

1 Supporting Information

- Hydrothermal synthesis of (001) facet highly exposed
 ZnO plates: A new insight into the effect of citrate
- 4 Shirui Luo^a, Ruosong Chen^a, Lan Xiang^{a*} and Jing Wang^{b*}
- 5

6 7

Figure 1. Distribution of Zn²⁺-OH⁻-H₂O system.

8 The distribution of Zn²⁺-OH⁻-H₂O system was calculated according to the equation (4), (10)-(13) 9 and the corresponding complex constant. The distribution can be calculated according to the

10 equation:

 $[Zn(OH)_{x}^{2-x}] = K_{Zn(OH)_{x}^{2-x}} \cdot [Zn^{2+}][OH^{-}]^{x}$

12 13

14

Figure 2. SEM image of ZnO nanorods.

Table 1. Equilibrium equation and complex constant for $Zn^{2+}-C_6H_5O7^{3-}-H_2O$ system(25 °C).

	Equilibrium Equation	Complex Constant
1	$ZnSO_{4(aq)} = SO_{4^{2-}} + Zn^{2+}$	1.08×10^{0}
2	$H_2SO_4 = H^+ + HSO_4^-$	7.76×10^{1}
3	$HSO_{4^{-}} = H^{+} + SO_{4^{2^{-}}}$	1.21×10^{-2}
4	$H_2O = H^+ + OH^-$	1.02×10^{-14}
5	$C_6H_8O_7 = C_6H_7O_7 + H^+$	7.45×10^{-4}
6	$C_6H_7O_7^- = C_6H_6O_7^{2-} + H^+$	1.73×10^{-5}
7	$C_6H_6O_7^{2-}=C_6H_5O_7^{3-}+H^+$	4.02 × 10 ⁻⁷
8	$Zn^{2+} + C_6H_6O_{7^{2-}} = Zn^{2+}-C_6H_6O_{7^{2-}}$	5.13×10^{4}
9	$Zn^{2+} + C_6H_5O_7^{3-} = Zn^{2+}-C_6H_5O_7^{3-}$	2.51×10^{11}
10	$Zn^{2+} + OH^{-} = Zn(OH)^{+}$	2.51×10^{4}
11	$Zn^{2+} + 2OH^{-} = Zn(OH)_{2(aq)}$	2.00×10^{11}
12	$Zn^{2+} + 3OH^{-} = Zn(OH)^{3-}$	1.38×10^{14}
13	$Zn^{2+} + 4OH^{-} = Zn(OH)_{4^{2-}}$	4.57×10^{17}

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

15