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Abstract: The current paper is aimed to investigate the effects of waviness, random orientation, and
agglomeration factor of nanoreinforcements on wave propagation in fluid-conveying multi-walled
carbon nanotubes (MWCNTs)-reinforced nanocomposite cylindrical shell based on first-order shear
deformable theory (FSDT). The effective mechanical properties of the nanocomposite cylindrical
shell are estimated employing a combination of a novel form of Halpin-Tsai homogenization model
and rule of mixture. Utilized fluid flow obeys Newtonian fluid law and it is axially symmetric and
laminar flow and it is considered to be fully developed. The effect of flow velocity is explored by
implementing Navier-Stokes equation. The kinetic relations of nanocomposite shell are calculated via
FSDT. Moreover, the governing equations are derived using the Hamiltonian approach. Afterward, a
method which solves problems analytically is applied to solve the obtained governing equations.
Effects of a wide range of variants such as volume fraction of MWCNTs, radius to thickness ratio,
flow velocity, waviness factor, random orientation factor, and agglomeration factor on the phase
velocity and wave frequency of a fluid conveying MWCNTs-reinforced nanocomposite cylindrical
shell were comparatively illustrated and the results were discussed in detail.

Keywords: wave dispersion analysis; MWCNT-reinforced nanocomposite; first-order shear deformable
shell theory; waviness factor; random orientation factor; agglomeration factor; fluid flow

1. Introduction

One substantial concern of engineers in designing structures and researchers in ana-
lyzing structures is the durability and permanence of the structure while it is subjected to
various kinds of static and dynamic loadings. This issue has become an interesting topic
on manufacturing, designing and analyzing structures made of various materials. Com-
posite materials owing to their superb chemical and physical properties are one of suitable
candidate to be selected as constituent materials of structures [1]. Composite materials are
a mixture of at least two kind of materials with different physical and chemical properties.
Generally, there are two main categories of constituent materials: reinforcement and matrix.
Matrix surrounds the reinforcements and the reinforcements enhance the matrix properties
by imparting their mechanical and physical properties. These reinforcements have been
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applied to strengthen the properties of their base materials for a myriad of engineering
applications such as automotive, marine, aerospace and aircraft structures, biomedical
media, and sports goods. Another advantage is the wide choice of materials which can
be used as matrix and reinforcements, for instance, polymer, ceramic, and metal materials
can be used as the matrix. Owing to these great capabilities, composite structures have
received wide attention of researchers and engineers to analyze mechanical behavior like
buckling, vibration and wave propagation of such structure. Kant and Swaminathan [2]
investigated vibrational behavior of simply supported sandwich composite plates within
the framework of refined higher-order shear deformable theory (HSDT). HSDT was applied
by Tripathi, et al. [3] to investigate vibrational behaviors of laminated composite conical
shells with consideration of randomness sensitivity. Thai and Kim [4] studied the natural
frequency of laminated plates in the framework of two unknowns refined plate theory
using the Navier solution technique. The nonlinear vibrational response of laminated plates
on the basis of nonlinear Von Kármán’s theory was surveyed by Houmat [5] using the
hierarchical finite element method (FEM). Verma [6] probed the wave propagation behav-
ior of a desired direction in laminated composite plates. Panda and Singh [7] also solved
the nonlinear thermal vibration problem of post-buckled laminated composite spherical
panel embedded with shape memory alloy fiber using nonlinear FEM based on HSDT.
Dynamic analysis of the laminated composite shells on the basis of the higher-order zigzag
theory by a 2D FEM was performed by Kumar, et al. [8]. Nedri, et al. [9] analyzed the
natural frequency of cross-ply laminated composite plates lying on an elastic medium via
a refined hyperbolic shear deformation theory. Free vibrational and stability behavior of
laminated composite flat and curved panels under thermomechanical loading were exam-
ined by Panda and Katariya [10]. Moreover, the incremental harmonic balance method was
employed by Dey and Ramachandra [11] to evaluate the nonlinear transverse dynamic
problem of laminated composite cylindrical shells under static axial partial loading and
periodic radial point loading in the framework of Von Kármán’s nonlinear shell theory.
Barouni and Saravanos [12] explored guided wave propagation characteristics of infinite
laminated composite plates based on a layerwise semi-analytical theory. The frequency
oscillation of various shapes of shell with concentrated and cutouts mass made of lami-
nated composite according to third-order shear deformable theory (TSDT) was analyzed
by Chaubey, et al. [13]. Recently, Gao, et al. [14] investigated the guided wave dispersion
behavior of anisotropic composite laminates utilizing the Legendre polynomials and state-
vector formalism. Nastos and Saravanos [15] probed the guided wave propagation of a
sandwich plate based on Daubechies wavelet functions in conjunction with a layerwise
laminate plate theory. Recently, Safaei [16] studied natural frequency oscillation of an
embedded laminated composite plates with consideration of porosity effect.

Besides, the reinforcements can be in various scales and shapes including fiber as
macro-reinforcement and particle as nano-reinforcement. The materials reinforced with the
nanoreinforcements are called nanocomposite. Carbon-base materials such as carbon fiber,
graphene, graphene oxide (GO), graphene platelets (GPLs), and carbon nanotubes (CNTs)
are among the best candidates for being used as reinforcement. CNTs can be divided to
Single-walled CNT (SWCNT) and Double-walled CNT (DWCNT) and Multi-walled CNT
(MWCNT). They have similar properties and application but, among them, MWCNTs have
slightly better properties. The existence of multi-walled nanotube makes MWCNTs more
appropriate to utilize as reinforcements. Several investigations have addressed the me-
chanical responses of reinforced nanocomposite structures [17–21]. For example, Heshmati
and Yas [22] investigated forced and free frequency response of non-uniform beams made
of MWCNTs-strengthened nanocomposite based on Timoshenko beam theory utilizing
FEM. Kiani [23] discussed the vibrational response of CNTs-reinforced nanocomposite
spherical panels within the framework of FSDT. Based on HSDT, Wang, et al. [24] analyzed
the static and dynamic characteristics of the nanocomposite doubly-curved shallow shells
reinforced with GPLs. Free vibration and buckling analyses of pre-stressed cylindrical
GPL- reinforced shells (with nonuniform distribution) were performed by Liu, et al. [25].
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Kumar and Srinivas [26] used Navier’s solution technique to solve the transient vibrational
problem of MWCNTs-reinforced nanocomposite plate resting on Pasternak substrate based
on TSDT. Moreover, the dispersion of flexural waves in GPLs-reinforced nanocomposite
cylindrical shells with respect to porosity was surveyed by Ebrahimi, et al. [27] according
to FSDT. Propagation of elastic waves in composite plates reinforced with CNTs based
upon FSDT was explored by Karami, et al. [28]. Frequency analysis of GPLs-reinforced
multi-layer nanocomposite beams lying on a viscoelastic foundation through HSDT was
presented by Qaderi, et al. [29] using Navier’s solution technique. Ghassabi, et al. [30] per-
formed wave propagation modeling of doubly curved thick shells made of CNT-reinforced
composite based on three-dimensional theory. Barati and Zenkour [31] investigated the dy-
namic oscillation of imperfect nanocomposite shells reinforced by graphene platelets using
Galerkin’s method. In this work, various patterns have been considered for porosity and
GPLs distributions. Recently, wave propagation and buckling characteristics of thermally
excited nanocomposite plate reinforced with GO powder resting on an elastic foundation
was evaluated through refined HSDT by Ebrahimi, et al. [32], Ebrahimi, et al. [33]. Lal
and Markad [34] examined the postbuckling behavior of MWCNTs-reinforced laminated
nanocomposite beam resting on an elastic medium under thermomechanical loading.
Lately, Lee [35] probed the buckling and nonlinear transient problems of hybrid nanocom-
posite cylindrical panels with or without delamination about a cutout utilizing Hewitt and
Malherbe model.

Several problems still challenge the development of the reinforced composite struc-
tures. Orientation, waviness, and agglomeration of reinforcements are some of these prob-
lems which can substantially affect the mechanical behavior of composite structures. In this
context, the analysis and design of composite structures concerning the mentioned factors
are of crucial significance. Therefore, the influences of reinforcements’ orientation, waviness,
and aggregation on the mechanical response of composite structures have been surveyed
by several researchers. Jam, et al. [36] explored the natural frequency of CNTs-reinforced
composite cylindrical panels considering the aspect ratio and waviness effects of nanofillers
using a three-dimensional elasticity theory. Vibration oscillations of the Timoshenko beam
reinforced with randomly oriented CNTs were assessed by Rashidifar and Ahmadi [37]
utilizing FEM. The dynamic response of the composites reinforced with long randomly ori-
ented fiber was evaluated by Sepahvand [38] based on FSDT. Kamarian, et al. [39] probed
the influence of CNTs’ aggregation on dynamic analysis of CNTs-reinforced nanocomposite
conical shells via FSDT using generalized differential quadrature method. Furthermore,
Tahouneh [40] investigated the impact of CNTs’ waviness and aspect ratio on the free vibra-
tion analysis of embedded CNT-reinforced nanocomposite annular plates in the framework
of FSDT and HSDT. Both waviness and aggregation influences of the nanoreinforcements
on free vibrational behavior of CNTs-reinforced nanocomposite skew plate were exam-
ined by García-Macías and Castro-Triguero [41]. Recently, characteristics of propagation
of waves in a multiscale hybrid nanocomposite beams, plates and shells regarding the
influence of CNTs agglomeration were analyzed in [42–44].

Analysis of propagation of waves in structures is one of significant analyses that study
mechanical behavior of structures. Besides, this analysis can be helpful in designing, model-
ing and analyzing structure which are utilized in different systems. Also, in non-destructive
tests and structural health monitoring, this analysis can be advantageous [45–47]. It is quite
sufficient to motivate us to perform wave propagation analysis of structures especially
reinforced composite structures. The literature review, however, showed no study address-
ing wave propagation analysis of fluid conveying MWCNTs-reinforced nanocomposite
cylindrical shell in terms of MWCNTs orientation, waviness, and agglomeration within the
framework of a novel form of Halpin-Tsai micromechanical model. Indeed, the orientation,
waviness, and agglomeration of reinforcements affect remarkably mechanical response
of reinforced composite structures. Also, these influences have not been examined on
responses of propagated wave in MWCNTs-reinforced nanocomposite structures. One of
important application of selected structure (cylindrical shell) is in pipelines and pressure
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vessels. In another word, composite pipes has been established in flow and gathering lines,
tanks and distribution systems associated with natural gas transmission. Thus, the present
paper is aimed at filling this gap.

In the present work, the effects of MWCNTs’ orientation, waviness, and agglomer-
ation on wave dispersion behavior of a fluid conveying MWCNT-reinforced polymeric
nanocomposite were investigated in the framework of a novel form of Halpin-Tsai ho-
mogenization model. In the new form of Halpin-Tsai micromechanical model, the noted
effects can be covered and studied implicitly. Plus, FSDT was implemented to attain kinetic
relations of nanocomposite cylindrical shells. In the next step, the obtained governing equa-
tions were analytically solved to probe the effect of various variables on the variation of
phase velocity and wave frequency of fluid conveying MWCNTs-reinforced nanocomposite
cylindrical shells.

2. Theory and Formulation

A schematic view of a fluid-conveying MWCNTs-strengthened cylindrical shell with
respective length and height of L and h is depicted in Figure 1. MWCNTs are distributed
into the polymer matrix.

Figure 1. Schematic of fluid conveying MWCNT-reinforced nanocomposite shell.

2.1. Homogenization Procedure

In the current section, a new form of Halpin-Tsai homogenization model and rule of
the mixture was applied to determine the material properties of the nanocomposite shell.
The effective mechanical properties of nanocomposite shell will be calculated as [48]:

E(z) = Em
1 + 2ηζVr

1 − ζVr
, η =

Lr

dr
, ζ =

Er
Em

− 1
Er
Em

+ 2η
(1)

ρ(z) = ρmVm + ρrVr (2)

υ(z) = υmVm + υrVr (3)

in which E represent Young’s modulus, ρ represent mass density, and υ represent Poisson’s
ratio. Furthermore, subscripts of r and m stand for MWCNT and polymer matrix, respec-
tively. Lr is MWCNTs’ length and dr shows its diameter. Vm and Vr denote volume fraction
of matrix and MWCNTs, respectively which have the following relationship:

Vm + Vr = 1 (4)
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Waviness, random orientation, and agglomeration factors can significantly influence
the value of elastic modulus. The mentioned factors can be considered through the follow-
ing equation [48]:

ζ =

(
fR fW fAEc

Em
− 1
)

(
fR fW fAEc

Em
+ 2η

) a (5)

in which fR is the random orientation factor. MWCNTs were assumed to be oriented
randomly in three directions in this research and the value of random orientation factor
equals 1/6 [49]. If MWCNTs are considered to be randomly oriented in two dimensions,
fR=1/3. fW is waviness factor which can be defined as [48]:

fW = 1 − A
W

(6)

in which A stands for amplitude a wavy MWCNT and W stands for the amplitude and
half-wavelength of a wavy MWCNT, as indicated in Figure 2. In the present investigation,
the waviness factor was assumed to be 0.6.

Figure 2. The schematic model of the wavy MWCNT [48].

fA is agglomeration factor which has the following definition [48]:

fA = e−α(Vr)
λ

(7)

where α and λ are referred to the degree of MWCNTs agglomeration which were assumed
to be 10 and 0.9, respectively.

2.2. Kinetic Relations

Pursuant to the first-order shear deformable shell theory, the displacement fields at
every point of a fluid-conveying MWCNTs-reinforced nanocomposite cylindrical shell can
be defined as [43]:

u1(x, ψ, z, t) = u(x, ψ, t) + zθx(x, ψ, t) (8)

u2(x, ψ, z, t) = v(x, ψ, t) + zθψ(x, ψ, t) (9)

u3(x, ψ, z, t) = w(x, ψ, t) (10)

where u is axial displacement, v is circumferential displacement, w is lateral displacements,
θx is rotation about axial direction, and θψ is rotation about circumferential direction
respectively. Hence, the strains of a cylindrical shell that are not zero can be written as:

εxx =
∂u
∂x

+ z
∂θx

∂x
(11)

εψψ =
1
R

(
w +

∂v
∂ψ

+ z
∂θψ

∂ψ

)
(12)

εxz = θx +
∂w
∂x

(13)



Polymers 2021, 13, 153 6 of 18

εxψ =
∂v
∂x

+
1
R

∂u
∂ψ

+
z
R

∂θx

∂ψ
+ z

∂θψ

∂x
(14)

εψz = θψ +
1
R

∂w
∂ψ

− v
R

(15)

in which R denotes radius of cylindrical shell. Then, to achieve Euler-Lagrange equations
of MWCNTs-reinforced cylindrical shell, Hamiltonian approach was applied and it can be
stated as:

t1∫
t0

[δU − δK − δWnc]dt = 0 (16)

in which U indicates strain energy, K indicates kinetic energy, and Wnc indicates work
done by external loadings. The strain energy’s variation for an elastic structure is written
as follows:

δU =

h
2∫

− h
2

2π∫
0

L∫
0

σijδεijRdxdφdz

=

h
2∫

− h
2

2π∫
0

L∫
0

[
σxxδεxx + σψψδεψψ + σxzδεxz + σψzδεψz + σxψδεxψ

]
Rdxdφdz

=

h
2∫

− h
2

2π∫
0

L∫
0


σxxδ

(
∂u
∂x + z ∂θx

∂x

)
+ σψψδ

(
1
R

(
w + ∂v

∂ψ + z ∂θψ

∂ψ

))
+σxzδ

(
θx +

∂w
∂x

)
++σψzδ

(
θψ + 1

R
∂w
∂ψ − v

R

)
σxψδ

(
∂v
∂x + 1

R
∂u
∂ψ + z

R
∂θx
∂ψ + z ∂θψ

∂x

)
Rdxdψdz

(17)

The resultant forces and momentum can be stated as follow:
Nxx
Nxψ

Nψψ

 =

h
2∫

− h
2


σxx
σxψ

σψψ

dz (18)


Mxx
Mxψ

Mψψ

 =

h
2∫

− h
2


σxx
σxψ

σψψ

zdz (19)

{
Qxz
Qzψ

}
= κs

h
2∫

− h
2

{
σxz
σzψ

}
dz (20)

By using Equations (18)–(20), Equation (17) can be rewritten in the following form:

δU =

h
2∫

− h
2

2π∫
0

L∫
0


Nxx

∂δu
∂x + Mxx

∂δθx
∂x +

Nψψ

R

(
∂δv
∂ψ + δw

)
+

Mψψ

R
∂δθψ

∂x

Nxψ

(
1
R

∂δu
∂ψ + ∂δv

∂x

)
+ Mxψ

(
1
R

∂δθx
∂ψ +

∂δθψ

∂x

)
+Qxz

(
∂δw
∂x + δθx

)
+ Qzψ

(
δθψ + 1

R
∂δw
∂ψ − 1

R δv
)
Rdxdψdz (21)

Moreover, the variation of kinetic energy can be described by:

δK =

h
2∫

− h
2

2π∫
0

L∫
0

ρ(z)
[(

δ
.
ux
)2

+
(
δ

.
uψ

)2
+
(
δ

.
uz
)2
]

Rdxdψdz (22)

Dot-subscript is related to differentiation with respect to time.
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Herein, the viscous fluid flow in MWCNTs-reinforced cylindrical shells is supposed
to be, Newtonian, laminar, fully developed and axially symmetric [50]. Therefore, the
Navier-Stokes equation will be used. The equation of momentum of fluid flow can be
stated by:

− ∂P
∂R

+
∂τRx
∂x

−
τψψ

R
+

1
R

∂τRψ

∂ψ
= ρ f

dVR
dt

(23)

in above equation ρf and P stand for density of the fluid and pressure of the fluid. Due to
the reciprocating identity in the contact points between the speed and acceleration of the
structure and fluid, the following equations are developed:

VR =
dw
dt

(24)

d
dt

=
∂

∂t
+ vx

∂

∂x
(25)

in which vx stands for the mean velocity of fluid flow; shear stress (τ) and viscosity (µf)
relations are formulated as:

τRψ =
µ f

R
∂VR
∂ψ

(26)

τψψ = 2µ f
VR
R

(27)

τRx = RτRψ (28)

In the above equation the parameters µf and VR are the viscosity and fluid flow of the
fluid, respectively.

The variation of work done by the exterior loading can be stated as:

δΠW =

h
2∫

− h
2

2π∫
0

L∫
0

(
µ f

R3
∂2VR

∂ψ2 + µ f
∂2VR

∂x2 −
2µ f

R2 VR − ρ f
d2w
dt2

)
δwRdxdψdz (29)

Therefore, to attain the motion equations of the cylindrical shell, Equations (21), (22)
and (29) will be replaced into Equation (16) leading to the following relations:

∂Nxx

∂x
+

1
R

∂Nxψ

∂ψ
= I0

∂2u
∂t2 + I1

∂2θx

∂t2 (30)

∂Nxψ

∂x
+

1
R

∂Nψψ

∂ψ
+

Qzψ

R
= I0

∂2v
∂t2 + I1

∂2θψ

∂t2 (31)

∂Qxz
∂x + 1

R
∂Qzψ

∂ψ − Nψψ

R − ρ f h f v2
x

∂2w
∂x2 + µ f h f vx

[
∂3w
∂x3 + 1

R

(
∂3w

∂x∂ψ2 − 2 ∂w
∂x

)]
= I0

∂2w
∂t2 + ρ f h f

[
∂2w
∂t2 + 2vx

∂2w
∂x∂t

]
+ µ f h f

[
∂3w

∂t∂x2 +
1

R2

(
∂3w

∂t∂ψ2 − 2 ∂w
∂t

)] (32)

∂Mxx

∂x
+

1
R

∂Mxψ

∂ψ
− Qxz = I1

∂2u
∂t2 + I2

∂2θx

∂t2 (33)

∂Mxψ

∂x
+

1
R

∂Mψψ

∂ψ
− Qψz = I1

∂2v
∂t2 + I2

∂2θψ

∂t2 (34)

where 
I0
I1
I2

 =

h
2∫

− h
2


1
z
z2

ρ(z)dz (35)

in which κs is a factor for shear correction which is taken as 5/6.
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Integrating the aforementioned equations over the thickness of shell, the following
relations will be obtained:

Nxx = A11
∂u
∂x

+ B11
∂θx

∂x
+

A12

R

(
∂v
∂ψ

+ w
)
+

B12

R
∂θψ

∂ψ
(36)

Nxψ = A66

(
1
R

∂u
∂ψ

+
∂v
∂x

)
+ B66

(
1
R

∂θx

∂ψ
+

∂θψ

∂x

)
(37)

Nψψ = A12
∂u
∂x

+ B12
∂θx

∂x
+

A11

R

(
∂v
∂ψ

+ w
)
+

B11

R
∂θψ

∂ψ
(38)

Mxx = B11
∂u
∂x

+ D11
∂θx

∂x
+

B12

R

(
∂v
∂ψ

+ w
)
+

D12

R
∂θψ

∂ψ
(39)

Mxψ = B66

(
1
R

∂u
∂ψ

+
∂v
∂x

)
+ D66

(
1
R

∂θx

∂ψ
+

∂θψ

∂x

)
(40)

Mψψ = B12
∂u
∂x

+ D12
∂θx

∂x
+

B11

R

(
∂v
∂ψ

+ w
)
+

D11

R
∂θψ

∂ψ
(41)

Qxz = As
55

(
∂w
∂x

+ θx

)
(42)

Qψz = As
55

(
− v

R
+

1
R

∂w
∂ψ

+ θψ

)
(43)

in which  A11 B11 D11
A12 B12 D12
A66 B66 D66

 =

h
2∫

− h
2

 Q11
Q12
Q66

[ 1 z z2 ]dz (44)

As
55 = κs

h
2∫

− h
2

Q66dz (45)

where Q11 = E
1−υ2 , Q12 = Q11υ , Q66 = Q11

1−υ
2 .

At last, by mixing Equations (21)–(27) with Equation (31), the governing ss of fluid con-
veying MWCNT-reinforced nanocomposite cylindrical shells can be obtained as written below:

A11
∂2u
∂x2 + B11

∂2θx
∂x2 + A12

R

(
∂2v

∂x∂ψ + ∂w
∂x

)
+ B12

R
∂2θψ

∂x∂ψ + A66
R

(
1
R

∂2u
∂ψ2 +

∂2v
∂x∂ψ

)
+ B66

R

(
1
R

∂2θx
∂ψ2 +

∂2θψ

∂x∂ψ

)
− I0

∂2u
∂t2 − I1

∂2θx
∂t2 = 0

(46)

A66

(
1
R

∂2u
∂x∂ψ + ∂2v

∂x2

)
+ B66

(
1
R

∂2θx
∂x∂ψ +

∂2θψ

∂x2

)
+ A12

R
∂2u

∂x∂ψ

+ B12
R

∂2θx
∂x∂ψ + A11

R2

(
∂2v
∂ψ2 +

∂w
∂ψ

)
+ B11

R2
∂2θψ

∂ψ2 +
As

55
R

(
θψ + 1

R
∂w
∂ψ − v

R

)
− I0

∂2v
∂t2 − I1

∂2θψ

∂t2 = 0

(47)

As
55

(
∂θx

∂x
+

∂2w
∂x2

)
+

As
55

R

(
∂θψ

∂ψ
+

1
R

∂2w
∂ψ2 − 1

R
∂v
∂ψ

)
− A12

R
∂u
∂x

− B12

R
∂θx

∂x
− A11

R2

(
∂v
∂ψ

+ w
)

−B11

R2
∂θψ

∂ψ
− ρ f h f v2

x
∂2w
∂x2 + µ f h f vx

[
∂3w
∂x3 +

1
R

(
∂3w

∂x∂ψ2 − 2
∂w
∂x

)]
− I0

∂2w
∂t2

−ρ f h f

[
∂2w
∂t2 + 2vx

∂2w
∂x∂t

]
− µ f h f

[
∂3w

∂t∂x2 +
1

R2

(
∂3w

∂t∂ψ2 − 2
∂w
∂t

)]
= 0

(48)
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B11
∂2u
∂x2 + D11

∂2θx
∂x2 + B12

R

(
∂2v

∂x∂ψ + ∂w
∂x

)
+ D12

R
∂2θψ

∂x∂ψ

+ B66
R

(
1
R

∂2u
∂ψ2 +

∂2v
∂x∂ψ

)
+ D66

R

(
1
R

∂2θx
∂ψ2 +

∂2θψ

∂x∂ψ

)
−As

55

(
θx +

∂w
∂x

)
− I1

∂2u
∂t2 − I2

∂2θx
∂t2 = 0

(49)

B66

(
1
R

∂2u
∂x∂ψ + ∂2v

∂x2

)
+ D66

(
1
R

∂2θx
∂x∂ψ +

∂2θψ

∂x2

)
+ B12

R
∂2u

∂x∂ψ

+D12
R

∂2θx
∂x∂ψ + B11

R2

(
∂2v
∂ψ2 +

∂w
∂ψ

)
+ D11

R2
∂2θψ

∂ψ2

−As
55

(
θψ + 1

R
∂w
∂ψ − v

R

)
− I1

∂2v
∂t2 − I2

∂2θψ

∂t2 = 0

(50)

3. Analytical Solution Scheme

A method that consist of an exponential function was considered to analytically solve
the obtained governing equations of fluid-conveying MWCNT-reinforced nanocomposite
cylindrical shells. Therefore, the displacement fields will be:

u
v
w
θx
θψ

 =


Um
Vm
Wm
Θxm
Θψm

e[i(kx x+knψ−ωmt)] (51)

in Equation (51) the displacement amplitudes are representing by Um, Vm, and Wm, while
rotation amplitudes are representing by Θxm and Θψm. Moreover, kx is longitudinal wave
number and kn is circumferential wave number. Finally, ωm shows the circular natural
frequency. By inserting displacement fields from Equation (51) in Equations (46)–(50), the
following relation can be achieved:




K11 + iC11ωm − M11ω2
m K12 + iC12ωm − M12ω2

m K13 + iC13ωm − M13ω2
m K14 + iC14ωm − M14ω2

m K15 + iC15ωm − M15ω2
m

K21 + iC21ωm − M21ω2
m K22 + iC22ωm − M22ω2

m K23 + iC23ωm − M23ω2
m K24 + iC24ωm − M24ω2

m K25 + iC25ωm − M25ω2
m

K31 + iC31ωm − M31ω2
m K32 + iC32ωm − M32ω2

m K33 + iC33ωm − M33ω2
m K34 + iC34ωm − M34ω2

m K35 + iC35ωm − M35ω2
m

K41 + iC41ωm − M41ω2
m K42 + iC42ωm − M42ω2

m K34 + iC34ωm − M34ω2
m K44 + iC44ωm − M44ω2

m K45 + iC45ωm − M45ω2
m

K51 + iC51ωm − M51ω2
m K52 + iC52ωm − M52ω2

m K35 + iC35ωm − M35ω2
m K54 + iC54ωm − M54ω2

m K55 + iC55ωm − M55ω2
m






Um

Vm

Wm

Θxm

Θψm

 = 0 (52)

By solving the following relation, natural frequency can be calculated:∣∣∣∣[K + iCωm − Mω2
m

]
5×5

∣∣∣∣ = 0 (53)

where K, C and M illustrates stiffness, damping and mass matrices, respectively. The
elements of every matrix are provided in the Appendix A.

By dividing circular frequency to 2π, the wave frequency can be computed. Further-
more, by setting kx = kn = β, the phase velocity can be computed through:

cp =
ωm

β
(54)

4. Numerical Results and Discussion

In present section, several plots are provided to clarify the influence of different pa-
rameters on propagation of wave in fluid-conveying MWCNTs-reinforced nanocomposite
cylindrical shells. In this research, the thickness of the shell was supposed to be 5 cm;
also, both the length and radius of the shell were taken 30 times greater than its thick-
ness. The material properties of MWCNTs and polystyrene are given in Table 1. Moreover,
the random orientation factor (1/6) was taken into account for all diagrams. First of all,
the introduced methodology was validated by evaluating the obtained outcomes with
those stated by Pradhan, et al. [51], Wang and Wu [52], and Li, et al. [53]. The obtained
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non-dimensional natural frequencies of an isotropic shell (ω = Rω

√
ρ(1−υ2)

E ) were com-
pared to results of other investigations for Clamp-Clamp boundary condition. Based on
Table 2, it exists a good agreement between the results of present modeling and results of
compared studies.

Table 1. The properties of the constituent materials of the MWCNT-reinforced nanocomposite shells.

Mechanical Properties Polystyrene [22] MWCNT [48]

E (GPa) 1.9 800
ρ (Kg/m3) 1050 2100

υ 0.34 0.28

Table 2. Comparison of non-dimensional natural frequencies (ω = Rω

√
ρ(1−υ2)

E ) of the cylindrical shell for the C-C
boundary condition.

n Pradhan, Loy, Lam and Reddy [51] Error (%) Wang and Wu [52] Error (%) Li, Pang, Chen and Du [53] Error (%) Present

1 0.0342 2.632 0.0340 3.235 0.0332 5.723 0.0351
2 0.0119 2.521 0.0119 2.521 0.0117 4.274 0.0122
3 0.0072 0 0.0072 0 0.0071 1.389 0.0072
4 0.0089 0 0.0090 1.124 0.0090 1.124 0.0089
5 0.0136 0.735 0.0137 1.460 0.0137 1.460 0.0135

Figure 3 illustrates the effect of agglomeration and waviness factors on the changes of
elastic modulus versus volume fraction of MWCNTs. As observed, regardless of the ag-
glomeration and waviness factor, the elastic modulus linearly increased with an increment
of volume fraction of MWCNTs. However, by involving agglomeration and waviness factor,
the trend changed such that by increasing the MWCNTs content, elastic modulus increases
up to a peak followed by a decline. Typically, incrementing the volume fraction of MWC-
NTs makes the structure stiffer; but at a certain amount of MWCNTs, agglomeration of
MWCNTs negatively affects the stiffness of the structure. Moreover, this diagram suggests
the higher influence of the agglomeration factor (rather than waviness) on elastic modulus.

Figure 3. The influence of waviness and agglomeration factors on variation of elastic modulus of
MWCNT-reinforced nanocomposite versus MWCNTs’ volume fraction.
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Variation of wave frequency (a) and phase velocity (b) against wave number for
various MWCNTs’ volume fractions is illustrated in Figure 4 considering all factors and
vx = 2000. It can be said that both phase velocity and wave frequency increased by an
increment in the volume fraction of MWCNTs but the curve of Vr = 12% had lower values
than Vr = 9% which can be assigned to the agglomeration factor. Moreover, because of the
existence of fluid in the cylindrical shell, there is a damping effect which caused a reduction
in the phase velocity and wave frequency at a certain wave number after which, the phase
velocity, and wave frequency rose. The wave number at which the damping effect was
observed increased by selecting lower volume fractions of MWCNTs. Generally, by rising
the wave number, the wave frequency first increases followed by a decline at damping
wave number; after that, it again rises. For the phase velocity, a reduction is first observed
until a damping wave number which is then followed by an increase.

Figure 4. Variation of (a) wave frequency and (b) phase velocity versus wave number for various volume fraction
of MWCNTs.

The effect of waviness factor on the changes of wave frequency (a) and phase velocity
(b) against wave number is surveyed in Figure 5 at Vr = 5%. To clarify the effect of waviness
factor on wave frequency and phase velocity, agglomeration factor, and fluid flow velocity
were not taken into account. The waviness factor descended the variation of phase velocity
and wave frequency. Moreover, by rising the wave number, phase velocity first declined
and then grew after damping wave number (β = 6).
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Figure 5. The effect of waviness factor on changes of (a) wave frequency and (b) phase velocity against wave number.

Figure 6 depicts the influence of agglomeration on the changes of wave frequency (a)
and phase velocity (b) by wave number alternation regardless of waviness factor and fluid
flow velocity at Vr = 5%. As mentioned before, similar to waviness, the agglomeration had
a negative and decreasing effect. Hence, the trend of diagrams (Figure 6) is similar to that
of waviness (Figure 5). In another word, phase velocity and wave frequency of the curve
are higher when agglomeration was neglected as compared with the case considering the
agglomeration effect. A comparison of this figure with the previous one shows that the
curve with the agglomeration factor exhibited higher values than the one considering the
waviness factor indicating the higher significance of the agglomeration factor rather than
waviness which should be considered in the design and analysis of reinforced structures.

Figure 6. The effect of agglomeration factor on changes of (a) wave frequency and (b) phase velocity against wave number.
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Variation of phase velocity with the wave number is demonstrated in Figure 7 for
various agglomeration degrees (α) at vx = 2000 and Vr = 5%. Noteworthy, the growth of
parameter α exhibited a greater influence of the MWCNT aggregated state on the response
of nanocomposite; thus, phase velocity values are diminished by choosing greater values
for parameter α. Also, the damping effect occurred at higher wave numbers in cases with
higher α parameter values. Thereupon, wiping out the agglomeration of MWCNTs is
indispensable if the full potential of MWCNT reinforcements is to be realized.

Figure 7. Variation of phase velocity versus wave number for different agglomeration degrees (α).

Figure 8 illustrates the variation of phase velocity versus MWCNTs’ volume fraction
for different radius to thickness ratios has at vx = 2000, Vr = 5%, and β = 25. As can be
seen, this ratio had a decreasing influence such that the phase velocity increased by the
decline of the radius to thickness ratio. In other words, the phase velocity is reversely
proportional to the radius to thickness ratio. The softening effect caused by the increment
of radius to thickness ratio can explain this behavior. At a constant radius to thickness
ratio, an enhancement in the MWCNT content raised the phase velocity to its maximum
value followed by a gradual decrease which can be assigned to the agglomeration factor.



Polymers 2021, 13, 153 14 of 18

Figure 8. Variation of phase velocity (cp) versus MWCNTs’ volume fraction (Vr) for different radius
to thickness ratios (R/h).

Finally, Figure 9 reveals changes of (a) wave frequency and (b) phase velocity versus
the wave number for different fluid flow velocities at Vr = 5% considering all factors.
According to diagrams, the cylindrical shell without fluid flow exhibited greater phase
velocity and wave frequency as compared to its peers possessing various fluid flow. This
means that fluid flow had a reducing influence on changes of phase velocity and wave
frequency. The damping wave number also varied by changing the fluid flow velocity. On
the other hand, the critical flow velocity can be defined for wave numbers whose natural
frequency reached its minimum values.

Figure 9. The effect of fluid flow velocities on changes of (a) wave frequency and (b) phase velocity versus wave number.
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5. Conclusions

The present investigation was aimed to assess the wave dispersion in a fluid-conveying
MWCNTs-strengthened nanocomposite cylindrical shell considering the influences of the
nanofillers’ waviness, agglomeration, and orientation. The effective mechanical properties
of nanocomposite cylindrical shells were estimated using a combination of a new form of
Halpin-Tsai homogenization model and rule of mixture. Based on this model, the noted
effects were investigated implicitly. Viscous fluid flow was considered Newtonian, axially
symmetric, laminar, and fully developed. Navier-Stokes equation was applied to study the
effect of flow velocity. To this end, FSDT and Hamilton’s principle were used to derive the
governing equations of MWCNTs-reinforced nanocomposite cylindrical shell. Eventually,
the obtained governing equations were analytically solved and wave frequency and phase
velocity values were calculated. To verify present method, the obtained results were
compared to other investigations. The most remarkable highlights can be expressed as:

1. The phase velocity and wave frequency of the fluid-conveying MWCNT-reinforced
nanocomposite cylindrical shell decreased with enhancing the fluid flow velocity.

2. An increment in the radius to thickness ratio declined the phase velocity and wave fre-
quency of the fluid-conveying MWCNT-reinforced nanocomposite cylindrical shells.

3. Agglomeration and waviness factor affected the mechanical behavior of nanocompos-
ite shells in a decreasing manner.

4. Regardless of the agglomeration factor, an enhancement in the MWCNT content
augmented the elastic modulus, wave frequency, and phase velocity.

5. The increment of parameter α plays a decreasing role in the variation of phase velocity.
6. Resolving the MWCNTs agglomeration is vital to enhance the mechanical behavior of

nanocomposite cylindrical shells.
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Appendix A

K11 = −A11k2
x −

A66

R2 k2
n

K12 = K21 = −
(

A12 + A66

R

)
kxkn

K13 = −K31 = i
A12

R
kx

K14 = K41 = −B11k2
x −

B66

R2 k2
n

K15 = K51 = K24 = K42 = −
(

B12 + B66

R

)
kxkn

K22 = −A66k2
x −

A11

R2 k2
n −

As
55

R2

K23 = −K32 = i
(

A11 + As
55

R2

)
kn

K25 = K52 = −B66k2
x −

B11

R2 k2
n −

As
55

R

K33 = −As
55kx

2 − A11

R2 + k2
n

As
55

R2 + ρ f h f v2
xk2

x −
iµ f h f vxkx

R2

(
2 + k2

n

)
− iµ f h f vxk2

x

K34 = −K43 = i
(

As
55 −

B12

R

)
kx

K35 = −K53 = i
(

As
55

R
− B11

R2

)
kn

K44 = −D11k2
x − k2

n
D66

R2 − As
55

K45 = K54 = −kxkn

(
D12 + D66

R

)
K55 = −D66k2

x − k2
n

D11

R2 − As
55

C3,3 = 2kx

(
ρ f h f vx +

µ f h f

R2

)
+ µ f h f k2

x +
µ f h f

R2 kn

M1,1 = M2,2 = I0

M1,4 = M2,5 = M4,1 = M5,2 = I1

M3,3 = I0 + ρ f h f

M4,4 = M5,5 = I2
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