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Abstract: This study revolves around the issues raised by the current semiconductor device metal
casings (mainly composed of aluminum and its alloys), such as resource and energy consumption,
complexity of the production process, and environmental pollution. To address these issues, re-
searchers have proposed an eco-friendly and high-performance alternative material—Al2O3 particle-
filled nylon composite functional material. This research conducted detailed characterization and
analysis of the composite material through scanning electron microscopy (SEM) and differential
scanning calorimetry (DSC). The results show that the Al2O3 particle-filled nylon composite material
has a significantly superior thermal conductivity, about twice as high as that of pure nylon mate-
rial. Meanwhile, the composite material has good thermal stability, maintaining its performance in
high-temperature environments above 240 ◦C. This performance is attributed to the tight bonding
interface between the Al2O3 particles and the nylon matrix, which not only improves the heat transfer
efficiency but also significantly enhances the material’s mechanical properties, with a strength of
up to 53 MPa. This study is of great significance, aiming to provide a high-performance composite
material that can alleviate resource consumption and environmental pollution issues, with excellent
polishability, thermal conductivity, and moldability, which is expected to play a positive role in
reducing resource consumption and environmental pollution problems. In terms of potential applica-
tions, Al2O3/PA6 composite material can be widely used in heat dissipation components for LED
semiconductor lighting and other high-temperature heat dissipation components, thereby improving
product performance and service life, reducing energy consumption and environmental burden,
and laying a solid foundation for the development and application of future high-performance
eco-friendly materials.

Keywords: PA6/Al2O3 composite; functional material; microstructure; mechanical property

1. Introduction

With the miniaturization, integration, high-density, and high-speed development of
electronic components, heat dissipation has become a very serious problem [1], especially
as various light-emitting diodes (LEDs) are widely used in various places for urban lighting.
High-power and high-brightness LEDs generate a tremendous amount of heat, making it
challenging to maintain the optimal operating temperature range of 25–30 ◦C for LEDs.
Traditional inorganic thermally conductive materials such as metals and ceramics can
no longer meet the needs of further development of electronic products, and new high-
efficiency thermally conductive materials must be used to dissipate heat promptly [2].
Polymer-based composite materials refer to the introduction of one or more inorganic
or organic materials with specific properties into the polymer matrix through various
processing methods (including chemical and physical means) so that the polymer also
has some special properties, such as thermal conductivity, shielding of electromagnetic
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waves, dielectric properties, electrical conductivity, and excellent damping performance [3].
Thermally conductive polymer composites have excellent thermal conductivity and unpar-
alleled molding processability, electrical insulation, and corrosion resistance of traditional
inorganic thermally conductive materials [4], becoming a research hotspot in the field of
polymer materials.

The thermal conductivity of metals mainly relies on freely moving electrons, and the
heat transfer mechanism is the formation of a heat conduction band using unconstrained
electrons that can move freely; the thermal conductivity of inorganic non-metallic materials
can only be conducted through the microscopic structure of mutual contact between mate-
rial molecules by transferring phonons, using phonons as heat transfer carriers to transfer
heat. Phonons are mechanical waves generated by lattice vibrations in crystals (mainly
vibrations of atoms, molecules, and groups) [5,6], which are successively transferred be-
tween material molecules, so their thermal conductivity efficiency is not as good as that of
free electrons. In contrast, polymers themselves are composed of molecular chains with
very large molecular weights, and it is difficult to form a free electron energy band inside
the material. Therefore, polymers mainly transfer heat through mutual contact between
microscopic structures. However, unlike the phonon thermal conductivity of inorganic
non-metallic materials, polymers themselves are composed of mixtures of homologous
substances with different molecular weights, with larger van der Waals forces between
molecular chains and longer chains that are prone to entanglement at the ends, resulting in
more defects between the molecules. Therefore, polymer materials are particularly prone
to phonon scattering, leading to low heat transfer efficiency and poor thermal conductivity
of polymer materials [7]. Currently, there are two main approaches to preparing thermally
conductive composite materials [8]: intrinsically thermally conductive polymer composites
with inherent heat transfer capabilities, and filler-based thermally conductive polymer
composites using externally added fillers. Intrinsic thermally conductive polymer materials
have a large number of conjugated structures in their molecular chains and a relatively
large proportion of crystalline regions, and these special structures give the polymer itself
good heat transfer capabilities [9]. When phonons propagate in these polymers, there is
less phonon scattering and hindrance, making intrinsic thermally conductive polymer
composites excellent thermal conductors. However, the processing technology of intrinsic
thermally conductive polymers is very complex, from the selection of initiators and the
initiation of active polymer monomers, to the influence of reaction temperature and reac-
tion time. These factors make the preparation of intrinsic thermally conductive polymers
extremely difficult and the industrial production and processing difficult [10]. Therefore,
based on the modern Fourier solid heat conduction theory, inorganic powders with strong
heat transfer capabilities are filled into polymers to prepare high thermally conductive base
polymer materials that meet the needs of the actual operating environment.

At present, a large number of studies have been conducted both domestically and
abroad, aiming to develop composite functional materials with high thermal conductiv-
ity. Joao Paulo Berenguer, Arielle Berman, and other scholars [11] studied the effects of
polyethylene fillers on the thermal conductivity, mechanical properties, and processability
of all-polymer high thermal conductivity composite materials. Through thermal conductiv-
ity tests, tensile tests, bending tests, and impact tests, the results showed that optimizing the
mass fraction and dispersion degree of polyethylene fillers can achieve a comprehensive
optimization of the thermal conductivity, mechanical properties, and processability of
all-polymer high thermal conductivity composite materials. Guorui Zhang, Sen Xue, and
others [12] developed a high-efficiency thermal interface material with anisotropic orienta-
tion and high vertical thermal conductivity, by adjusting the distribution and orientation
of graphene fillers, improving the thermal management performance of microelectronic
devices, extending device life, and improving energy efficiency. You Y-L, Li D-X, and oth-
ers [13] prepared GF/PA6 composite materials containing different solid lubricants in the
laboratory, and used a ball-disc friction tester to evaluate the friction and wear performance
of different composite materials, revealing the mechanism of various solid lubricants in
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reducing friction and wear. One paper [14] mainly studied the thermal conductivity of
polymer composite materials based on phenolic resin and boron nitride (BN), by adding
boron nitride fillers to phenolic resin, improving the thermal conductivity of composite
materials, and evaluating the thermal conductivity, thermal stability, and microstructure
of composite materials through thermal conductivity tests, thermogravimetric analysis,
and scanning electron microscopy. Another [15] analyzed the microstructure, thermal
stability, and mechanical properties of Al2O3 and SiC-reinforced PA6 hybrid composite
materials, and the experimental results showed that Al2O3 and SiC particles were uni-
formly distributed in the PA6 matrix, effectively improving the mechanical properties of the
materials. Jiaqi Zhang, Xianzhao Jia, and others [16] mainly studied the effects of additive
fluoroelastomer (FVMQ) and Al2O3 particle co-filling on its mechanical properties, thermal
properties, and friction properties at high temperatures, verifying that by optimizing the
mass fraction and dispersion degree of Al2O3 particle fillers, a comprehensive optimization
of the mechanical properties, thermal properties, and friction properties of fluoroelastomer
composite materials under high-temperature conditions can be achieved. Qiu Hong Mu,
Dan Peng, and other scholars [17] studied the effect of filling Al2O3 particles on the thermal
conductivity of silicone rubber, and evaluated the thermal conductivity, thermal stability,
and microstructure of composite materials through thermal conductivity tests, thermogravi-
metric analysis, and scanning electron microscopy. One work [18] explored the effects of
filling Al2O3 compounds on the thermal conductivity and rheological properties of epoxy
resin and liquid crystal epoxy resin composite materials, by adding Al2O= compound fillers
to epoxy resin and liquid crystal epoxy resin, improving the thermal conductivity and
rheological properties of composite materials. Konopka K, Krasnowski M, and others [19]
used pulsed plasma sintering (PPS) method to prepare Al2O3 samples and NiAl-Al2O3
composite materials, and analyzed the microstructure, phase composition, thermal stability,
and mechanical properties of the two materials by X-ray diffraction (XRD), thermogravi-
metric analysis (TGA), and differential scanning calorimetry (DSC), and evaluated the
significant influence of pulsed plasma sintering parameters on the microstructure and
mechanical properties

According to the literature cited above, a series of research work has been carried
out on thermal conductive materials for semiconductor devices. In order to ensure that
these thermal conductive materials have excellent comprehensive performance, researchers
usually choose to fill polymer materials with high thermal conductivity inorganic fillers or
metal fillers. The thermal conductive materials prepared in this way have the advantages
of low cost and easy processing. Through appropriate physical and chemical treatment
methods or adjusting the experimental formula ratio, such thermal conductive materials
can meet the specific application scenarios with thermal conductivity requirements. PA6
has good mechanical properties, thermal stability, and chemical stability, and can adapt
to various complex working environments. More importantly, PA6 has high adjustabil-
ity, and its performance can be improved by adding different types and proportions of
fillers, reinforcements, and auxiliaries. Therefore, this study chose to add inorganic fillers
(Al2O3) to nylon (PA6) and add 5% diethylhexyl phthalate (DEHP) in a certain proportion
to prepare materials with specific functions. In order to study the mechanical properties
of these functional materials, various instruments such as scanning electron microscopy
(SEM) (JSM-7500F, JEOL Ltd., Tokyo, Japan), differential scanning calorimeter (DSC) (1/700
type, Mettler-Toledo, Zurich, Switzerland), and thermal conductivity meter (DTC-300,
TA Instruments, New Castle, DE, USA) were used for testing and analysis. The results
show that this high thermal conductivity functional material has great potential to replace
metal shell materials and can be used to manufacture semiconductor devices with a metal
appearance. This material performs excellently in polishing performance, thermal con-
ductivity, and molding performance, providing promising possibilities for replacing metal
materials. For example, in LED semiconductor lighting, it can be used as an effective heat
dissipation material.
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2. Materials and Methods
2.1. Raw Materials

The thermally conductive base material nylon (PA6) was purchased from Zhuhai SMIKA
Polymer Company (Zhuhai, China); the thermally conductive filler Al2O3 (purity ≥ 99%) was
obtained from National Medicine Group Chemical Reagent Co., Ltd. (Shanghai, China);
the coupling agent diethylhexyl phthalate (DEHP) was provided by Foshan New Material
Technology Co., Ltd. (Foshan, China).

2.2. Preparation of Materials

Initially, the nylon plastic granules underwent essential pretreatment. The nylon
granules were dried in an oven at a temperature of 120 ◦C for 24 h to eliminate moisture,
ensuring the stability of material performance in subsequent experiments.

In this study, we conducted three sets of experiments. Firstly, to achieve a good thermal
conductivity, thermal stability, and mechanical properties, we combined the research from
ref. [20,21] and prior theoretical analysis. Nylon PA6, thermal conductive filler Al2O3, and
DEHP were mixed at a mass ratio of 80:18:2. A high-speed stirrer was used to ensure that
all components were fully mixed and formed a homogeneous mixture. Subsequently, the
obtained mixture was extruded using an extruder to give the material a certain shape. The
extruded material was then dried at 80 ◦C for 2 h to remove any residual moisture, ensuring
the smooth progress of the subsequent injection molding process.

Secondly, with the aforementioned experimental procedure kept consistent, we con-
ducted grouped experiments with filler particle size, filler shape, and filler ratio as variables
to evaluate the thermal performance of the material. The particle sizes selected were 5 µm,
20 µm, and 100 µm; the filler shapes were spherical and flaky; the filler ratios were 10%,
20%, 30%, 40%, and 50%.

Lastly, to analyze the relationship between the filler ratio and mechanical properties
in more detail, we set up nine groups of gradient experiments for the filler ratio, namely
0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40%, while maintaining the aforementioned
experimental procedure.

2.3. Characterization of Thermal Conductivity

After the experiment was completed, we immersed the samples used for testing
thermal performance in liquid nitrogen, allowing them to rapidly solidify and become
brittle at low temperatures, thus facilitating subsequent cross-sectional observation and
analysis. Then, the cross-section of the sample was placed on conductive adhesive and
a sputter coating treatment performed to provide good conductivity and adhesion for
observation and analysis under a scanning electron microscope (SEM). The SEM was used
to observe the distribution characteristics and morphology of the thermally conductive filler
in the matrix material. Finally, the prepared heat-resistant plastic samples were sent to a
differential scanning calorimeter (DSC) for heat resistance performance analysis. We sought
to understand the thermal stability and thermal degradation behavior of the composite
material at different temperatures, thereby evaluating its application potential in high-
temperature environments. Furthermore, we employed a thermal conductivity meter to
analyze the samples. By applying heat to the sample and measuring its temperature change
over a certain period, we calculated the sample’s thermal conductivity, which allowed us
to predict the material’s thermal management performance in practical applications.

2.4. Mechanical Analysis

In this study, tensile tests were conducted to evaluate the mechanical properties of
the composite material, using an electronic universal testing machine (WDT-10, Shenzhen
Kaiqiangli Experimental Instrument Co., Ltd., Shenzhen, China.) with a testing temperature
of 25 ◦C. To ensure the accuracy and comparability of the experiments, the preparation
and testing process of the tensile samples followed the relevant provisions of ASTM
D638. Meanwhile, the size of the samples referred to the ISO 527-2 Type 1A standard
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requirements to ensure that the shape and dimensions of the samples met internationally
accepted requirements. In the actual testing process, the samples were stretched at a
transverse speed of 25 mm/min to simulate the loading speed and conditions that may be
encountered in real-life applications. Finally, the American TA Instruments (New Castle,
DE, USA) Q800 analyzer was used for single cantilever mode testing, gaining a deeper
understanding of the mechanical properties of the composite material and its potential in
various application scenarios.

2.5. Scanning Electron Microscopy (SEM)

A scanning electron microscope (SEM) was used to study the microstructure of PA6,
Al2O3, and the composite material. Observing the microstructure and interactions within
PA6, Al2O3, and their composite material helps to reveal the microstructural characteristics
of the samples.

3. Results and Discussion
3.1. Microstructure Analysis of Thermal Polymer Materials

In order to measure the thermal conductivity, the test samples were first treated with
liquid nitrogen to increase the brittleness of the material. Subsequently, the cross-section
of the samples was placed on a conductive adhesive and subjected to sputter coating,
enabling observation of the distribution characteristics and morphology of the thermally
conductive fillers within the matrix material under a scanning electron microscope (SEM).
Following this step, we utilized a differential scanning calorimeter (DSC) to analyze the
thermal stability of the heat-resistant plastic samples to understand their performance under
high-temperature conditions. Prior to the formal preparation of thermally conductive
polymer materials, a detailed examination of the microstructure and energy spectrum
distribution of the fillers and PA6 was conducted using a scanning electron microscope,
based on the composition ratio of the thermally conductive fillers. The results are shown in
Figures 1 and 2.
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Figure 1. PA6 material microstructure image. Figure 1. PA6 material microstructure image.

After successfully preparing the thermally conductive composite material, its mi-
crostructure was observed using a scanning electron microscope (SEM), as shown in
Figure 3. Comparing Figures 1 and 3, it can be found that the SEM image of the original
PA6 displays a relatively uniform and smooth surface, while the SEM image of the PA6
composite material with added Al2O3 filler exhibits a clear distribution of filler particles
and an interfacial region is formed between the Al2O3 filler and the PA6 matrix. Further-
more, the thermally conductive filler (Al2O3) appears as flake-like or spherical shapes and
is relatively uniformly distributed within the nylon matrix material, which is beneficial for
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forming continuous thermal conduction paths or networks within the composite material.
After the addition of the thermally conductive filler, the original microstructure of the ma-
trix material changes, resulting in the thermally conductive composite material exhibiting
excellent thermal conductivity performance.
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3.2. DSC Testing

In this study, the thermal properties of the thermally conductive polymer samples
were analyzed using a differential scanning calorimeter (DSC). During the experiment, the
samples were placed in a nitrogen atmosphere and heated at a rate of 20 ◦C per minute,
with the temperature increasing from room temperature to 300 ◦C. After reaching 300 ◦C,
the temperature was maintained at 10 ◦C for 10 min, followed by cooling. The obtained
DSC curve of the samples is shown in Figure 4. Based on the results in Figure 4, the entire
DSC curve can be divided into four stages [22]. In the first stage, from the start of heating
to approximately 160 ◦C, the DSC curve gradually rises and reaches the peak of the first
endothermic peak; at this temperature, the polymer transitions from a glassy state to a
highly elastic rubber-like or viscous fluid state, and the motion of the molecular chains
becomes more flexible. The subsequent second stage extends from the end of the 160 ◦C
endothermic peak to a temperature of 175 ◦C. The third stage has a temperature range of
175 ◦C to 240 ◦C, where the curve starts to rise, ultimately forming the second endothermic
peak; at this temperature, the crystalline regions of PA6 begin to melt, and the movement
of the molecular chains further increases. The final fourth stage covers a temperature range
of 230 ◦C to 300 ◦C, during which the DSC curve begins to decline and exhibits a faster



Polymers 2023, 15, 2369 7 of 10

descent rate; in this process, heat is released, and the polymer material’s chain segments
begin to rearrange and form crystalline regions.
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3.3. Thermal Conductivity Testing

In this project, we conducted experiments on the thermal conductivity of polymer
materials prepared based on Al2O3 with different diameters and morphologies. The
diameters of the fillers used were 5 µm, 20 µm, and 100 µm, and the morphologies included
spherical and flake-like shapes. Figure 5 shows the corresponding experimental data
curves. Combining the experimental data with the literature [23], several conclusions can
be drawn: (1) Under different diameters or different morphologies of the filler, the thermal
conductivity of the polymer materials exhibits an increasing trend, indicating that the
thermal conductivity of nylon composites increases with the increase in the content of
Al2O3 filler. This phenomenon can be attributed to the increase in filler content, which
helps form thermal conduction paths and networks in the composite material, thereby
improving thermal conductivity; (2) By observing the data curves of the three groups
with filler diameters of 5 µm, 20 µm, and 100 µm, it can be concluded that the thermal
conductivity is the highest when the filler diameter is 20 µm and the lowest when the filler
diameter is 100 µm. This indicates that within a specific particle size range, the thermal
conductivity of the composite material increases with the increase in particle size; however,
beyond this range, the thermal conductivity gradually decreases. This phenomenon may
be due to the larger particle size filler reducing the thermal conductivity of the composite
material, leading to a decrease in overall thermal conductivity; (3) Comparing the data of
spherical and flake-like fillers with a diameter of 5 µm, it can be found that the flake-like
fillers are more effective in improving the thermal conductivity of the composite material
than spherical fillers.
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3.4. Mechanical Properties Testing

Figure 6 shows the change curve of the tensile strength of composite materials as the
content of Al2O3 filler increases. According to the experimental data curve, the tensile
strength of nylon is 46 MPa. When the alumina content reaches 14%, the tensile strength
of the composite material reaches its maximum value of 55.1 MPa, which is about 19%
higher than that of pure nylon material. However, when the alumina filler content exceeds
14%, the tensile strength of the composite material significantly decreases, showing an
inverse relationship with the proportion of filler. When the alumina content reaches 30%,
the tensile strength is 35.5 MPa. This observation indicates that the tensile strength of the
composite material increases with the increase in alumina content within a specific range
(alumina content below 10%). When the content is below this range, its tensile strength is
even lower than that of single nylon material.
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With the addition of alumina filler, the compressive strength of nylon composite
materials has been improved accordingly. An electronic universal testing machine was
used to measure the compressive strength of composite materials, and the experimental
results are shown in Figure 7. When the alumina content reaches 15%, the compressive
strength of the composite material reaches its highest value of 94 MPa. Compared with pure
PA6, the compressive strength of this composite material has increased by 47.6%. Within
a certain range (alumina content ≤ 15%), the compressive strength of nylon composite
materials increases with the increase in alumina content. This trend can be attributed to the
dispersion of alumina particles in the polymer matrix and the interaction between alumina
particles and the polymer matrix [24]. However, when the alumina content exceeds this
threshold, the excessive filler content leads to particle aggregation in the polymer matrix,
which affects the overall performance of the composite material, resulting in a decreasing
trend in compressive strength.
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4. Conclusions

In this paper, researchers successfully prepared a composite material with high thermal
conductivity using high thermal conductive functional materials, namely polyamide 6
(PA6) and alumina (Al2O3). Detailed experimental studies were conducted on the thermal
conductivity, heat resistance, and performance at different filler ratios of this composite
material. The experimental results show that: (1) using spherical fillers with a diameter of
20 µm can achieve a larger thermal conductivity. When the filler size is reduced to 5 µm, the
thermal conductivity reaches the highest value of 0.9 W·(mK)−1. In addition, this composite
material has good heat resistance performance and can maintain stability at the highest
temperature of 240 ◦C. (2) The composite material has significant mechanical properties.
When the Al2O3 content is 10%, the tensile strength of the thermal conductive functional
material reaches its highest value. However, when the additive amount is increased to 14%,
the compressive strength of the composite material reaches the highest value of 55.1 MPa,
indicating that to a certain extent, increasing the Al2O3 content can improve the mechanical
properties of the composite material. In summary, this high thermal conductive functional
material prepared from PA6 and Al2O3 not only has excellent thermal conductivity and heat
resistance performance but also has good mechanical properties. This gives this composite
material a wide range of application potential in high-temperature application fields, such
as aerospace, automotive manufacturing, and electronic devices. This research provides
beneficial practical experience for engineers and scientists in related fields, helping to
develop higher performance composite materials in actual applications.
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