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Abstract: The condensed matter Bose system may contain effective monopole quasiparticles in its
excitation spectrum. In this paper, we first accomplish the mapping of the two-band Ginzburg–
Landau theory to the extended CP1 model, and then perform the Monte Carlo simulations on the
50 × 50 × 50 cubic lattice with periodic boundary conditions. With the numerical data of monopole
density and magnetic susceptibility, we indicate that there exists a monopole–antimonopole decon-
finement transition for the two-band superconducting system with the critical temperature above
70 K. We also suggest the possible detection of this new monopole plasma phase in high-Tc iron-based
superconductors.

Keywords: extended CP1 model; monopole production; deconfinement phase transition; Monte
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1. Introduction

Since Curie pointed out the conceivable existence of magnetic monopoles dated back
to 1894 [1], continuous efforts have been devoted to looking for existent evidences and
understanding physical properties of this elusive particle. In 1931, Dirac demonstrated
the consistency of monopoles with quantum mechanics and that the presence of magnetic
charge would explain the observed quantization of electric charge [2]. About forty years
later, ’t Hooft and Polyakov indicated independently that magnetic monopoles are actually
predicted by all grand unified theories in elementary particle physics [3,4]. Meanwhile, the
magnetic monopole can also be realized as an emergent particle due to the correlations
present in strongly interacting condensed matter systems, such as a class of exotic mag-
nets known collectively as spin ice [5]. With the improvement of experiment techniques,
various predictions on magnetic monopoles have been readily proposed nowadays, and
it is reasonable to expect that these progresses will greatly promote the detection of this
mysterious particle.

With the discovery of two-band superconductivity at about 40 K in magnesium di-
boride [6], there has been a wide interest in condensed matter systems with several coex-
isting Bose condensates. For example, it has been argued that under certain conditions,
even liquid metallic hydrogen might allow for superconductivity with both electronic
and protonic Cooper pairs [7]. Theoretically, two charged condensates together with
their electromagnetic interactions can be phenomenologically described by the two-band
Ginzburg–Landau (GL) model. By presenting an explicit change in variables, it can be
shown that there exists an exact mathematical equivalence between this GL theory and a
version of the O(3) nonlinear σ-model [8]. This mapping is particularly interesting since
it may give topological excitations in the form of stable, finite length knot solitons in the
two-condensate charged system.
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In the present paper, we will suggest that besides the knotted vortices mentioned
above, another kind of topological defect, namely, monopole excitations, can also present
in the two-condensate charged system. We show that the monopole or antimonopole
excitation, which reflects the non-trivial winding of the phase difference between two
complex order parameters, is allowed in the two-band GL theory. This quasiparticle, with
the hedgehog (thus topological non-trivial) configuration, is similar to phonon excitation,
which refers to the collective vibrations in crystals. At low temperatures, the monopole
and antimonopole will form a tightly bound state due to the string tension between these
quasiparticles. Then, with the increase in temperature, the two-condensate charged system
will enter the so-called deconfinement phase, in which the thermal fluctuation will dominate
the string tension, and the monopole and antimonopole pairs at the string endpoints will
become nearly free particles. Therefore, we can observe a plasma phase of monopoles
and antimonopoles in the sample above the deconfinement transition temperature. This
deconfinement scenario is very similar to the two-dimensional Kosterlitz–Thouless phase
transition of usual magnetic vortices.

Based on the two-band GL theory, we first transform the O(3) nonlinear σ-model into
the CP1 form and then perform the Monte Carlo simulations with the so-called extended
CP1 model. Our numerical works on the monopole density and magnetic susceptibility
indicate that there exists a monopole–antimonopole deconfinement transition for the two-
band superconducting system with the critical temperature above about 70 K. We also
discuss the possible detection of this monopole and antimonopole production in high-Tc
iron-based superconductors.

The paper is organized as follows. In the next section, we introduce the two-band GL
theory and its mathematical mapping to the extended CP1 model. In Section 3, we give
the lattice formulation of this CP1 model and the procedure of Monte Carlo simulations.
Then, in Section 4, we discuss the numerical results on the possible monopole–antimonopole
deconfinement transition in the two-condensate charged system. Finally, Section 5 gives the
conclusion of the paper.

2. Theoretical Scheme

We first write down the GL functional for two electromagnetically coupled Bose
condensates as [8–11]

H = ∑
α=1,2

[
h̄2

2mα

∣∣∣∣(∇− 2ie
h̄c

A
)

Ψα

∣∣∣∣2 + V(|Ψα|)
]
+

B2

8π
(1)

with
V(|Ψα|) = −bα|Ψα|2 +

cα

2
|Ψα|4. (2)

Here, Ψα and mα separately represent the superconducting order parameter and
effective mass for each band (α = 1, 2). The magnetic field B = ∇× A with A as the vector
potential, and bα, cα as temperature-dependent parameters.

We can introduce the variables ρ and χα as

Ψα =
√

2mαρχα (3)

where the complex χα = |χα|eiφα are chosen so that |χ1|2 + |χ2|2 = 1. Then the modulus ρ
takes the following expression

ρ2 =
1
2

(
|Ψ1|2

m1
+

|Ψ2|2
m2

)
. (4)

Now, we define a gauge invariant field n = χ†σχ with χ = (χ1, χ2)
T and

σ = (σ1, σ2, σ3) Pauli matrices, and write the supercurrent density in the following form:
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j = i[χ1∇χ∗
1 − χ∗

1∇χ1 + χ2∇χ∗
2 − χ∗

2∇χ2]. (5)

With simple algebras, we can obtain two identities as follows:

h̄2ρ2
[
(∇χ1)

2 + (∇χ2)
2
]
− 1

4
h̄2ρ2j2 =

1
4

h̄2ρ2(∇n)2 (6)

and
(∇× j)i =

1
2

ϵijkn · ∂jn × ∂kn (7)

with i, j, k = 1, 2, 3. Note that the Einstein summation is assumed here.
Following Ref. [8], we can then identify the n-field part of the Hamiltonian in

Equation (1) as a version of the O(3) nonlinear σ model

H0 =
h̄2ρ2

4
(∇n)2 +

h̄2c2

512πe2

(
ϵijkn · ∂jn × ∂kn

)2
. (8)

In order to conveniently perform the numerical simulations, we will transform
Equation (8) into the CP1 form. In the CP1 representation, we introduce a complex two-
component spinor z = (z1, z2)

T , which is defined by the following formula:

n = z†σz (9)

with z†z = 1. With the introduction of a new gauge field a = −iz†∇z, the O(3) nonlinear
σ-model can be rewritten in the CP1 form as

h̄2ρ2

4
(∇n)2 = h̄2ρ2

[
(∇+ ia)z†

]
[(∇− ia)z]. (10)

In Equation (10), there is a local gauge invariance under the transformation

z(r) → eiγ(r)z(r) (11)

and
a → a +∇γ(r) (12)

with arbitrary function γ(r).
Based on the explicit vortex solution of the CP1 model, the corresponding vector

potential on a spatial plane reads

a = ∇ϕ sin2
(u

2

)
(13)

with the cylindrical coordinate (r, ϕ). Here, the function u(r) satisfies the condition
u(0) = π. Then, the vortex flux going through a circle C of radius r is

Φ(r) =
∮

C
a · dl = 2π sin2

(u
2

)
. (14)

At r → 0, we have the magnetic flux as 2π. Therefore, we can identify the vortex as
a configuration in which the spatial plane is pierced by a singular flux tube. The Dirac
string is just the world line of flux tube in the three-dimensional Euclidean space, and the
magnetic monopole and antimonopole are the source and sink of these flux tubes in the
three-dimensional space. The monopole or antimonopole solution takes the hedgehog
configuration n(r) = z†σz = ±r/r as shown in Figure 1. Note that both vortex and
monopole solutions represent the non-trivial winding of the phase difference between two
complex order parameters in the two-condensate charged system.
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( b )( a )
Figure 1. The hedgehog configurations of a monopole (a) and an antimonopole (b) in the O(3)
nonlinear σ-model or the CP1 model.

With the definition of an artificial magnetic field b = ∇ × a, we can show from
Equation (9)

bi =
1
4

ϵijkn · ∂jn × ∂kn. (15)

Then, the Hamiltonian in Equation (8) can be written as

H0 = h̄2ρ2
[
(∇+ ia)z†

]
[(∇− ia)z] +

h̄2c2

32πe2 b2, (16)

which we call the extended CP1 model with the extra magnetic energy term in the above
expression. Physically, the vector potential a and the artificial magnetic field b in the CP1

model reflect the space variation of the phase difference between two order parameters in
the GL theory or the phase coherence between two different types of Cooper pairs in the
electronic structure. The extra magnetic energy term emerges from the gradient part of the
GL free energy functional in Equation (1), and it reveals the additional energy contribution
of the non-trivial phase difference variations in the three-dimensional space.

3. Lattice Formulation And Monte Carlo Simulations

Now, we try to put this system on a three-dimensional cubic lattice with periodic
boundary conditions. For simplicity, we set the lattice constant a = 1 in this section. A
complex two-component spinor zr of the unit norm is attached to each site r. Let i denote
the lattice vector r̂i, and the connection defined as

Vi
r = z†

r zr+i (17)

will approach 1 + iai in the naive continuum limit [12]. Therefore, the covariant derivative
(∇− ia) can be latticized as

(∇− ia)iz(r) → zr+i − Vi
r zr (18)

and
[(∇+ ia)iz†(r)][(∇− ia)iz(r)] → 1 − |z†

r zr+i|2. (19)

More precisely, the gauge field ai
r associated with a link i at site r can be defined as

eiai
r = Vi

r /|Vi
r | (20)
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with −π < ai
r < π. The curl of the gauge field shows its sum around an oriented plaquette,

which is specified by a site r and two different directions i and j. Note the order of directions
also identifies its orientation here. For this plaquette, the curl can be decomposed into the
following form:

(∇× a)ij
r = ai

r + aj
r+i − ai

r+j − aj
r = f ij

r + 2πnij
r , (21)

where the field strength f ij
r satisfies −π < f ij

r < π and the integer nij
r represents the vortex

number of the plaquette (r, ij). Then, the magnetic field on the lattice can be defined as

bi
r =

1
2

ϵijk(∇× a)jk
r . (22)

Combining Equations (19) and (22) and dropping a constant term, we can obtain the
lattice action from the Hamiltonian in Equation (16)

Hlatt = −∑
r,i

[
h̄2ρ2

∣∣∣z†
r zr+i

∣∣∣2 − h̄2c2

32πe2 b2
r

]
. (23)

And the partition function is given by

Z =
∫

Dz e−Hlatt/kBT (24)

with kB the Boltzmann constant.
Monopoles are defined as sources of the magnetic field, and the monopole number mr

in a cube attached to r is given through the relation

(∇ · b)r = ∑
i

[
bi

r+i − bi
r

]
= 2πmr . (25)

Due to the periodic boundary conditions, there must be an equal number of monopoles
and antimonopoles, i.e.,

∑
r

mr = 0. (26)

As a result, we can deduce that a monopole must be connected to an antimonopole by
an unbroken string of vortices as illustrated in Figure 2. This string represents the world
line of a vortex in the three-dimensional Euclidean space.

Based on the lattice action in Equation (23), we then perform the Monte Carlo simula-
tions on the 50 × 50 × 50 periodic lattice space. At each site r, we first generate a random
2 × 2 SU(2) matrix and take the first column to be the spinor zr [13–15]. With the con-
ventional Metropolis algorithm [16,17], the updating procedure is as follows. Choose a
configuration at random as a candidate for the new configuration. If it lowers the energy,
accept it; otherwise, accept it with probability exp(−∆E/kBT), where ∆E is the increase
in energy between these two configurations. This updating procedure can kick a system
into a higher energy state and simulate thermal fluctuations. In practice, one updates the
lattice configuration one link at a time. Thus, the computation of energy differences will
only involve the plaquettes containing this updated link. In our numerical computations,
the first 106 sweeps are discarded to ensure thermalization and 107 iterations are used to
calculate our physical quantities in a run.
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s t r i n g  o f  v o r t i c e s

m o n o p o l e

a n t i m o n o p o l e

Figure 2. A schematic of vortex string run from a monopole to an antimonopole on the lattice space.

4. Monopole–Antimonopole Deconfinement Transition

Now, we can study the monopole and antimonopole pair productions in the two-
condensate charged system based on the Monte Carlo procedure mentioned above. To
simulate the realistic two-band superconductors, we take the zero-temperature coherence
length ξ0 ∼ 100 nm as the lattice spacing. In this circumstance, we can approximate
h̄2ρ2 = h̄2ρ2

0(1 − T/Tc) with h̄2ρ2
0 ∼ 0.01 eV · nm−1 and Tc, the superconducting critical

temperature in the GL theory [18,19].
First, we define the absolute magnitude of the magnetization per site as

M =

〈
∑
r
|mr |

〉
, (27)

which gives the probability of finding a monopole or antimonopole in the elementary cube.
Based on the lattice action in Equation (23), we perform the numerical computations at
Tc = 100 K and plot the results in Figure 3. From Figure 3, we can see that M shows
a rapid increase to about 0.26 around Td ≈ 86 K. It clearly indicates that there exists a
monopole–antimonopole deconfinement phase transition at Td. We also note that we have
never found a monopole configuration with |mr | > 1 in our numerical simulations.

We also calculate the monopole susceptibility

χ =
dM
dT

(28)
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and plot the results at Tc = 100 K in Figure 4. From Figure 4, we can see the monopole
susceptibility shows a sharp peak at Td, which is consistent with the monopole density data.

At this point, we would like to point out that no magnetic monopole exists in the
continuum limit of the three-dimensional volume for two-condensate charged systems.
As we know, the monopole solution corresponds to a hedgehog configuration in the O(3)
nonlinear σ-model or the CP1 model. Detailed calculation shows that the solution of the
monopole and antimonopole pair presents the ultraviolet divergence in the action, but this
short wavelength fluctuation can be regulated by a natural cutoff, i.e., the lattice spacing in
the condensed matter systems.

4 0 6 0 8 0 1 0 0 1 2 0 1 4 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

M 
(10

-1 )

T  ( K )

T c = 1 0 0  K

Figure 3. The temperature dependence of monopole density for the two-condensate charged system
with Tc = 100 K.

Finally, we also compute the monopole–antimonopole deconfinement transition tem-
perature Td as a function of the superconducting critical temperature Tc. The results are
plotted in Figure 5. From Figure 5, we can see that due to the magnetic energy term in
Equation (23), the possible monopole and antimonopole production at T ∈ (Td, Tc) will
only exist above Tc ≈ 70 K, and Td increases to about 115 K as Tc reaches 130 K. Since
the discovery of the F-doped superconductor LaFeAsO1−xFx with Tc ∼ 26 K in 2008 [20],
other Fe-based superconducting systems have also generated great interest in the scientific
community. The parent compounds of these superconductors are usually semi-metallic
and the contribution of all five 3d electrons to the Fermi surface manifests the multi-band
electronic structure in the materials. Up to now, the highest known critical temperature of
about 58 K has been achieved in the two-band iron pnictide SmFeAsO1−xFx [21]. Thus, it
is very promising that we will experimentally observe the monopole plasma phase from
the multi-band Fe-based superconductors in the near future.
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4 0 6 0 8 0 1 0 0 1 2 0 1 4 00 . 0

0 . 4

0 . 8

1 . 2

1 . 6

2 . 0

T c = 1 0 0  K

χ 
(1

0-2  K-1 )

T  ( K )
Figure 4. The temperature dependence of magnetic susceptibility for the two-condensate charged
system with Tc = 100 K.

6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 06 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

T d 
(K

)

T c  ( K )
Figure 5. The monopole deconfinement transition temperature Td as a function of Tc.

5. Conclusions

In summary, based on the extended CP1 model, we have studied the topological
monopole excitations in the three-dimensional two-condensate charged system. Our numer-
ical data on the monopole density and magnetic susceptibility indicate that there exists a
monopole–antimonopole deconfinement transition for the two-band superconducting system
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with a critical temperature of above about 70 K. We also suggest the possible experimental
detection of this monopole plasma phase in high-Tc iron-based superconductors.
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