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Abstract: A layered structure composed of polyaniline (PANI) and silicon dioxide (SiO2) is proposed
in this article. It was developed to obtain ultra-wideband and high-power microwave absorption.
Due to the high thermal stability of PANi and SiO2 above 400 ◦C, the proposed structure is able
to absorb high amounts of power. The electromagnetic behavior of the structure is examined by
full-wave simulation to investigate its ability to absorb microwave frequencies ranging from 1 to
20 GHz under both normal and oblique incidences of electromagnetic waves. Recent studies have
produced results with a limited absorption range and a less consistent angular incidence than the
structure presently being examined. Also, the layer-by-layer deposition of thin film facilitates the
manufacturing procedure. Furthermore, owing to the high thermal stability of the proposed structure,
the absorption of high-power microwaves is superior to that of alternative methodologies.

Keywords: HPM absorber; microwave absorber; metamaterial; ultra-wideband; layered structure

1. Introduction

High-power microwaves (HPM) describe a group of electromagnetic (EM) devices
that may produce bursts of powerful microwave radiation [1–4]. HPMs can reach a peak
power of 100 MW and operate within the frequency range of 1–300 GHz [5]. According to
research [6–9], HPM poses a severe risk to electronic systems and can interrupt or damage
critical systems and infrastructure. HPM weapons can disrupt a wide range of unprotected
electronic systems within their electromagnetic span, including those used by the military
and commercial sectors [10,11]. These HPMs can produce high-amplitude current and
voltage electrical pulses that last from a few nanoseconds to tens of nanoseconds [12].
Therefore, they can interfere with some electronic systems permanently or temporarily
while others remain unharmed. Electromagnetic interference (EMI), sometimes called
undesirable interruptions from outside sources, is often associated with the impact of HPM
on electrical systems [13].

Diverse shielding and filtering techniques are implemented during electronic sys-
tem design and construction phases to mitigate the effects of HPM and EMI. In order to
minimize the susceptibility of electronic devices to external electromagnetic disturbances,
preventive measures consist of Faraday enclosures, shielding materials, and signal-filtering
devices [14,15]. HPM shielding is a phenomenon in which electromagnetic waves are
reflected and/or absorbed by a material that functions as a barrier to prevent the EM
radiation of the HPM weapon from penetrating electronic systems and devices. Several
benefits are associated with the absorption of high-power microwaves instead of their
reflection. Microwave absorbers are crucial in military and aerospace applications because
they effectively reduce or block the backscattered electromagnetic signal from defense
equipment like airplanes, ships, submarines, and more [16,17]. Such signals would oth-
erwise be susceptible to detection by adversarial radar systems. Furthermore, antenna
mutual coupling reduction, microwave energy harvesting, wireless charging, and electro-
magnetic interference and compatibility verification are a few of the numerous applications
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for absorbers [18]. As a result, with the development of detecting technology and wire-
less communication, absorbers are needed throughout the frequency spectrum, and EM
absorbers have to broaden their absorption bandwidth [17].

Absorbers are manufactured utilizing various materials, shapes, sizes, and design
patterns to absorb the desired frequency spectrum. The optimization of materials and
structures to facilitate efficient microwave absorption serves to improve the application
of high-power microwave energy across a diverse array of real-world contexts [19]. Our
primary objective will be to develop structures that effectively shield devices and systems
from these undesired impulses while transforming them into usable energy. Some of
the best materials for absorbing high-power microwaves are head-conducting multifunc-
tional composites, hexagonal ferrite powder, porous biomass carbon, and metamaterial
absorbers [20,21]. Their significant properties make them better at absorbing microwaves
across various frequencies and applications. Metamaterial absorbers can protect electronic
components from HPM radiation by absorbing incident waves. These absorbers can be
tuned to exhibit absorption peaks within the microwave frequency range [22,23].

The interaction of high-energy microwaves with microwave-absorbing materials
gives rise to intense electromagnetic fields that may cause disturbances in microwave
absorbers [4,24]. The absorber material undergoes energy absorption and dissipation due
to the electrical currents generated by these intense electromagnetic fields. The potential
consequences of the absorbed energy surpassing the thermal thresholds of the material
include the microwave absorber being damaged or destroyed [25]. This disruptive effect
emphasizes the significance of choosing materials with suitable properties, such as high real
permittivity and thermal stability, for the efficient absorption of high-power microwaves.
Considering these characteristics, we shall proceed with developing microwave absorbers
utilizing materials possessing the necessary properties to absorb HPM effectively. In this
context, in order to develop a highly powerful HPM absorber, it is imperative to employ a
material that possesses desirable characteristics, including resistance to high temperatures,
the capability of absorbing microwaves, thermal stability, customizable dielectric prop-
erties, and robust mechanical strength [21,26,27]. In our work, polyaniline (PANi) is the
material of choice for its light weight, thin thickness, large absorption width, and powerful
microwave absorption on account of its mechanical properties; heat conductivity; light den-
sity; adjustable electrical conductivity; controllable complex permittivity; environmental
stability; anti-corrosion nature; and simple synthesis process [28–30].

In this paper, we present the development of an ultra-wideband multilayered meta-
material absorber comprising silicon dioxide (SiO2) and PANi deposited layer by layer.
The use of PANi and SiO2, which have thermal stability that reaches 400 ◦C [31], makes
the proposed structure fit the absorption of high power. We examine the electromagnetic
behavior (of the structure), focusing on high absorption in the operating frequency range
of 1–20 GHz. We consider the normal and oblique incidence of transverse electromagnetic
waves. To summarize, our proposed structure has a high absorption bandwidth with high
angular incidence stability compared to recent works that have been proposed [23,32–35].
In addition to the simplest manufacturing process, layer-by-layer deposition with thin-
thickness structures is also used. In the results and discussion section below, we investigate
ways to reduce the device cost using SiO2 dielectric layers that have a flexible dielectric
constant; this would raise the device’s scalability while reducing fabrication costs. Also, to
make the HPM absorber resilient to environmental conditions, we coated the top surface of
the device with a thin SiO2 layer as an anti-reflection coating layer. Also, our structure can
handle the HPM because it has high thermal stability compared to the other work.

2. Design and Modeling

The proposed multilayer metamaterial absorber depicted in Figure 1 comprises stack-
ing layers, including a thin copper (Cu) film at the bottom, SiO2, and PANi. It was
determined via numerical simulation that specific parameters substantially influence the
device’s efficacy. We set the thickness of the bottom reflector (hr) as 0.2 mm to prevent the
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propagation of the HPM. We also consider the dielectric constant of silicon dioxide as 2.1
and the loss tangent to be 0.001. The absorption spectrum was analyzed concerning PANi
layer thickness variations (h) and the thickness of the SiO2 layer (hs) in various scenarios.
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Figure 1. 3D schematic of the proposed HPM absorber.

In layered structures, the purpose of stacking layers is to produce tailored structures to
obtain specific electromagnetic responses, such as the enhancement of absorption features
of the structure. The formation of resonant structures through the stacking of layers enables
the manipulation of electromagnetic radiation, thereby facilitating high absorption [36].
Regarding this matter, we construct layered structures composed of PANi and SiO2 with
precise geometric parameters to maintain consistent phase differences for electric field
components. Stacking a mixture of six layers from PANi and SiO2 results in high coupling
between the structure layers, improving performance and UWB absorption.

To design and investigate the suggested HPM absorber, we apply the finite integration
approach (FIT), which is implemented in the CST microwave studio. The computation is
carried out by utilizing 20 cells per wavelength and introducing adaptive meshing into
the computational process. It is necessary to make numerous modifications to the meshes
in order to guarantee that the simulation results will be consistent. We apply the unit cell
boundary conditions in both directions (X and Y). Also, in the same instant, we set perfectly
matched boundary conditions in the Z direction, which is the propagation of the incident
HPM. Furthermore, we use Cu as a perfect bottom reflector layer to block the transmission
of the waves, considering a thickness greater than the HPM’s skin depth. As a result, the
transmission coefficients (T(ω)) can be considered as vanishing. Consequently, the absorp-
tion characteristic (A(ω)) for the incident waves of both TE- and TM-polarization can be
determined by substituting A(ω) = 1− R(ω), where R(ω) represents the device reflection.
Additionally, the absorption characteristic can be calculated utilizing the scattering (S-)
parameters: A(ω) = 1 − |S11|2, where S11 represents the reflected waves by the device.

We now demonstrate the complex permittivity of the conductive polymer (PANi)
under consideration, as documented in reference [29], within the frequency range of
1–20 GHz. The data for the PANi permittivity calculated in reference [29] pertain to the
frequency range of 4–18 GHz. In order to render the dielectric dispersion values for the
lower and higher frequencies (specifically, 1–4 GHz and 8–20 GHz) as well, the nth-order
dielectric dispersive fitting tool implemented in CST MWS was utilized to model the
dielectric properties of these frequencies, as described in reference [37,38]. The complex
permittivity of PANi is plotted in Figure 2; it can be seen that the complex permittivity
of PANi is dispersive in the entire frequency range of interest (i.e., 1–20 GHz). The real
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(Re(ϵ)) and imaginary (Im(ϵ)) components of the complex permittivity of PANi are highly
positively valued (i.e., dielectric medium), with the magnitude of both decreasing with an
increasing frequency. Also, the Im(ϵ) is approximately a fourth of the value Re(ϵ).
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Matching impedance plays an important role in EM absorption. A common phe-
nomenon happens when electromagnetic waves move between media, with some energy
reflected and the rest transmitted. To reduce reflection, the characteristic impedance of the
reflected medium should match that of the incident medium. Impedance matching makes
it hard to achieve optimal performance in an absorber design [39]. The absorber impedance
should be close to the characteristic air impedance to achieve near-unity absorption, typ-
ically around 377 Ω at the appropriate frequency [40]. The reflected component can be
computed under the normal excitation as

R(ω) =
Ze f f − Z0

Ze f f + Z0
, (1)

Assigning Z0 to the impedance of the free space, Ze f f represents the effective impedance
of the absorber in this context. Proper matching of the air impedance (Z0 = 377 Ω) is crucial
for minimizing energy reflection from structures and ensuring optimal absorption. The
impedances of Ze f f and Z0 must be matched precisely. The normalized ZNe f f can be
represented using the S-parameters as [41]

ZNe f f (ω) =
1 + S11

1 − S11
(2)

To illustrate, we consider the case of hs = 0.8 mm and h = 0.75 mm; the normalized
ZNe f f versus frequency has been plotted in Figure 3. It is observed in the provided
figure that ZNe f f approaches 1 from 8 GHz and above, indicating that the absorption at a
frequency of 8–20 GHz exceeds 90%. Furthermore, the absorption reaches its maximum
near the minimal impedance value and, subsequently, declines as the effective impedance
increases. Consequently, to decrease wave reflection (i.e., reducing R(ω)) and, thereby,
improve the absorbent spectra, adjustments are made to the geometrical parameters of the
proposed HPM devices. Investigating the geometrical parameters that result from altering
the thickness of the PANi and SiO2 layers is necessary in the given context to improve
HPM absorption.
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3. Results and Discussion

An investigation is underway into the HPM absorber’s spectral properties depicted
in Figure 1. The absorption band for both the TE- and TM-modes is analyzed, taking into
account both normal and angular incident electromagnetic waves. The spectral properties
of the HPM absorber are initially examined in the context of TE-polarized excitation.

It is evident from Figure 4a that the HPM absorber demonstrates reduced absorption
within the frequency range of 2–8 GHz for hs = 0.8 mm. Aside from that range, absorption
exceeds 70% and peaks at over 90% for higher frequencies. It is obvious that an increase in
h-values results in a further expansion of absorption towards lower frequencies, while a
decrease in h values causes an increase in absorption in the higher frequency band.
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In Figure 4b, the outcomes are represented for the condition hs = 1 mm. In order to
observe the impact of the SiO2 layer thickness, we shall now consider three various values
for the thickness of the PANi layers for different h-values, namely 0.6 mm, 0.65 mm, and
0.7 mm, as determined by the CST MWS parametric analysis’s optimal outcomes. It is
evident from Figure 4b that an increase in hs results in a marginal reduction in the values
of h, which enhances absorption in the sense of greater absorption. It becomes apparent
that a reduction in h is necessary to maintain an equivalent level of performance when hs
increases. In Figure 4a,b, the proposed device exhibits minimal absorption in the frequency
band of 2–8 GHz, which means that high reflection occurs. In the future, we intend to use
deep learning algorithms to investigate how to minimize this reflection and enhance the
device’s performance.
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The subsequent analysis focuses on the impact of the angle of incidence (θi) on the
performance of the HPM absorber. The performance of the proposed HPM absorber is
influenced by the angle of incidence, θi. To show the effect of θi, the angle of incidence is
slightly increased by 5◦ from 0◦ to 70◦. Figure 5 illustrates the absorption characteristic in
the case of the oblique incidence of TE waves.
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For the parametric values h = 0.75 mm and hs = 0.8 mm, as depicted in Figure 5a,
the absorption characteristics versus the angle of incidence under the excitation of TE
waves are illustrated. Based on the data presented in Figure 5a, it can be seen that the
spectrum remains stable for θi ≤ 50◦, beyond which the absorption efficacy declines
gradually. Figure 5b additionally depicts the absorption properties for the parametric
values h = 0.65 mm and hs = 1 mm. Clearly, the absorber remains stable even when
subjected to angular incidence, and it is also evident that the absorption of high-frequency
information has been enhanced compared to the situation depicted in Figure 5a.

Figure 6 illustrates the normalized power loss experienced by the utilized materials
in order to provide insight into the concentration of absorbed power across the various
mediums of the HPM absorber. The majority of incident waves are absorbed by the PANi
medium of the HPM structure, as observed. Also, it is evident from Figure 6 that SiO2 is a
very low-loss material for microwaves due to the low dielectric constant and loss tangent.
In order to examine the operational mechanism of the suggested absorbers, the electric
field and power density are represented in the XYZ plane. Figures 7 and 8 show the electric
field and power density for the proposed HPM structure at h = 0.75 mm and 0.8 mm.

Crystals 2024, 14, 391 7 of 11 
 

 

2 5 8 11 14 17 20

0.0

0.2

0.4

0.6

0.8

1.0

P
o

w
e
r 

lo
s
s

Frequency (GHz)

 Loss in PANi

 Loss in SiO2

 Loss in Cu

 

Figure 6. Plot for power loss (in each material) against frequency considering hs = 0.8 mm and h = 

0.75 mm. 

 

Figure 7. 3D plot of the electric field at frequencies of (a) 3 GHz and (b) 18 GHz, considering hs = 

0.8 mm and h = 0.75 mm. 

 

Figure 8. 3D plot of the power loss density at frequencies of (a) 3 GHz and (b) 18 GHz, considering 

hs = 0.8 mm and h = 0.75 mm. 

The E-field distribution pattern of the HPM absorber at frequencies of 3 GHz (indi-

cating minimum absorption by the absorber) and 18 GHz (indicating maximal absorption 

by the absorber) is depicted in Figure 7. As illustrated in Figure 7a, a weak, uniform elec-

tric field emanates at a frequency of 3 GHz across all levels. Conversely, when subjected 

to high absorption at 18 GHz (as illustrated in Figure 7b), the electric field distribution of 

(a) (b) 

3 GHz 
18 GHz 

3 GHz 

(a) (b) 

18 GHz 

Figure 6. Plot for power loss (in each material) against frequency considering hs = 0.8 mm and
h = 0.75 mm.



Crystals 2024, 14, 391 7 of 11

Crystals 2024, 14, 391 7 of 11 
 

 

2 5 8 11 14 17 20

0.0

0.2

0.4

0.6

0.8

1.0

P
o

w
e
r 

lo
s
s

Frequency (GHz)

 Loss in PANi

 Loss in SiO2

 Loss in Cu

 

Figure 6. Plot for power loss (in each material) against frequency considering hs = 0.8 mm and h = 

0.75 mm. 

 

Figure 7. 3D plot of the electric field at frequencies of (a) 3 GHz and (b) 18 GHz, considering hs = 

0.8 mm and h = 0.75 mm. 

 

Figure 8. 3D plot of the power loss density at frequencies of (a) 3 GHz and (b) 18 GHz, considering 

hs = 0.8 mm and h = 0.75 mm. 

The E-field distribution pattern of the HPM absorber at frequencies of 3 GHz (indi-

cating minimum absorption by the absorber) and 18 GHz (indicating maximal absorption 

by the absorber) is depicted in Figure 7. As illustrated in Figure 7a, a weak, uniform elec-

tric field emanates at a frequency of 3 GHz across all levels. Conversely, when subjected 

to high absorption at 18 GHz (as illustrated in Figure 7b), the electric field distribution of 

(a) (b) 

3 GHz 
18 GHz 

3 GHz 

(a) (b) 

18 GHz 

Figure 7. 3D plot of the electric field at frequencies of (a) 3 GHz and (b) 18 GHz, considering
hs = 0.8 mm and h = 0.75 mm.

Crystals 2024, 14, 391 7 of 11 
 

 

2 5 8 11 14 17 20

0.0

0.2

0.4

0.6

0.8

1.0

P
o

w
e
r 

lo
s
s

Frequency (GHz)

 Loss in PANi

 Loss in SiO2

 Loss in Cu

 

Figure 6. Plot for power loss (in each material) against frequency considering hs = 0.8 mm and h = 

0.75 mm. 

 

Figure 7. 3D plot of the electric field at frequencies of (a) 3 GHz and (b) 18 GHz, considering hs = 

0.8 mm and h = 0.75 mm. 

 

Figure 8. 3D plot of the power loss density at frequencies of (a) 3 GHz and (b) 18 GHz, considering 

hs = 0.8 mm and h = 0.75 mm. 

The E-field distribution pattern of the HPM absorber at frequencies of 3 GHz (indi-

cating minimum absorption by the absorber) and 18 GHz (indicating maximal absorption 

by the absorber) is depicted in Figure 7. As illustrated in Figure 7a, a weak, uniform elec-

tric field emanates at a frequency of 3 GHz across all levels. Conversely, when subjected 

to high absorption at 18 GHz (as illustrated in Figure 7b), the electric field distribution of 

(a) (b) 

3 GHz 
18 GHz 

3 GHz 

(a) (b) 

18 GHz 

Figure 8. 3D plot of the power loss density at frequencies of (a) 3 GHz and (b) 18 GHz, considering
hs = 0.8 mm and h = 0.75 mm.

The E-field distribution pattern of the HPM absorber at frequencies of 3 GHz (indicat-
ing minimum absorption by the absorber) and 18 GHz (indicating maximal absorption by
the absorber) is depicted in Figure 7. As illustrated in Figure 7a, a weak, uniform electric
field emanates at a frequency of 3 GHz across all levels. Conversely, when subjected to
high absorption at 18 GHz (as illustrated in Figure 7b), the electric field distribution of
the device layers differs due to the coupling between the layers of the structure to absorb
incident waves to their maximum capacity.

In order to visualize the concentration of absorbed power across each layer of the
HPM absorber, the power density for the proposed HPM structure is depicted in Figure 8.
It is evident that power losses transpire on the PANi layer of the device for both the 3 GHz
and 18 GHz frequencies, as illustrated in Figure 8. The power absorption of the device
at 3 GHz is illustrated in Figure 8a. The absorber operates at a modest power level due
to a lower amount of absorbed power, which appears on the middle-sandwich layers of
PANi. Conversely, the absorber demonstrates maximum absorption across all layers of
PANi at 18 GHz.

As a step towards reducing the cost of the developed structure, it is not possible to
alter the PANi synthesis process, since we require PANi with a certain complex permittivity.
We investigated potential ways to reduce the cost of silicon dioxide, which would, in turn,
lower the cost of the developed HPM absorber. Since the cost of silicon dioxide alters
depending on the specific dielectric constant, purity, etc., Figure 9a shows the change in the
dielectric constant value of SiO2 versus the structure’s absorption. We can see from this
figure that the absorption is slightly dependent on the altering of the dielectric constant of
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SiO2 along the operation band. As a result, we expect to use intrinsic pure silicon dioxide
instead of the manufactured one to reduce the cost of the structure.

To overcome the environmental conditions for the proposed HPM absorber such as
humidity, UV radiation, etc., we use a coating layer of SiO2 considering two thickness
values, namely 0.2 mm and 0.4 mm, as shown in Figure 9b. It can be observed from
Figure 9b that the addition of a coating layer made from SiO2 with a thickness of 0.2 mm
has almost no impact on the device performance. Also, it is evident from Figure 9a that
the small change in the dielectric constant of SiO2 has almost no effect on the absorption
spectrum. Consequently, by using SiO2 as a coating layer, we overcome the impact of the
environmental conditions on our device because the variation in εSiO2 of the antireflection
coating layer due to the environmental conditions can be neglected.
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Table 1 provides comparative analyses of the proposed HPM absorber in relation to a
number of recent microwave absorber studies. We take into consideration the impact of
the following parameters to study the pros and cons of each device in the table, such as
absorption efficiency, thickness, material thermal stability, frequency band, angular stability,
and device complexity. The observed behavior of the proposed structure under both normal
and oblique waves is a broad absorption bandwidth. The substrate material employed in
nearly all contemporary structures is FR-4, which is unable to withstand temperatures in
excess of 130 ◦C [42]. Our proposed structure, on the other hand, is composed of materials
with high thermal stability, including PANi and SiO2, which qualify it for high-power
microwave absorption. The prospective manufacturing process for our HP absorber is
relatively uncomplicated, cost-effective, and compatible with layer-by-layer deposition. In
addition, the structure possesses a smooth surface, is exceedingly compact and lightweight,
and is exceptionally stable in the face of challenging environmental conditions.

Table 1. Performance comparison of previously reported and proposed layered structures.

Ref. # Operating
Frequency Thickness Angular

Stability Configuration Investigation Comments

[23] 2–16 GHz ≈2 mm θi ≤ 20◦ FSS Full-wave
simulation

Selective absorption,
Simple structure, unfit for HPM

[43] 6–30 GHz ≈4 mm θi ≤ 45◦ Couple of FSS, and
air spacer

Simulation and
measurement

Simple fabrication,
wide bandwidth, unfit for HPM

[44] 7–44 GHz ≈4.05 mm θi ≤ 30◦ Coding
metamaterial

Simulation and
measurement

Complex structure, wide bandwidth,
unfit for HPM
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Table 1. Cont.

Ref. # Operating
Frequency Thickness Angular

Stability Configuration Investigation Comments

[20] 4–16 GHz ≈6.5 mm θi ≤ 50◦ FSS and
layered materials

Simulation and
measurement

Relatively easy fabrication,
medium bandwidth, unfit for HPM

[18] 1–8 GHz ≈12 mm θi ≤ 45◦ FSS, inductive grid,
and two air spacers

Simulation and
measurement

Complex structure, less
bandwidth, unfit

for HPM

This work 1–20 GHz ≈5 mm θi ≤ 50◦ Layered structure Full-wave
simulation

Simple structure, ultra-wide
bandwidth, suitable for HPM

4. Conclusions

This study demonstrated an ultra-wideband multilayered metamaterial absorber that
shows great promise for absorbing strong electromagnetic waves. Our structure is capable
of absorbing high-power microwaves (HPM), since it is composed of silicon dioxide (SiO2)
and polyaniline (PANi). To overcome the impact of environmental conditions on the
proposed device, we added a 0.2 mm thick SiO2 coating layer. The investigations found
that the use of SiO2 as a coating layer will protect the device from environmental conditions
and will not affect its performance. Also, prospective fabrication techniques were proposed,
and the use of SiO2 with a relative permittivity altering from 2 to 3.6 led to a small impact
on the device’s performance. It is expected to withstand up to 400 ◦C, owing to the use of
materials that have high thermal stability, as well as rigorous environmental conditions. By
conducting a detailed electromagnetic behavior study, we have shown that our structure
significantly improves the absorption bandwidth over the 1–20 GHz frequency range while
being stable under normal and oblique transverse electromagnetic wave incidences. In
addition to this, our suggested absorber outperforms previous devices in terms of angular
incidence stability, surface roughness, and bandwidth, making it an excellent choice for a
wide range of applications, including both military and commercial.
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