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Abstract: ZnO and ZnO-Cu2O were grown on aluminum foam using hydrothermal method. Due to
the positively charged sites on the surface, both ZnO and ZnO-Cu2O show higher adsorption capability
towards anionic dyes, but poorer adsorption capability towards cationic dyes. The adsorption ability
of ZnO-Cu2O is smaller than that of ZnO since there is a depletion layer at the interface. In order to
decolorize cationic dyes, ZnO and ZnO-Cu2O are used as sono-catalyst with ultrasonic irradiation.
The ZnO-Cu2O is better than ZnO in sono-catalysis decoloration of cationic dyes. This may be due to
the enhanced piezoelectricity and electrochemical activity, as the free electrons in ZnO are reduced in
the depletion layer.
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1. Introduction

Dye-related environmental pollution is a serious problem. Dyes are becoming severe contaminants
due to their toxicity and low biodegradability. Dyes are widely used in textile, paper, leather, food,
plastics, cosmetics, and pharmaceutical industries. In order to eliminate dye pollution, ZnO is widely
investigated as photo-catalysis [1,2], adsorbents [2–4], vibration catalysis [5], thermo-catalysis [6],
piezo-photo-catalysis [7], photo-electro-catalytic [8], sono-catalysis [9], and photo-sono-catalysis [9].
Among all these methods, adsorption is considered as one of the most attractive methods due to its
simplicity, low cost, ease of operation, and efficiency [10]. However, due to the positively charged sites
at a ZnO surface, ZnO only exhibits high adsorption capability towards some negatively charged dyes
(anionic dyes), but has poor adsorption capability towards positive charged dyes (cationic dyes) [3]. It is
evident that a new method other than adsorption should be taken to eliminate positive charged dyes.

Cu2O is one of the few materials showing a mechano-catalytic effect [11]. Cu2O was used
to split water [11] and mineralize dyes [12]. Furthermore, ZnO-Cu2O heterojunction shows
enhanced photo-catalytic performance and stable and fast response photodetectors [13–15]. The p-n
junction structure of Cu2O-ZnO provides a depletion layer at the interface of junction [14].
The depletion layer was demonstrated to be beneficial for the enhancement of the output of
piezoelectricity [16]. The piezoelectricity is useful in vibration catalysis [5] and piezo-photo-catalysis [7].
The positive–negative charges are easier to get apart because of the small exciton binding energy with
built-in polarization due to piezoelectric effect. The negative (or positive) charges on the surface can
produce superoxide radicals (or hydroxyl radicals) to degrade dyes [5]. The piezoelectric field can
separate the photo-generated electrons/holes by driving them to migrate along opposite directions [7].

While ZnO-Cu2O heterojunction has been widely studied, there is little work on vibration catalysis
or sono-catalysis. To our knowledge, most work about the mechano-catalytic effect and piezo-catalysis
is focused on single-phase material [5,11]. There is little work about the influence of depletion
layers at the interface on sono-catalysis and piezo-catalysis. It is interesting to study whether the
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enhancement of piezoelectricity of ZnO-Cu2O heterojunction is beneficial for the decoloration of dyes.
The adsorption of dyes using ZnO and ZnO-Cu2O as adsorbents is firstly investigated in this paper.
Then the decolorization of cationic dyes using ZnO and ZnO-Cu2O as a sono-catalyst under ultrasonic
irradiation is studied. Ultrasonic irradiation is widely used as mechanical energy in the study of
sono-catalysis and piezo-catalysis [5,7]. Ultrasonic irradiation has many advantages including high
penetrability in a water medium and no generation of secondary pollutants [17].

2. Experiments

The aluminum (Al) foam is available from SuZhou JiaYiSheng electronics CO., LTD (SuZhou,
JiangSu, China). The porosity of the sample is about 68–78%. The surface area of foam is about
0.3 m2/g. The size of the alumina foam sample is about 3 × 40 × 40 mm3. The foam sample is in
turn cleaned in ethanol and deionized water using an ultrasonic cleaner. ZnO nano-sheets were
fabricated on Al foam substrate by hydrothermal method. The precursor solution for growth ZnO
nano-sheets was prepared by equal volume mixing of zinc nitrate water solution (50 mL, 50 mmol L−1)
and hexamethlylenetetramine water solution (50 mL, 15 mmol L−1). The substrate was put into the
precursor solution and kept at 80 ◦C for 6 h to grow ZnO nano-sheets. After the growth of ZnO
nano-sheets, the substrate was taken out and rinsed using deionized water and dried in air.

The precursor solution for growth Cu2O was prepared by the mixing of cupric acetate water
solution (50 mL, 50 mmol L−1) and hexamethlylenetetramine water solution (50 mL, 15 mmol L−1).
The Al foam substrates with and without ZnO nano-sheets were put into the precursor solution
and kept at 60 ◦C for 2–6 h to grow Cu2O and ZnO-Cu2O samples. The samples’ stoichiometry
was measured by X-ray photoelectron spectroscopy (XPS; Kratos X SAM 800, Kratos Analytical Ltd,
Manchester, UK).

Methyl orange (MO) and methylene blue (MB) aqueous solution were used as anionic dye and
cationic dye for decolorization, respectively.

The optical absorption of MO and MB aqueous solution was measured by Ultraviolet-Vis
spectrophotometer (SHIMADZU UV-2550, Shimadzu Corporation, Kyoto, Japan). The optical
absorption of MO solution and MB solution with various concentrations was measured. It is found
that the intensity of the optical absorption peak, at about 463 (662) nm, is proportional to the MO (MB)
concentration. Thus the intensity of the optical absorption peak at 463 nm (662 nm) is used to calculate
the concentration of the MO (MB) solution. In the decoloration experiments, the initial concentration
of the MO and MB water solution is about 20 mg/l. The ultrasonic irradiation is performed in a
KQ-300VDE ultrasonic cleaner. The power and frequency of the ultrasonic cleaner is about 100 W and
100 kHz, respectively. The samples’ morphology is measured using Inspect F50 scanning electron
microscopy (SEM). The atomic ratio of sample is measured using energy disperse spectroscopy (EDS)
equipped on SEM. The decoloration rate (DR) of MO and MB is calculated using Equation (1):

DR =
C0 −Ct

C0
× 100 (1)

where C0 is the initial concentration of MO (MB), Ct is the concentration of MO (MB) after t hours
of decoloration. The concentration of MO (MB) is proportional to optical absorption intensity (I) at
463 nm (662 nm), i.e.,

C = kI (2)

where k is a constant. The k of MO and MB is about 19 mg L−1 and 6.4 mg L−1, respectively. The pH
of MO and MB aqueous solution is about 7.2 and 6.8, respectively. The mass of ZnO and ZnO-Cu2O
catalyst is about 0.23 g and 0.24 g, respectively.
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3. Results and Discussion

Figure 1 shows the SEM of ZnO, Cu2O, and ZnO-Cu2O sample in parts a–c, respectively. The ZnO
nano-sheets have a thickness of about 90 nm. The nano-sheets are perpendicular to the substrate.
There are many micrometer-sized voids in the sample. The voids size in Cu2O is smaller than that
in ZnO. The granule shape in Cu2O is irregular. The ZnO-Cu2O shows nano-sheets and irregular
particles. The thickness of ZnO-Cu2O nano-sheets is about 160 nm. The voids size is smaller than that
in ZnO. The surface of ZnO is smoother than that of ZuO-Cu2O. The shape change in nano-sheets
should be due to the growth Cu2O on surface of ZnO nano-sheets. The atomic ratio of Cu to Zn of
ZuO-Cu2O sample determined by EDS is about 9:1.
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Figure 1. The scanning electron microscopy (SEM) of ZnO (a), Cu2O (b), and ZnO-Cu2O (c) sample. 

Figure 2 shows the XRD of Al foam, ZnO, Cu2O and ZnO-Cu2O sample. The (111), (200), (220), 
and (311) diffraction peaks of Al foam are from Al metal（JCPDS：03-0932. The (214), (413), and 
(244) diffraction peaks of Al foam are from Al2O3 oxides (JCPDS: 02-1373). The diffraction peaks of 
Cu2O at about 36.7°, 42.4°, 61.7°, and 73.6° are due to (111), (200), (220), and (311) planes of cubic 
Cu2O (JCPDS:77-0199), respectively. The crystal size of Cu2O is determined to be about 160 nm using 
(111) diffraction with Scherrer formula. The new diffraction peak at about 10.8° in the ZnO sample 
may be from Al2O3 oxides (JCPDS: 02-1373). This indicates that partial aluminum metal is oxidized 
during the growth of ZnO. The peaks at about 20.5° and 34.8° are form (102) and (104) planes of 
hexagonal ZnO (JCPDS:01-1136), respectively.  

Figure 1. The scanning electron microscopy (SEM) of ZnO (a), Cu2O (b), and ZnO-Cu2O (c) sample.

Figure 2 shows the XRD of Al foam, ZnO, Cu2O and ZnO-Cu2O sample. The (111), (200), (220),
and (311) diffraction peaks of Al foam are from Al metal (JCPDS: 03-0932. The (214), (413), and (244)
diffraction peaks of Al foam are from Al2O3 oxides (JCPDS: 02-1373). The diffraction peaks of Cu2O
at about 36.7◦, 42.4◦, 61.7◦, and 73.6◦ are due to (111), (200), (220), and (311) planes of cubic Cu2O
(JCPDS:77-0199), respectively. The crystal size of Cu2O is determined to be about 160 nm using (111)
diffraction with Scherrer formula. The new diffraction peak at about 10.8◦ in the ZnO sample may be
from Al2O3 oxides (JCPDS: 02-1373). This indicates that partial aluminum metal is oxidized during the
growth of ZnO. The peaks at about 20.5◦ and 34.8◦ are form (102) and (104) planes of hexagonal ZnO
(JCPDS:01-1136), respectively.
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Figure 2. The XRD of aluminum (Al) foam, ZnO, Cu2O and ZnO-Cu2O sample. 
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Figure 3. The Zn 2p X-ray photoelectron spectroscopy (XPS) of ZnO and ZnO-Cu2O. 

Figure 3 shows the Zn 2p XPS of ZnO and ZnO-Cu2O. The binding energy of Zn 2p3/2 of ZnO 
and ZnO-Cu2O is about 1021.47 and 1021.61 eV, respectively. The binding energy of Zn 2p1/2 of ZnO 
and ZnO-Cu2O is about 1044.57 and 1044.74 eV, respectively. The binding energy of Zn 2p in 
ZnO-Cu2O shifts to higher energy compared with that of ZnO. The shift of binding energy was 
attributed to the electronic interaction between two materials [18]. Therefore, the shift in binding 
energy of Zn indicates that there should be intimate contact between the two materials. 

Figure 4 shows the optical absorption of MO decolorized by adsorption using ZnO, Cu2O, and 
ZnO-Cu2O as adsorbents in parts a–c, respectively. There are two main optical absorption bands 
with peaks located at about 463 nm and 272 nm. The band at wavelength of 463 nm was attributed to 
the conjugated structure constructed via azo bond [19]. The peak's intensity decreases with 
decolorization time increasing from 0 s to 20 s. A new optical absorption peak appears at about 370 
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Figure 3. The Zn 2p X-ray photoelectron spectroscopy (XPS) of ZnO and ZnO-Cu2O.

Figure 3 shows the Zn 2p XPS of ZnO and ZnO-Cu2O. The binding energy of Zn 2p3/2 of ZnO and
ZnO-Cu2O is about 1021.47 and 1021.61 eV, respectively. The binding energy of Zn 2p1/2 of ZnO and
ZnO-Cu2O is about 1044.57 and 1044.74 eV, respectively. The binding energy of Zn 2p in ZnO-Cu2O
shifts to higher energy compared with that of ZnO. The shift of binding energy was attributed to the
electronic interaction between two materials [18]. Therefore, the shift in binding energy of Zn indicates
that there should be intimate contact between the two materials.

Figure 4 shows the optical absorption of MO decolorized by adsorption using ZnO, Cu2O, and
ZnO-Cu2O as adsorbents in parts a–c, respectively. There are two main optical absorption bands with
peaks located at about 463 nm and 272 nm. The band at wavelength of 463 nm was attributed to the
conjugated structure constructed via azo bond [19]. The peak’s intensity decreases with decolorization
time increasing from 0 s to 20 s. A new optical absorption peak appears at about 370 nm for the
Cu2O adsorbents. The new absorption peak is not due to the losing of Cu2O in solution as there is no
absorption peak in the same treated water solution. This indicates that there are other mechanisms
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than adsorption presenting in Cu2O adsorbents [12]. It was demonstrated that MO can be decomposed
to xylene and ethylbenzene [12]. Carbon center radicals such as methyl radical and phenyl radical
have reconnected with each other to produce xylene or ethylbenzene [12].
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Figure 4. The optical absorption of methyl orange (MO) decolorized by adsorption using ZnO (a),
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Pseudo-first-order kinetics reaction was applied to simulate the experimental data with the
Langmuir–Hinshelwood model ln(C0/C) = αt, where α is the pseudo-first-order rate constant, and was
determined from a linear fit to the experimental data [13,20]. Figure 5 shows that experimental data can
be fitted well using the pseudo-first-order kinetics. The rate constant α is determined to be about 0.02,
0.129, and 0.275 min−1 for Cu2O, ZnO-Cu2O, and ZnO, respectively. The higher α of ZnO indicates
that ZnO has the greater adsorption ability towards MO. The weaker adsorption ability of ZnO-Cu2O
may be related to the reduction in specific surface area and positive charges on surface [3]. ZnO and
Cu2O are n-type and p-type semiconductors, respectively. The depletion region at the interface of the
p-n junction [14] may reduce the positive charges on the surface. The adsorption of MB for Cu2O,
ZnO-Cu2O, and ZnO is too small to be detected. The weak adsorption of MB should be due to the
positively charged surface of adsorbents [3,21].
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Figure 6 shows the optical absorption of MB decolorized by Al foam, ZnO, and ZnO-Cu2O as
catalyst under ultrasonic irradiation. The ultrasonic irradiation time is about 24 h. The peak intensity
decreases from Al foam, ZnO to ZnO-Cu2O. DR is about 13%, 40%, and 59% for Al foam, ZnO, and
ZnO-Cu2O catalyst, respectively. DR of MB decolorized by ZnO and ZnO-Cu2O is larger than that
decolorized by Al foam. The enhancement of DR should be due to the piezoelectric potential of ZnO
and ZnO-Cu2O.

Figure 7 shows the decolorization of MB using ultrasonic irradiation. As seen in Figure 7, the DR
of ZnO-Cu2O is much higher than that of ZnO. With 50 h ultrasonic irradiation, DR of ZnO-Cu2O and
ZnO is about 70% and 48%, respectively. This enhancement of DR is related to many factors, such as the
cavitation [22] and piezoelectric enhanced vibration catalysis [5]. On the one hand, the weak points in
MB solution can be increased by putting a catalyst in it, which in turn leads to increasing nucleation of
the cavitation bubbles, the number of free radicals generated, and the rate of degradation of the organic
compound [22]. On the other hand, the depletion layer was demonstrated to be of benefit for the
enhancement of the output of piezoelectricity [16]. The positive–negative charges are easier to get apart
because of the small exciton binding energy with built-in polarization due to piezoelectric effect [5].
Due to the p–n junction of ZnO-Cu2O, the number of excess electrons in ZnO can be effectively reduced,
which is beneficial to the piezoelectric signal output [23]. A 13-fold higher output voltage was achieved
in ZnO-Cu2O nano-generator compared with ZnO [23]. A dramatic increase in H2 production is
caused by decreasing the mobile charge concentration in ZnO piezo-catalysis [24]. Low electrical
conductivity is desirable in order to enable high electrochemical activity [24]. The reason of the larger
DR of ZnO-Cu2O may be due to there being a p-n junction and a carrier depletion layer at the interface
of ZnO-Cu2O. The depletion layer can enhance the piezoelectricity and electrochemical activity then
increase the DR.
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The mechanism of the enhancement of DR by depletion layer is shown in the Figure 8. The density
of an electron in pure ZnO is higher than that in a ZnO-Cu2O junction boundary due to the forming of a
depletion region [23]. The piezoelectric potential of pure ZnO is smaller than that of ZnO-Cu2O because
of the piezoelectric potential screening effect due to excessive electrons [16,23,25,26]. The piezoelectric
potential [27] and piezoelectrically-induced electric charges [5] could stimulate the decolorization
reactions via electrochemical redox reaction. The negative charges (or e−) on the surface attract the
dissolved oxygen in the water and produce superoxide radicals (·O2−). Meanwhile, hydroxyl radicals
(·OH) can be released by positive charges (or h+) accumulated on the surface [5,27]. The strong
oxidative ·O2

− and ·OH can cause the decolorization reactions of dye [5,27].
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