has complex interdependencies with nozzle temperature and part
cooling, since a faster moving machine also has to plasticize material more quickly. At
the same time, individual strands have less time to cool before the next layer is applied.
Therefore, increasing manufacturing speed also has to be coupled with a careful balancing
of increased nozzle temperature and increased part cooling. If those parameters are not ad-
justed, the mechanical properties and dimensional accuracy will deteriorate with increased
manufacturing speed [14]. Also, weight accuracy is likely to be negatively affected since
less material can be plasticized.

Since FLM is a layer-based technology, part orientation has a major impact on tensile
strength and Young’s modulus [15]. Studies have found that loading a part in the z direction
(build direction) can reduce its tensile strength to 50% or less compared to a part loaded in
the x or y direction (parallel to the build surface) [16]. At the same time, part orientation
influences dimensional accuracy and manufacturing time [17].

2.2. Determining Feature Importance with Interpretable Machine Learning

To evaluate these literature-based findings regarding the influence of process param-
eters on part quality in the FLM processes, ML models are trained and analyzed with
interpretable ML methods.

Interpretable ML is concerned with extracting relevant knowledge from ML models in
terms of which features are important and which interactions exist between them. Since
the technique works on the model and not directly on the data, interpretable ML can
only identify the information on which the model bases its decision. Only if the model
correctly captures the relationships within the data is it possible to derive insights about
the information contained in the data [18].

There are plenty of different methods, each extracting a certain kind of information
from the model. For example, it is possible to derive whether a feature is important for
the model prediction with some methods. Others can depict how certain feature values
influence this prediction. The real strength lies in cleverly combining these methods to
derive more comprehensive insights from the model [19].

Within this publication Permutation Feature Importance (PFI) and Accumulated Local
Effects (ALE) are used for this purpose. Firstly, PFI is a condensed statistical value per
feature stating its importance for the model prediction. To calculate this value, for the
different datapoints the value of the given feature is permuted over its value range while
the values of the other features are kept. Followingly, the errors of the predictions of the
original and permuted datapoints are compared, resulting in the importance value. The
bigger the impact of the permutation on the model error, the higher the impact of the
feature on the model prediction will be, leading to a higher feature importance value [20].

Secondly, ALE are used to look more closely at the features that are important accord-
ing to PFI. They depict the effect of a feature value on the model prediction. For calculation,
the data set is divided into different segments according to the value of the considered
feature. For each data point in a segment, the value of the considered feature is set once
to the left and once to the right boundary of the interval, while the values for the other



Polymers 2023, 15, 3509 4 of 17

features are maintained. For these adjusted data points, the model prediction is calculated.
Then, the difference between the two model predictions is formed for each data point,
and, finally, these differences are averaged. For the respective effect of a concrete value of
the considered input variable, the results of all segments are added up to this point (see
Figure 1) [21].
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Figure 1. Accumulated local effects of feature Xj. For each segment of Xj’s value range, the local
effects are calculated and accumulated afterwards.

3. Materials and Methods
3.1. Trials for Data Generation

To set up a data basis for the feature importance and feature interaction evaluation of
FLM parameters, trials were conducted. For this, tensile test specimens according to DIN
EN ISO 527 [22], specimen type 1BA, were manufactured on an Ender 3 FLM 3D printer by
manufacturer Creality 3D Technology Co., Ltd. (Shenzhen, China) from natural polylactic
acid (PLA) from manufacturer Fillamentum Manufacturing Czech s.r.o., Hulín, Czech
Republic. G-code was prepared using the slicer Simplify3D from the company Simplify3D,
Cincinnati, OH, USA. For the trials, process parameters were chosen according to Table 1.
Here, the varied parameters were varied in five equidistant steps with the exception of
part orientation, which was treated as a binary parameter with the manifestations lying
(manufactured in the x-y plane) and standing (manufactured in the y-z plane).

Table 1. Process parameters for generating trial data.

Process Parameter Unit Value/Steps

varied Nozzle Temperature [◦C] 190; 200; 210; 220; 230
Manufacturing Speed [mm/s] 20; 35; 50; 65; 80

Part Cooling [%] 0; 25; 50; 75; 100
Part Orientation [-] Lying (y direction); standing (z direction)

fixed Nozzle Diameter [mm] 0.4
Extrusion multiplier [-] 1

Extrusion width [mm] 0.48
Retraction [mm] 4.9 (at 55 mm/s)

Layer height [mm] 0.2
Top solid layers [-] 3

Bottom solid layers [-] 3
Perimeters [-] 2

Perimeter direction [-] Inside-out
First layer height [%] 150
First layer width [%] 120
First layer speed [%] 50

Start points [mm] X = 0; Y = 500
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Table 1. Cont.

Process Parameter Unit Value/Steps

Skirt [-] 1 Outline (only lying specimen)
Brim [-] 10 Outlines (only standing specimen)

Infill [-]
Rectilinear at 50% infill density; 20%

overlap; 120% width; alternating between
45◦ and −45◦ for each layer

Support [-] No support
Heated bed [◦C] 50

Regarding the experiment’s design, a central composite design was chosen for the three
parameters of nozzle temperature, part cooling and manufacturing speed. The resulting
trial plan represents a three-dimensional set-up in the shape of a star pattern around
a central point. Additionally, the extreme points (corner points) were tested. To avoid
polluting the results with outliers, five lying and five standing samples were manufactured
per trial point.

After manufacturing, each sample was evaluated regarding its tensile strength, Young’s
modulus, elongation at tensile strength, manufacturing time, dimensional accuracy and
weight accuracy. Mechanical results were obtained by using the measured cross-section of
each individual specimen (three measurements, averaged) instead of the measurements as
designed, to account for slight variations in manufacturing and improve result accuracy.
Weight accuracy was calculated by comparing the measured weight of each specimen
to the target weight as calculated by the slicer. The results are shown in Table 2. The
trial designation represents the varied parameters: nozzle temperature—manufacturing
speed—part cooling—orientation.

Table 2. Testing results of manufactured samples. Trials are designated [temperature in ◦C]—[manu-
facturing speed in mm/s]—[part cooling in %]—[lying (L) or standing (S) orientation]. Each value
represents the mean value of five test samples manufactured under identical conditions. * The
samples for trial 210-20-50-S broke while being fixed in the tensile testing machine. Therefore, no
mechanical results could be obtained for this trial.

Trial
Tensile

Strength
[MPa]

Young’s
Modulus

[MPa]

Elongation at
Tensile Strength

[%]

Manufacturing
Time

[s]

Dimensional
Accuracy

[%]

Weight
Accuracy

[%]

190-20-0-L 43.04 2317.2 2.48 1093.6 88.68 90.17
190-20-0-S 21.9 2179.2 1.14 1562.8 97.8 90.73

190-20-100-L 39.78 2210.8 2.44 1096.8 89.28 89.53
190-20-100-S 19.84 1985 1.104 1556.4 98.52 89
190-50-50-L 40.38 2288.2 2.38 600.6 86.72 88.91
190-50-50-S 23.26 2195 1.2 1151.6 97.4 90.2
190-80-0-L 40.16 2322 2.4 571.6 85.6 89.68
190-80-0-S 24.58 2243.8 1.22 1147.6 97.52 89.67

190-80-100-L 36.98 2124.8 2.4 572.2 90.44 88.15
190-80-100-S 17.36 2064.6 0.882 1157.4 98.88 88.99
200-50-50-L 40.66 2285.8 2.4 601.2 89.92 90.69
200-50-50-S 23.44 2172.2 1.17 1151 98.84 91.27
210-20-50-L 41.54 2341.2 2.34 1100.8 87.68 92.29
210-20-50-S - * - * - * 1563.6 98.24 93.44
210-35-50-L 42.1 2343.6 2.38 740.8 87.2 92.13
210-35-50-S 22.38 2118.4 1.218 1235.6 97.88 92.33
210-50-0-L 42.28 2372.8 2.36 604 88.2 92.57
210-50-0-S 23.9 2167 1.232 1153.4 98.68 92.02

210-50-25-L 42.14 2388 2.34 603.2 87.56 92.06
210-50-25-S 24.2 2141.8 1.3 1153.2 98.68 91.89
210-50-50-L 41.32 2321.6 2.36 601.6 88.64 91.58
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Table 2. Cont.

Trial
Tensile

Strength
[MPa]

Young’s
Modulus

[MPa]

Elongation at
Tensile Strength

[%]

Manufacturing
Time

[s]

Dimensional
Accuracy

[%]

Weight
Accuracy

[%]

210-50-50-S 17.28 2099.2 0.88 1153 97.4 91.57
210-50-75-L 41.86 2342.2 2.42 602.4 88.64 91.98
210-50-75-S 19.12 2112.6 1 1153.2 97.6 91.14

210-50-100-L 41.04 2342.6 2.36 603.8 88.76 91.67
210-50-100-S 24.28 2122.4 1.26 1153.2 98.52 92.11
210-65-50-L 41.88 2317.2 2.42 594.8 87.96 91.33
210-65-50-S 22.56 2182.2 1.148 1168.6 98.36 92.15
210-80-50-L 40.8 2259.2 2.4 577.6 88.64 91.54
210-80-50-S 26.66 2150.6 1.44 1153.6 96.56 92.28
220-50-50-L 42.44 2427.2 2.36 601.4 87.4 92.33
220-50-50-S 19.54 2134 1.008 1152.4 98.92 92.38
230-20-0-L 45.08 2436.2 2.46 1106.2 87.24 94.09
230-20-0-S 24.74 2293.6 1.244 1561.8 98.56 95.41

230-20-100-L 40.9 2208.4 2.4 1106 87.44 93.25
230-20-100-S 22.88 2186.4 1.16 1573 97.92 95.18
230-50-50-L 43.36 2464.6 2.36 601.8 87.52 93.56
230-50-50-S 12.9 2137.4 0.612 1152.6 98.76 93.52
230-80-0-L 43.6 2407.2 2.46 579.8 86.6 93.21
230-80-0-S 30.26 2285.6 1.56 1164 99.2 94.35

230-80-100-L 41.24 2247.4 2.42 581.8 89.76 92.56
230-80-100-S 22.66 2113.2 1.2 1166.6 96.08 94.08

3.2. Data Analysis Pipeline to Determine Feature Importance in Fused Layer Modeling

For the analysis of the process via the interpretable machine learning methods, ML
models are first required, which are trained via the generated test data (see previous section)
and are provided for further evaluation (Figure 2). For this purpose, different ML models
are first trained, evaluated and then selected based on their model performance. The
chosen ML models are then analyzed using ALE and PFI (see Section 2), and the results are
interpreted and compared with the physical expectations.
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Figure 2. Data analysis pipeline to determine feature importance.

As model types, decision tree regressor [23], extra tree regressor [24], random forest
regressor [20] and gradient boosting regressor [25] are considered. For model training, 85%
of the data were used. The remaining 15% were used for testing and result interpretation.
To obtain the best performing models, an exhaustive grid search is performed using five-
fold cross-validation on each parameter combination. Figure 3 depicts the approach that is
performed for each model type and target. The parameters subject to optimization as well
as their tested values are given in Table 3.

For each target, the best performing model according to the R2 score after hyperparam-
eter optimization is selected. The results are shown in Table 4. While the models for Young’s
modulus (R2 = 0.588) and weight accuracy (R2 = 0.461) show mediocre performance,
the models perform quite well for the other targets (R2 > 0.900). For the different target
parameters, different model types perform best. To analyze these different models, it is
necessary to use evaluation methods that are model-agnostic.
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Figure 3. For each point in the grid set up by the hyperparameters (here: maximal depth of tree,
minimal samples per split, minimal samples per leaf and, depending on the model type, number of
estimators), five-fold cross-validation is performed by splitting the training data into five parts. Five
different models are trained using a different part of the training data for validation (val.). Based on
the test data, the models are evaluated, and the model with the best score is selected.

Table 3. Hyperparameter optimization parameters.

Model Type Maximal Depth
of Tree

Minimal Samples
per Split

Minimal Samples
per Leaf Number of Estimators

DecisionTreeRegressor 1, 2, 3 2, 5, 10 1, 2, 5, 10 -
ExtraTreeRegressor 1, 2, 3 2, 5, 10 1, 2, 5, 10 -

RandomForestRegressor 1, 2, 3 2, 5, 10 1, 2, 5, 10 10, 20, 50, 100
GradientBoostingRegressor 1, 2, 3 2, 5, 10 1, 2, 5, 10 10, 20, 50, 100

Table 4. Best performing models of each model type after hyperparameter optimization in terms of
R2 score. For the best performing model, the values of the hyperparameters are given.

Target
Decision

Tree
Regressor

Extra Tree
Regressor

Random
Forest

Regressor

Gradient
Boosting
Regressor

Best
Model
Type

Maximal
Depth

Minimal
Samples
per Split

Minimal
Samples
per Leaf

Number of
Estimators

Young’s
modulus 0.489 0.469 0.533 0.558

Gradient
Boosting
Regressor

3 5 2 20

Tensile
strength 0.936 0.913 0.939 0.930

Random
Forest

Regressor
3 1 2 50

Elongation at
tensile

strength
0.950 0.929 0.948 0.939

Decision
Tree

Regressor
3 1 2 n.a.

Dimensional
accuracy 0.931 0.924 0.939 0.943

Gradient
Boosting
Regressor

3 1 5 50

Weight
accuracy 0.438 0.461 0.394 0.424 Extra Tree

Regressor 3 1 10 n.a.

Manufacturing
time 0.999 0.994 0.999 1.000

Gradient
Boosting
Regressor

3 1 2 100

4. Results and Discussion

With the application of the model-agnostic PFI and ALE scores to the acquired data
set in Table 2, the process can be analyzed in depth, and relationships and dependencies
between process parameters and measured part properties can be investigated easily. The
following paragraphs list the relevant findings as well as further investigations derived
from the insights gained while using the feature importance toolkit.
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4.1. General

Comparing all PFI scores (see Figure 4) shows that part orientation on the build
plate is the most important factor out of all measured properties with the exception of
weight accuracy. The latter mostly depends on nozzle temperature. This shows that,
when optimizing for a real-world scenario where mechanical properties and dimensional
accuracy are most important, part orientation and therefore strand deposition strategy has
the largest impact. However, since part orientation is oftentimes dictated by part geometry
and can rarely be freely chosen [26], it is also necessary to discuss the effects of other, more
influenceable process parameters.
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Figure 4. PFI scores indicating the importance of the process parameters (environmental humidity,
environmental temperature, orientation on build platform, part cooling, movement speed and nozzle
temperature) on the target values (Youngs’s modulus, tensile strength, elongation at tensile strength,
dimensional accuracy, weight accuracy, manufacturing time).
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4.2. Young’s Modulus

The PFI score shows that Young’s modulus, like most part properties, is mostly
dependent on part orientation. The three next highest-ranking parameters all have an
impact on material temperature: environmental temperature, part cooling and nozzle
temperature. Here, it is noticeable that nozzle temperature has a comparatively lower
effect, with part cooling having a greater impact on the part stiffness. It has to be noted that
the coefficient of determination for the Young’s modulus model is R2 = 0.558. Therefore,
absolute impact cannot be derived from small differences in the individual PFI scores.

To not only show the absolute impact of a process parameter but also at which exact
values part properties are improved, the ALE score can be regarded (see Figure 5). For
Young’s modulus, this mostly proves the existing state of research: parts manufactured in
lying orientation, a higher nozzle temperature and lower part cooling improve Young’s
modulus. However, it is noticeable that the ALE for part cooling shows a flat curve with a
steep decrease after 75% cooling, indicating this value as a candidate for a sweet spot.
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Figure 5. ALE indicating the effects of Young’s modulus on the model prediction when varying all
investigated process parameters.

Regarding the effects of environmental temperature and environmental humidity, it
must be noted that the model used (gradient boosting regressor) is likely to overfit the data.
This might explain the unclear progression of the curve.

4.3. Tensile Strength and Elongation at Tensile Strength

For tensile strength, the importance of part orientation is even more pronounced. With
R2 = 0.939, the derived findings are reliable.

The curves for ALE, shown in Figure 6, are mostly flat, indicating further that parame-
ters other than part orientation have no significant impact. Only for part cooling can the
same decrease after 75% cooling as for Young’s modulus be observed, further reinforcing
this value as a sweet spot.

For elongation at tensile strength (R2 = 0.950), the dependence on part orientation is
even more pronounced, with other parameters having virtually no impact (see Figure 7).

4.4. Dimensional Accuracy

ALE plots for dimensional accuracy (Figure 8, R2 = 0.943) mainly support previous
knowledge. A higher nozzle temperature decreases dimensional accuracy, while higher
part cooling increases the value. This is typically explained by the time needed for the
plasticized strand to solidify and retain its intended shape [13]. The lower the initial nozzle
and therefore melt temperature and the higher part cooling is set, the faster an extruded
strand can be cooled and solidified, preventing it from losing its shape or location.
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Figure 6. ALE indicating the effects of tensile strength on the model prediction when varying all
investigated process parameters.
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Figure 7. ALE indicating the effects of elongation at tensile strength on the model prediction when
varying all investigated process parameters.
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Figure 8. ALE indicating the effects of dimensional accuracy on the model prediction when varying
all investigated process parameters.
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With little benefit with regard to dimensional accuracy for part cooling beyond 75%
(Figure 8, bottom left) but with a decrease in tensile strength and Young’s modulus (compare
Figure 5, bottom left and Figure 6, bottom left), the selection of 75% part cooling as the
optimal process point is further reinforced.

Just as with the ALE for Young’s modulus, it is possible that the model is overfit-
ting the data for environmental temperature and humidity, which would explain their
inconclusive results.

4.5. Weight Accuracy

Weight accuracy is the only part property where the PFI score indicates that nozzle
temperature is the most influential process parameter. With R2 = 0.461, the coefficient
of determination is comparatively low. However, as the following investigations show,
information derived from the feature importance toolkit is still valid and coincides with
the real-world behavior of the system.

Regarding the ALE scores shown in Figure 9, the expected positive correlation between
a higher nozzle temperature and a higher weight accuracy can be observed. In combination
with a slightly decreasing curve for movement speed, it can be assumed that the machine
struggles to extrude the demanded amount of material for lower nozzle temperatures or
higher speeds.
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Figure 9. ALE indicating the effects of weight accuracy on the model prediction when varying all
investigated process parameters.

To investigate this relation further, the volumetric extrusion speed of the used extruder
and plasticizing unit is measured. By extruding 200 mm of filament at flow rates between
2 mm3/s and 8 mm3/s and at temperatures between 190 ◦C and 230 ◦C and measuring
the individual extrusions using a precision scale, the actual flow can be compared to the
requested flow, and underextrusion can be determined.

Figure 10 underlines the findings from analyzing the ALE plot where higher nozzle
temperature leads to higher flow. A flow value that more accurately matches the requested
flow will lead to a higher weight accuracy. The impact of underextrusion, especially result-
ing from higher manufacturing and therefore extrusion speeds, can be seen in Figure 11.
Here, underextrusion of 11.2% for the highest tested speed and the lowest tested nozzle
temperature can be observed, noticeably impacting weight accuracy.

Ideally, part cooling should not affect weight accuracy. However, the ALE score
shows that high part cooling negatively impacts weight accuracy. Based on the previous
investigations regarding the correlation between nozzle temperature and underextrusion,
it is hypothesized that the airflow from the part cooling fan also negatively affects the
nozzle temperature, leading to a second-degree effect on weight accuracy. However, during
manufacturing, no deviation from the target temperature was recognized by the machine.
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It is possible that the effect is not detectable based on the temperature sensor’s location in
the plasticizing unit, which is closer to the heating element than it is to the tip of the nozzle
(see Figure 12, left).
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Figure 10. Comparison between target flow and measured flow for nozzle temperatures between
190 ◦C and 230 ◦C.
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To investigate the hypothesis, a temperature probe is placed inside the nozzle (see
Figure 12, right). Using this probe, temperatures are recorded for every combination of
nozzle temperature and part cooling in a stationary trial. The test is performed for a
z-position of 200 mm, meaning that the nozzle is located 200 mm above the build plate.
To account for air reflections from either the build plate or the previous layer of a part
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being manufactured, the test is repeated for a z-position of 1 mm. The results are plotted
in Figure 13. They show that, based on the locations of heating element and temperature
sensor, the actual nozzle temperature is always between 5.8 ◦C to 10.6 ◦C below the
requested temperature.

Polymers 2023, 15, x FOR PEER REVIEW 14 of 18 
 

 

this proves the hypothesis that part cooling effects nozzle temperature and is therefore a 
second-degree effect for weight accuracy. 

 
Figure 13. Measured nozzle temperature compared to target nozzle temperature for investigated 
steps of part cooling. 

4.6. Manufacturing Time 
With a coefficient of determination of 𝑅ଶ = 1.00, the model for manufacturing time 

is the most precise. It shows that manufacturing time only depends on part orientation 
and movement speed, with the ALE plot (Figure 14) showing that a lying part is produced 
faster than a standing part. Other parameters, like nozzle temperature or part cooling, do 
not influence manufacturing time at all.  
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steps of part cooling.

Furthermore, they show a slight decrease in actual nozzle temperature for higher
amounts of cooling at z = 200, as was expected. For z = 1, the temperature decrease is even
more pronounced, resulting in a difference of up to 3.3 ◦C between 0% cooling and 100%
cooling. Seeing as nozzle temperature is the major cause for underextrusion (Figure 11),
this proves the hypothesis that part cooling effects nozzle temperature and is therefore a
second-degree effect for weight accuracy.

4.6. Manufacturing Time

With a coefficient of determination of R2 = 1.00, the model for manufacturing time
is the most precise. It shows that manufacturing time only depends on part orientation
and movement speed, with the ALE plot (Figure 14) showing that a lying part is produced
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faster than a standing part. Other parameters, like nozzle temperature or part cooling, do
not influence manufacturing time at all.
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Figure 14. ALE indicating the effects of manufacturing time on the model prediction when varying
all investigated process parameters.

Combining all individual investigations for each part property, it is noticeably via the
PFI score that movement speed has little to no influence on the measured properties with the
exception of manufacturing time. This suggests that in this set-up, movement speed should
always be set as high as possible, resulting in minimal impact on part quality and reduced
manufacturing time. However, it must be noted that actual machine movement does not
only depend on configured movement speed in the slicer but also on the acceleration values
of each axis as configured in the machine firmware. For the machine used in these trials,
acceleration a is set to 500 mm/s2. Using this information, actual velocity v and distance
traveled x can be obtained via integration:

v =
∫

a(t)dt = a · t + v0 (1)

x =
∫

v(t)dt = v · t + x0 (2)

with:

t : elapsed time
v0 : initial velocity
x0 : initial position

Capping velocity at the highest set speed of 80 mm/s and plotting Equations (1) and (2)
over 0.4 s (Figure 15, left) shows that the requested velocity is only reached after 0.16 s
or 12.8 mm traveled. Given the small size of the test specimen, and also in with respect
to deceleration, this means that the requested velocity is only reached for 4.4 mm of the
30 mm long testing zone (Figure 15, right).

The effect is also observable when comparing manufacturing times. While a test
specimen manufactured at 20 mm/s in lying orientation finishes after 1101 s on average,
the same part takes 577 s at 80 mm/s. Even though manufacturing speed is quadrupled
in this example, manufacturing time is only reduced by 47.6%, illustrating the significant
impact of acceleration on small parts. Figure 16 plots manufacturing time for lying and
standing test specimens in relation to the requested manufacturing speed. Both plots show
an asymptotic progression with little to no actual manufacturing speed gained beyond
50 mm/s. The plot shows the same progression as the ALE score relating manufacturing
speed and manufacturing time, further supporting the effortless interpretation of the effects
via the feature importance toolkit.
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Figure 16. Actual manufacturing time does not decrease linearly with linear increase in requested
manufacturing speed.

Additionally, the ALE score relating manufacturing speed and weight accuracy de-
creases slightly after 65 mm/s, indicating that at higher speeds the machine is not capable
of extruding the requested material in time, resulting in underfilled parts. This coin-
cides with the analysis regarding weight accuracy and leads to the recommendation to set
manufacturing speed no higher than 65 mm/s.

5. Summary and Outlook

This study investigates the use of the feature importance toolkit for analyzing an
additive manufacturing process. By conducting a limited set of trials on a standardized
test geometry and processing the results via the toolkit’s PFI and ALE scores, the manufac-
turing process can be understood thoroughly, and sweet spots for processing parameters,
depending on the desired output, can be derived. It is shown via various experiments that
progressions and interdependencies identified via the toolkit can be reproduced and vali-
dated and are rooted in physical correlations. To achieve this, a comparatively low amount
of testing has to be performed in contrast to traditional approaches for characterizing a
process in which multiple tests have to be conducted on various test specimens.

For the presented use-case of part quality achieved via FLM additive manufacturing, FI
analysis clearly shows the importance of part orientation and therefore strand orientation in
the part with regard to most measured quality factors. By comparing PFI scores, it becomes
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clear how dominant the orientation is in comparison to all other process parameters.
Using the ALE scores, it is possible to analyze the remaining process parameters for their
effects on part quality, like Young’s modulus, tensile strength, dimensional accuracy and
weight accuracy. Here, the toolkit helps to unravel the interdependencies between nozzle
temperature and part cooling as well as the machine’s limits in terms of extrusion amount
and manufacturing speed. All identified correlations can be backed up by individual
investigations. Since most FLM systems are based on the same core components and
the system used for carrying out the investigations is one of the systems with the most
units sold worldwide, the results are applicable to many extrusion-based AM systems.
Furthermore, this study can be used as reference when investigating systems which differ
significantly. Since the fundamental concepts still apply, approaches like transfer learning
can be used to create detailed models about all FLM-systems while conducting significantly
fewer trials.

Based on this study’s results, the importance for process control in AM becomes ap-
parent. Many of the identified shortcomings, like underextrusion or part cooling negatively
affecting nozzle temperature, could be addressed by measuring relevant process values
during the process and creating appropriate control loops. Since part orientation is iden-
tified as the most dominant factor for most quality aspects, optimized strand deposition
methods should be derived to use individual strand directions in the most beneficial way.
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